Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Science and Society
  • Published:

Neuroscience and legal determination of criminal responsibility

Abstract

Neuroscience is increasingly identifying associations between biology and violence that appear to offer courts evidence relevant to criminal responsibility. In addition, in a policy era of 'zero tolerance of risk', evidence of biological abnormality in some of those who are violent, or biological markers of violence, may be seized on as a possible basis for preventive detention in the interest of public safety. However, there is a mismatch between questions that the courts and society wish answered and those that neuroscience is capable of answering. This poses a risk to the proper exercise of justice and to civil liberties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Different patterns of brain activation in criminal pyschopaths and control subjects.
Figure 2: Differences in processing of negative emotions.

References

  1. Masters, B. Killing for Company (Cape, London, 1985).

    Google Scholar 

  2. Wootton, B. (assisted by Seal, V. G. & Chambers, R.) Social Science and Social Pathology (Allen and Unwin, London, 1959).

    Google Scholar 

  3. Teubner, G. Law as an Autopoietic System (Blackwell, Oxford, 1993).

    Google Scholar 

  4. R v. Turner [1975] 1 QB 834.

  5. Eastman, N. L. G. Public health psychiatry or crime prevention? BMJ 318, 549–551 (1999).

    Article  CAS  Google Scholar 

  6. Horn, D. G. The Criminal Body: Lombroso and the Anatomy of Deviance (Routledge, New York, 2003).

    Google Scholar 

  7. Beckwith, J. & Alper, J. S. in Molecular Genetics and the Human Personality (eds Benjamin, J., Ebstein, R. P. & Belmaker, R. H.) 315–331 (American Psychiatric Publishing, Inc., Washington, DC, 2002).

    Google Scholar 

  8. Rubinow, D. R. & Schmidt, P. J. Androgens, brain, and behaviour. Am. J. Psychiatry 153, 974–984 (1996).

    Article  CAS  Google Scholar 

  9. Ellis, L. A theory explaining biological correlates of criminality. Eur. J. Criminol. 2, 287–315 (2005).

    Article  Google Scholar 

  10. Scarpa, A. & Raine, A. Psychophysiology of anger and violent behaviour. Psychiatr. Clin. North Am. 20, 375–394 (1997).

    Article  CAS  Google Scholar 

  11. Blair, R. J. R. Neurocognitive models of aggression, the antisocial personality disorders, and psychopathy. J. Neurol. Neurosurg. Psychiatry 71, 727–731 (2001).

    Article  CAS  Google Scholar 

  12. Mobley v. State, 426 S.E.2d 150 (ga. 1993).

  13. Mobley v. State, 250 Ga. 292, 455 S.E.2d 61 (1995).

  14. Mobley v. Georgia, 516 U.S. 942, 116 S.Ct. 377, 133 L.Ed.2d 301 (1995).

  15. Mobely v. Georgia, 269 Ga. 635, 502 S.E.2d 458 (1998).

  16. Raine, A. et al. Corpus callosum abnormalities in psychopathic antisocial individuals. Arch. Gen. Psychiatry 60, 1134–1142 (2003).

    Article  Google Scholar 

  17. Raine, A., Lencz, T., Bihrle, S., Lacasse, L. & Colletti, P. Reduced prefrontal grey matter volume and reduced autonomic activity in antisocial personality disorder. Arch. Gen. Psychiatry 57, 119–127 (2000).

    Article  CAS  Google Scholar 

  18. Laakso, M. P. et al. Psychopathy and the posterior hippocampus. Behav. Brain Res. 118, 187–193 (2001).

    Article  CAS  Google Scholar 

  19. Volkow, N. D. et al. Brain glucose metabolism in violent psychiatric patients. Psychiatry Res. 61, 243–253 (1995).

    Article  CAS  Google Scholar 

  20. Goyer, P. F. et al. Positron-emission tomography and personality disorders. Neuropsychoparmacology 10, 21–28 (1994).

    Article  CAS  Google Scholar 

  21. Raine, A., Buchsbaum, M. & Lacasse, L. Brain abnormalities in murderers indicated by positron emission tomography. Biol. Psychiatry 42, 495–508 (1997).

    Article  CAS  Google Scholar 

  22. Kuruoglu, A. C. et al. Single photon emission computerised tomography in chronic alcoholism. Antisocial personality disorder may be associated with decreased frontal perfusion. Br. J. Psychiatry 169; 348–354 (1996).

    Article  CAS  Google Scholar 

  23. Soderstrom, H. et al. Reduced frontotemporal perfusion in psychopathic personality. Psychiatry Res. 114, 81–94 (2002).

    Article  Google Scholar 

  24. Smith, A. An fMRI investigation of frontal lobe functioning in psycopathy and schizophrenia during a go/no go task. Thesis, Univ. British Columbia, Canada (2000).

    Google Scholar 

  25. Müller, J. L. et al. Abnormalities in emotional processing within cortical and subcortical regions in criminal psychopaths: evidence from a functional magnetic resonance imaging study using pictures with emotional content. Biol. Psychiatry 54, 152–162 (2003).

    Article  Google Scholar 

  26. Kiehl, K. A. et al. Temporal lobe abnormalities in semantic processing by criminal psychopaths as revealed by functional magnetic resonance imaging. Psychiatry Res. 130, 27–42 (2004).

    Article  Google Scholar 

  27. Pridmore, S., Chambers, A. & McArthur, M. Neuroimaging in psychopathy. Aust. N. Z. J. Psychiatry 39, 856–865 (2005).

    Article  Google Scholar 

  28. Hare, R. D. The Hare Psychopathy Checklist — Revised 2nd edn (Multi-Health Systems, Toronto, 2003).

    Google Scholar 

  29. Canli, T. & Amin, Z. Neuroimaging of emotion and personality: scientific evidence and ethical considerations. Brain Cogn. 50, 414–431 (2002).

    Article  Google Scholar 

  30. Stark, C. E. & Squire, L. R. When zero is not zero: the problem of ambiguous baseline conditions in fMRI. Proc. Natl Acad. Sci. USA 98, 12760–12766 (2001).

    Article  CAS  Google Scholar 

  31. Bostock, J. & Adshead, G. in Encyclopaedia of the Human Genome (ed. Cooper, D. ) (Nature, London, 2003).

    Google Scholar 

  32. Rose, N. in Embracing Risk (eds Baker, T. &Simon, J.) 209–237 (Univ. Chicago Press, 2001).

    Book  Google Scholar 

  33. Yang, Y. et al. Prefrontal white matter in pathological liars. Br. J. Psychiatry 187, 320–325 (2005).

    Article  Google Scholar 

  34. Woolf, L. C. J. Opening address, Annual Conference, Forensic Faculty, Royal College of Psychiatrists, Brighton, February 2002.

  35. v. Dietschmann HL [2003] UKHL 10, on appeal from: [2001] EWCA Crim 2052

  36. Reid v. The Secretary of State for Scotland [1998] 1 All ER 481.

  37. Peay, J. Tribunals on Trial (Clarendon, Oxford, 1989).

    Google Scholar 

  38. Draft Mental Health Bill 2004.

  39. Report of the Joint Parliamentary Scrutiny Committee for the Draft Mental Health Bill, HL Paper 79-II, HC 95-II, London, The Stationary Office (2005).

  40. Winterwerp v. The Netherlands [1979] 2 EHRR 387.

  41. Human Rights Act 1998.

  42. Brunner, H. G., Nelen, M., Breakefield, X. O., Ropers, H. H. and van Oost, B. A. Abnormal behaviour associated with a point mutation in the structural gene for monoamine oxidase A. Science 262, 578–580 (1993).

    Article  CAS  Google Scholar 

  43. Rhee, S. & Waldman, I. D. Genetic and environmental influences on antisocial behaviour: a meta-analysis of twin and adoption studies. Psychol. Bull. 128, 490–529 (2002).

    Article  Google Scholar 

  44. Caspi, A. et al. Role of genotype in the cycle of violence in maltreated children. Science 297, 851–854 (2002).

    Article  CAS  Google Scholar 

  45. Foley, D. L. et al. Childhood adversity, monoamine oxidase A genotype, and risk for conduct disorder. Arch. Gen. Psychiatry 61, 738–744 (2004).

    Article  CAS  Google Scholar 

  46. Sluyter, F. et al. Towards an animal model for antisocial behaviour: parallels between mice and humans. Behav. Genet. 33, 563–574 (2003).

    Article  Google Scholar 

  47. Nelson, R. J. & Chiavegatto, S. Molecular basis of aggression. Trends Neurosci. 24, 713–719 (2001).

    Article  CAS  Google Scholar 

  48. Nelson, R. J. et al. Behavioural abnormalities in male mice lacking neuronal nitric oxide synthase. Nature 378, 383–386 (1995).

    Article  CAS  Google Scholar 

  49. Chiavegatto, S. Brain serotonin dysfunction accounts for aggression in male mice lacking neuronal nitric oxide synthase. Proc. Natl Acad. Sci. USA 98, 1277–1281 (2001).

    Article  CAS  Google Scholar 

  50. Bratty v. A-G For Northern Ireland [1963] AC 386; [1961] 3 All ER 523–39 956, 57).

  51. R v. McNaughton (1843) 10 Cl and Fin 200.

  52. Section 2 Homicide Act 1957.

  53. R v. Lloyd [1966] 2WLR 13.

  54. DPP v. Camplin [1978] 2 All ER 168.

  55. R v. Morhall [1993] 4 All ER 888.

  56. Attorney General for Jersey v. Holley (Jersey) [2005] UKPC 23 (15 June 2005).

  57. R v. Duffy [1949] 1 All ER 932 (2005).

  58. Luc Thiet Thuan v. R [1997] AC 131 (PC).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nigel Eastman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eastman, N., Campbell, C. Neuroscience and legal determination of criminal responsibility. Nat Rev Neurosci 7, 311–318 (2006). https://doi.org/10.1038/nrn1887

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1887

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing