Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Lipid regulation of the synaptic vesicle cycle

Key Points

  • The synaptic vesicle cycle that mediates neurotransmission is precisely regulated, both spatially and temporally, by the actions and interactions of plasma membrane and synaptic vesicle lipids and a large number of synaptic proteins. Recent studies have revealed that key aspects of the synaptic vesicle cycle are likely to be regulated by membrane lipid composition, lipid domain heterogeneity, lipid modulation and lipid-mediated signalling within synaptic membrane environments. This review focuses on newly revealed roles for lipid domain formation and modification, lipid–protein interactions and structural and metabolic forms of lipid modulation, which underlie the sustainability and fidelity of synaptic transmission.

  • Exocytosis involves vesicle targeting, docking, priming and fusion at the presynaptic active zone. Sphingolipid- and cholesterol-enriched lipid raft domains are proposed to localize important members of the SNARE protein complex required for exocytosis. Phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) is locally synthesized and concentrated at plasma membrane exocytic domains, interacts with multiple exocytic proteins and has crucial roles in vesicle priming and Ca2+-dependent fusion. It is likely that localized phospholipid metabolism and structural modulation also facilitate geometric restructuring of the membranes during synaptic vesicle fusion.

  • Genetic mutants and functional synaptic studies in Drosophila melanogaster provide new evidence that sphingolipid- and phospholipid-modifying enzymes regulate synaptic function. Rolling blackout (RBO), a novel lipase, is vital for neurotransmission, and functions in an activity-dependent mechanism to regulate PtdIns(4,5)P2–DAG concentrations. The ceramidase SLAB, which has a central role in sphingolipid metabolism, regulates ceramide concentrations and sphingolipid-dependent processes in a mechanism that facilitates synaptic vesicle priming and fusion during neurotransmission.

  • Genetic mutants and functional synaptic studies in D. melanogaster and Caenorhabditis elegans provide new evidence that synaptic vesicle endocytosis requires both structural and enzymatic phospholipid modulation. Clathrin-dependent synaptic vesicle endocytosis is regulated by interactions between phospholipids (e.g. PtdIns(4,5)P2), clathrin and adaptor proteins, and other key endocytic proteins. Endophilin has important roles in the structural changes in membranes that lead to vesicle fission and the localization of the PtdIns(4,5)P2 phosphatase synaptojanin, which is required for synaptic vesicle uncoating and trafficking from the plasma membrane.

  • Cholesterol–protein interactions are also likely to be important for synaptic vesicle formation and recruitment of the proper complement of vesicle proteins.

  • Lipids also have important roles in regulating synaptic vesicle trafficking between reserve and readily-releasable pools in presynaptic terminals. Activity-dependent synaptic vesicle tethering and release in vertebrate synapses is regulated by synapsin, which binds synaptic vesicle membrane lipids. Reserve pool tethering is perturbed in D. melanogaster SLAB ceramidase mutants, indicating that the synaptic sphingolipid environment modulates the tethering–release step.

  • Despite the speed and complexity of the synaptic vesicle cycle, and the lipid-dependent mechanisms mediating this cycle, new genetic mutants are beginning to allow the dissection of the structural, modulatory and signalling functions of synaptic lipids. Increased focus on this new frontier promises to expand our understanding of synaptic vesicle cycle regulation and the mechanisms controlling neurotransmission.

Abstract

Membrane vesicle cycling is orchestrated through the combined actions of proteins and lipids. At neuronal synapses, this orchestration must meet the stringent demands of speed, fidelity and sustainability of the synaptic vesicle cycle that mediates neurotransmission. Historically, the lion's share of the attention has been focused on the proteins that are involved in this cycle; but, in recent years, it has become clear that the previously unheralded plasma membrane and vesicle lipids are also key regulators of this cycle. This article reviews recent insights into the roles of lipid-modifying enzymes and lipids in the acute modulation of neurotransmission.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the synaptic vesicle cycle.
Figure 2: Regulation of synaptic vesicle exocytosis by lipid raft environment.
Figure 3: Regulation of synaptic vesicle endocytosis by lipid modification and lipid–protein interactions.
Figure 4: Lipid-mediated regulation of synaptic vesicle pool tethering and mobilization.

Similar content being viewed by others

References

  1. Sudhof, T. C. The synaptic vesicle cycle. Annu. Rev. Neurosci. 27, 509–547 (2004).

    Article  PubMed  CAS  Google Scholar 

  2. Cremona, O. et al. Essential role of phosphoinositide metabolism in synaptic vesicle recycling. Cell 99, 179–188 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Cremona, O. & De Camilli, P. Phosphoinositides in membrane traffic at the synapse. J. Cell Sci. 114, 1041–1052 (2001).

    CAS  PubMed  Google Scholar 

  4. Martin, T. F. PI(4,5)P(2), regulation of surface membrane traffic. Curr. Opin. Cell Biol. 13, 493–499 (2001). An excellent, comprehensive review of PtdIns(4,5)P2 distribution, domain formation, protein interactions and regulation of vesicle fusion, endocytosis and trafficking.

    Article  CAS  PubMed  Google Scholar 

  5. Di Paolo, G., et al. Impaired PtdIns(4,5)P2 synthesis in nerve terminals produces defects in synaptic vesicle trafficking. Nature 431, 415–422 (2004). This study investigated functional synaptic transmission properties in neurons cultured from PIPK1γ -mutant mice to determine the effect of inhibiting activity-dependent synaptic PtdIns(4,5)P2 synthesis. PtdIns(4,5)P2-deficient neurons have smaller synaptic vesicle releasable pools, delayed endocytosis and greater synaptic depression, which is consistent with PtdIns(4,5)P2 synthesis regulating multiple synaptic vesicle cycle stages.

    Article  CAS  PubMed  Google Scholar 

  6. Osborne, S. L., Meunier, F. A. & Schiavo, G. Phosphoinositides as key regulators of synaptic function. Neuron 32, 9–12 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Wenk, M. R. & De Camilli, P. Protein-lipid interactions and phosphoinositide metabolism in membrane traffic: insights from vesicle recycling in nerve terminals. Proc. Natl Acad. Sci. USA 101, 8262–8269 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huttner, W. B. & Schmidt, A. Lipids, lipid modification and lipid-protein interaction in membrane budding and fission insights from the roles of endophilin A1 and synaptophysin in synaptic vesicle endocytosis. Curr. Opin. Neurobiol. 10, 543–551 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Martin, T. F. Racing lipid rafts for synaptic-vesicle formation. Nature Cell Biol. 2, E9–E11 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Wu, L., Bauer, C. S., Zhen, X. G., Xie, C. & Yang, J. Dual regulation of voltage-gated calcium channels by PtdIns(4,5)P2. Nature 419, 947–952 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Aravamudan, B., Fergestad, T., Davis, W. S., Rodesch, C. K. & Broadie, K. Drosophila Unc-13 is essential for synaptic transmission. Nature Neurosci. 2, 965–971 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Augustin, I., Rosenmund, C., Sudhof, T. C. & Brose, N. Munc13-1 is essential for fusion competence of glutamatergic synaptic vesicles. Nature 400, 457–461 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Rhee, J. S. et al. β phorbol ester- and diacylglycerol-induced augmentation of transmitter release is mediated by Munc13s and not by PKCs. Cell 108, 121–133 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Richmond, J. E., Davis, W. S. & Jorgensen, E. M. UNC-13 is required for synaptic vesicle fusion in C. elegans. Nature Neurosci. 2, 959–964 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Martin, T. F. Prime movers of synaptic vesicle exocytosis. Neuron 34, 9–12 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Rosenmund, C. et al. Differential control of vesicle priming and short-term plasticity by Munc13 isoforms. Neuron 33, 411–424 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Mikoshiba, K., Fukuda, M., Ibata, K., Kabayama, H. & Mizutani, A. Role of synaptotagmin, a Ca2+ and inositol polyphosphate binding protein, in neurotransmitter release and neurite outgrowth. Chem. Phys. Lipids 98, 59–67 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Schiavo, G., Gu, Q. M., Prestwich, G. D., Sollner, T. H. & Rothman, J. E. Calcium-dependent switching of the specificity of phosphoinositide binding to synaptotagmin. Proc. Natl Acad. Sci. USA 93, 13327–13332 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Okamoto, M. & Sudhof, T. C. Mints, Munc18-interacting proteins in synaptic vesicle exocytosis. J. Biol. Chem. 272, 31459–31464 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Jahn, R. & Grubmuller, H. Membrane fusion. Curr. Opin. Cell Biol. 14, 488–495 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Salaun, C., James, D. J. & Chamberlain, L. H. Lipid rafts and the regulation of exocytosis. Traffic 5, 255–264 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hay, J. C. et al. ATP-dependent inositide phosphorylation required for Ca2+-activated secretion. Nature 374, 173–177 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Cohen, J. S. & Brown, H. A. Phospholipases stimulate secretion in RBL mast cells. Biochemistry 40, 6589–6597 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Ivanova, P. T. et al. Electrospray ionization mass spectrometry analysis of changes in phospholipids in RBL-2H3 mastocytoma cells during degranulation. Proc. Natl Acad. Sci. USA 98, 7152–7157 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Staneva, G., Angelova, M. I. & Koumanov, K. Phospholipase A2 promotes raft budding and fission from giant liposomes. Chem. Phys. Lipids 129, 53–62 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Brown, W. J., Chambers, K. & Doody, A. Phospholipase A2 (PLA2) enzymes in membrane trafficking: mediators of membrane shape and function. Traffic 4, 214–221 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Wei, S. et al. Group IIA secretory phospholipase A2 stimulates exocytosis and neurotransmitter release in pheochromocytoma-12 cells and cultured rat hippocampal neurons. Neuroscience 121, 891–898 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Brown, F. D. et al. Phospholipase D1 localises to secretory granules and lysosomes and is plasma-membrane translocated on cellular stimulation. Curr. Biol. 8, 835–838 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Choi, W. S., Kim, Y. M., Combs, C., Frohman, M. A. & Beaven, M. A. Phospholipases D1 and D2 regulate different phases of exocytosis in mast cells. J. Immunol. 168, 5682–5689 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Vitale, N. et al. Phospholipase D1: a key factor for the exocytotic machinery in neuroendocrine cells. EMBO J. 20, 2424–2434 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Caumont, A. S., Galas, M. C., Vitale, N., Aunis, D. & Bader, M. F. Regulated exocytosis in chromaffin cells. Translocation of ARF6 stimulates a plasma membrane-associated phospholipase D. J. Biol. Chem. 273, 1373–1379 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Humeau, Y. et al. A role for phospholipase D1 in neurotransmitter release. Proc. Natl Acad. Sci. USA 98, 15300–15305 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Van Epps, H. A. et al. The zebrafish nrc mutant reveals a role for the polyphosphoinositide phosphatase synaptojanin 1 in cone photoreceptor ribbon anchoring. J. Neurosci. 24, 8641–8650 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cousin, M. A. et al. Synapsin I-associated phosphatidylinositol 3-kinase mediates synaptic vesicle delivery to the readily releasable pool. J. Biol. Chem. 278, 29065–29071 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Guo, J. et al. Phosphatidylinositol 4-kinase type IIα is responsible for the phosphatidylinositol 4-kinase activity associated with synaptic vesicles. Proc. Natl Acad. Sci. USA 100, 3995–4000 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Huang, F. D., Matthies, H. J., Speese, S. D., Smith, M. A. & Broadie, K. Rolling blackout, a newly identified PIP(2)-DAG pathway lipase required for Drosophila phototransduction. Nature Neurosci. 7, 1070–1078 (2004). Genetic, biochemical and functional analyses in D. melanogaster indicate that RBO is a lipase in the PtdIns(4,5)P2–DAG pathway, which modulates PLC-dependent signalling and is required for phototransduction. Current, unpublished data in conditional mutants further shows that RBO is necessary for synaptic transmission, which indicates that a common lipid-signalling pathway may regulate both processes.

    Article  CAS  PubMed  Google Scholar 

  37. Hardie, R. C. Regulation of TRP channels via lipid second messengers. Annu. Rev. Physiol. 65, 735–759 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Hardie, R. C. Regulation of Drosophila TRP channels by lipid messengers. Novartis Found. Symp. 258, 160–167; discussion 167–171, 263–266 (2004).

    CAS  PubMed  Google Scholar 

  39. Schmitt, H. & Meves, H. Modulation of neuronal calcium channels by arachidonic acid and related substances. J. Membr. Biol. 145, 233–244 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Meves, H. Modulation of ion channels by arachidonic acid. Prog. Neurobiol. 43, 175–186 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Lesa, G. M. et al. Long chain polyunsaturated fatty acids are required for efficient neurotransmission in C. elegans. J. Cell Sci. 116, 4965–4975 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. van Blitterswijk, W. J., van der Luit, A. H., Veldman, R. J., Verheij, M. & Borst, J. Ceramide: second messenger or modulator of membrane structure and dynamics? Biochem. J. 369, 199–211 (2003). This useful review discusses physical properties of ceramide that relate to its role in regulating lipid structure and curvature, raft formation and regulatory function, and vesicle formation and trafficking.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tsui-Pierchala, B. A., Encinas, M., Milbrandt, J. & Johnson, E. M. Jr. Lipid rafts in neuronal signaling and function. Trends Neurosci. 25, 412–417 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Hering, H., Lin, C. C. & Sheng, M. Lipid rafts in the maintenance of synapses, dendritic spines, and surface AMPA receptor stability. J. Neurosci. 23, 3262–3271 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cabrera-Poch, N., Sanchez-Ruiloba, L., Rodriguez-Martinez, M. & Iglesias, T. Lipid raft disruption triggers protein kinase C and Src-dependent protein kinase D activation and Kidins220 phosphorylation in neuronal cells. J. Biol. Chem. 279, 28592–28602 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Puri, V. et al. Cholesterol modulates membrane traffic along the endocytic pathway in sphingolipid-storage diseases. Nature Cell Biol. 1, 386–388 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Samuel, B. U. et al. The role of cholesterol and glycosylphosphatidylinositol-anchored proteins of erythrocyte rafts in regulating raft protein content and malarial infection. J. Biol. Chem. 276, 29319–29329 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Lang, T. et al. SNAREs are concentrated in cholesterol-dependent clusters that define docking and fusion sites for exocytosis. EMBO J. 20, 2202–2213 (2001). SNARE-mediated fusion of PC12 secretory vesicles occur in cholesterol-dependent raft-like clusters that localize syntaxin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Deutsch, J. W. & Kelly, R. B. Lipids of synaptic vesicles: relevance to the mechanism of membrane fusion. Biochemistry 20, 378–385 (1981).

    Article  CAS  PubMed  Google Scholar 

  50. Michaelson, D. M., Barkai, G. & Barenholz, Y. Asymmetry of lipid organization in cholinergic synaptic vesicle membranes. Biochem. J. 211, 155–162 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Benfenati, F., Greengard, P., Brunner, J. & Bahler, M. Electrostatic and hydrophobic interactions of synapsin I and synapsin I fragments with phospholipid bilayers. J. Cell Biol. 108, 1851–1862 (1989).

    Article  CAS  PubMed  Google Scholar 

  52. Thiele, C., Hannah, M. J., Fahrenholz, F. & Huttner, W. B. Cholesterol binds to synaptophysin and is required for biogenesis of synaptic vesicles. Nature Cell Biol. 2, 42–49 (2000). This study identified synaptophysin as one of the main cholesterol-binding proteins through the use of photoactivatable cholesterol in PC12 cells. It also showed that synaptic-like vesicle formation is inhibited by cholesterol depletion and proposed that cholesterol–synaptophysin interactions are important for the organization of vesicle constituents and budding.

    Article  CAS  PubMed  Google Scholar 

  53. Mitter, D. et al. The synaptophysin/synaptobrevin interaction critically depends on the cholesterol content. J. Neurochem. 84, 35–42 (2003). Synaptophysin is a cholesterol-binding protein that forms a complex with the SNARE protein synaptobrevin. Pharmacological and genetic cholesterol perturbation reduced synaptophysin–synaptobrevin complex formation in non-neuronal cells as well as in hippocampal neurons, indicating that concentrated vesicle cholesterol levels facilitate SNARE complex formation.

    Article  CAS  PubMed  Google Scholar 

  54. Subtil, A. et al. Acute cholesterol depletion inhibits clathrin-coated pit budding. Proc. Natl Acad. Sci. USA 96, 6775–6780 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Koudinov, A. R. & Koudinova, N. V. Cholesterol, synaptic function and Alzheimer's disease. Pharmacopsychiatry 36 (Suppl. 2), S107–S112 (2003).

    CAS  PubMed  Google Scholar 

  56. Taverna, E. et al. Role of lipid microdomains in P/Q-type calcium channel (Cav2.1) clustering and function in presynaptic membranes. J. Biol. Chem. 279, 5127–5134 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Chamberlain, L. H., Burgoyne, R. D. & Gould, G. W. SNARE proteins are highly enriched in lipid rafts in PC12 cells: implications for the spatial control of exocytosis. Proc. Natl Acad. Sci. USA 98, 5619–5624 (2001). In PC12 neurosecretory cells, the plasma membrane SNAREs are concentrated in detergent-insoluble lipid raft membranes, whereas the vesicular SNARE synaptobrevin is concentrated in a rafts of different composition, indicating that raft–SNARE interactions are important for regulated vesicle fusion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chamberlain, L. H. & Gould, G. W. The vesicle- and target-SNARE proteins that mediate Glut4 vesicle fusion are localized in detergent-insoluble lipid rafts present on distinct intracellular membranes. J. Biol. Chem. 277, 49750–49754 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Rozelle, A. L. et al. Phosphatidylinositol 4,5-bisphosphate induces actin-based movement of raft-enriched vesicles through WASP-Arp2/3. Curr. Biol. 10, 311–320 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Klopfenstein, D. R., Tomishige, M., Stuurman, N. & Vale, R. D. Role of phosphatidylinositol(4,5)bisphosphate organization in membrane transport by the Unc104 kinesin motor. Cell 109, 347–358 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Venkataraman, K. & Futerman, A. H. Ceramide as a second messenger: sticky solutions to sticky problems. Trends Cell Biol. 10, 408–412 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Liu, P. & Anderson, R. G. Compartmentalized production of ceramide at the cell surface. J. Biol. Chem. 270, 27179–27185 (1995).

    Article  CAS  PubMed  Google Scholar 

  63. Shinghal, R., Scheller, R. H. & Bajjalieh, S. M. Ceramide 1-phosphate phosphatase activity in brain. J. Neurochem. 61, 2279–2285 (1993).

    Article  CAS  PubMed  Google Scholar 

  64. Li, R., Blanchette-Mackie, E. J. & Ladisch, S. Induction of endocytic vesicles by exogenous C(6)-ceramide. J. Biol. Chem. 274, 21121–21127 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Chen, C. S., Rosenwald, A. G. & Pagano, R. E. Ceramide as a modulator of endocytosis. J. Biol. Chem. 270, 13291–13297 (1995).

    Article  CAS  PubMed  Google Scholar 

  66. Hartel, S., Fanani, M. L. & Maggio, B. Shape transitions and lattice structuring of ceramide-enriched domains generated by sphingomyelinase in lipid monolayers. Biophys. J. 15 Oct 2004 10.1529/biophysj.104.048959.

  67. Holopainen, J. M., Angelova, M. I. & Kinnunen, P. K. Vectorial budding of vesicles by asymmetrical enzymatic formation of ceramide in giant liposomes. Biophys. J. 78, 830–838 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yoshimura, Y., Okino, N., Tani, M. & Ito, M. Molecular cloning and characterization of a secretory neutral ceramidase of Drosophila melanogaster. J. Biochem. (Tokyo) 132, 229–236 (2002).

    Article  CAS  Google Scholar 

  69. Tani, M., Iida, H. & Ito, M. O-glycosylation of mucin-like domain retains the neutral ceramidase on the plasma membranes as a type II integral membrane protein. J. Biol. Chem. 278, 10523–10530 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Rohrbough, J. et al. Ceramidase regulates synaptic vesicle exocytosis and trafficking. J. Neurosci. 24, 7789–7803 (2004). D. melanogaster SLAB ceramidase mutant synapses have impaired synaptic vesicle priming/fusion and increased reserve pool synaptic vesicle tethering, indicating that the regulation of synaptic sphingolipids and raft environments has a role in synaptic vesicle exocytosis and trafficking.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pagano, R. E., Puri, V., Dominguez, M. & Marks, D. L. Membrane traffic in sphingolipid storage diseases. Traffic 1, 807–815 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. McMaster, C. R. Lipid metabolism and vesicle trafficking: more than just greasing the transport machinery. Biochem. Cell Biol. 79, 681–692 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Watanabe, R., Funato, K., Venkataraman, K., Futerman, A. H. & Riezman, H. Sphingolipids are required for the stable membrane association of glycosylphosphatidylinositol-anchored proteins in yeast. J. Biol. Chem. 277, 49538–49544 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Acharya, U., Mowen, M. B., Nagashima, K. & Acharya, J. K. Ceramidase expression facilitates membrane turnover and endocytosis of rhodopsin in photoreceptors. Proc. Natl Acad. Sci. USA 101, 1922–1926 (2004). The second of two important studies from this group showing that retinal ceramidase (SLAB) overexpression correspondingly reduced ceramide concentrations and facilitated membrane and protein recycling, which showed that the sphinolipid pathway mediated modulation of endocytosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Weimer, R. M. et al. Defects in synaptic vesicle docking in unc-18 mutants. Nature Neurosci. 6, 1023–1030 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Voets, T. et al. Munc18-1 promotes large dense-core vesicle docking. Neuron 31, 581–591 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Richmond, J. E. & Broadie, K. S. The synaptic vesicle cycle: exocytosis and endocytosis in Drosophila and C. elegan. Curr. Opin. Neurobiol. 12, 499–507 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Kidokoro, Y. Roles of SNARE proteins and synaptotagmin I in synaptic transmission: studies at the Drosophila neuromuscular synapse. Neurosignals 12, 13–30 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Rietveld, A., Neutz, S., Simons, K. & Eaton, S. Association of sterol- and glycosylphosphatidylinositol-linked proteins with Drosophila raft lipid microdomains. J. Biol. Chem. 274, 12049–12054 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Jost, M., Simpson, F., Kavran, J. M., Lemmon, M. A. & Schmid, S. L. Phosphatidylinositol-4,5-bisphosphate is required for endocytic coated vesicle formation. Curr. Biol. 8, 1399–1402 (1998).

    Article  CAS  PubMed  Google Scholar 

  81. Krauss, M. et al. ARF6 stimulates clathrin/AP-2 recruitment to synaptic membranes by activating phosphatidylinositol phosphate kinase type Iγ. J. Cell Biol. 162, 113–124 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Arneson, L. S., Kunz, J., Anderson, R. A. & Traub, L. M. Coupled inositide phosphorylation and phospholipase D activation initiates clathrin-coat assembly on lysosomes. J. Biol. Chem. 274, 17794–17805 (1999).

    Article  CAS  PubMed  Google Scholar 

  83. Ford, M. G. et al. Simultaneous binding of PtdIns(4,5)P2 and clathrin by AP180 in the nucleation of clathrin lattices on membranes. Science 291, 1051–1055 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Padron, D., Wang, Y. J., Yamamoto, M., Yin, H. & Roth, M. G. Phosphatidylinositol phosphate 5-kinase Iβ recruits AP-2 to the plasma membrane and regulates rates of constitutive endocytosis. J. Cell Biol. 162, 693–701 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gaidarov, I. & Keen, J. H. Phosphoinositide-AP-2 interactions required for targeting to plasma membrane clathrin-coated pits. J. Cell Biol. 146, 755–764 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wenk, M. R. et al. PIP kinase Iγ is the major PI(4,5)P(2) synthesizing enzyme at the synapse. Neuron 32, 79–88 (2001). This report provides evidence that PtdIns(4,5)P2 synthesis and association with clathrin to promote synaptic vesicle endocytosis is antagonistically modulated by the actions of PIPK1γ, which synthesizes PtdIns(4,5)P2 and promotes clathrin binding, and synaptojanin phosphatase, which degrades PtdIns(4,5)P2, thereby allowing clathrin disassembly.

    Article  CAS  PubMed  Google Scholar 

  87. Farsad, K. et al. A putative role for intramolecular regulatory mechanisms in the adaptor function of amphiphysin in endocytosis. Neuropharmacology 45, 787–796 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Evergren, E. et al. Amphiphysin is a component of clathrin coats formed during synaptic vesicle recycling at the lamprey giant synapse. Traffic 5, 514–528 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Farge, E. Increased vesicle endocytosis due to an increase in the plasma membrane phosphatidylserine concentration. Biophys. J. 69, 2501–2506 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Goni, F. M. & Alonso, A. Structure and functional properties of diacylglycerols in membranes. Prog. Lipid Res. 38, 1–48 (1999).

    Article  CAS  PubMed  Google Scholar 

  91. Reutens, A. T. & Begley, C. G. Endophilin-1: a multifunctional protein. Int. J. Biochem. Cell Biol. 34, 1173–1177 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Ringstad, N. et al. Endophilin/SH3p4 is required for the transition from early to late stages in clathrin-mediated synaptic vesicle endocytosis. Neuron 24, 143–154 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Schmidt, A. et al. Endophilin I mediates synaptic vesicle formation by transfer of arachidonate to lysophosphatidic acid. Nature 401, 133–141 (1999).

    Article  CAS  PubMed  Google Scholar 

  94. Verstreken, P. et al. Endophilin mutations block clathrin-mediated endocytosis but not neurotransmitter release. Cell 109, 101–112 (2002). See reference 107.

    Article  CAS  PubMed  Google Scholar 

  95. Farsad, K. et al. Generation of high curvature membranes mediated by direct endophilin bilayer interactions. J. Cell Biol. 155, 193–200 (2001). An important study showing that purified endophilin is able to bind to, and generate curved membrane structures with similar geometry to budding synaptic vesicles. Endophilin's lipid restructuring activity is independent of a catalytic/enzymatic activity and is mediated by an NH2-terminal region BAR domain common to amphiphysin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Peter, B. J. et al. BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 303, 495–499 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Zimmerberg, J. & McLaughlin, S. Membrane curvature: how BAR domains bend bilayers. Curr. Biol. 14, R250–R252 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Ringstad, N., Nemoto, Y. & De Camilli, P. The SH3p4/Sh3p8/SH3p13 protein family: binding partners for synaptojanin and dynamin via a Grb2-like Src homology 3 domain. Proc. Natl Acad. Sci. USA 94, 8569–8574 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Modregger, J., Schmidt, A. A., Ritter, B., Huttner, W. B. & Plomann, M. Characterization of Endophilin B1b, a brain-specific membrane-associated lysophosphatidic acid acyl transferase with properties distinct from endophilin A1. J. Biol. Chem. 278, 4160–4167 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Micheva, K. D., Ramjaun, A. R., Kay, B. K. & McPherson, P. S. SH3 domain-dependent interactions of endophilin with amphiphysin. FEBS Lett. 414, 308–312 (1997).

    Article  CAS  PubMed  Google Scholar 

  101. Lin, H. C., Barylko, B., Achiriloaie, M. & Albanesi, J. P. Phosphatidylinositol (4,5)-bisphosphate-dependent activation of dynamins I and II lacking the proline/arginine-rich domains. J. Biol. Chem. 272, 25999–26004 (1997).

    Article  CAS  PubMed  Google Scholar 

  102. Vallis, Y., Wigge, P., Marks, B., Evans, P. R. & McMahon, H. T. Importance of the pleckstrin homology domain of dynamin in clathrin-mediated endocytosis. Curr. Biol. 9, 257–260 (1999).

    Article  CAS  PubMed  Google Scholar 

  103. Achiriloaie, M., Barylko, B. & Albanesi, J. P. Essential role of the dynamin pleckstrin homology domain in receptor-mediated endocytosis. Mol. Cell. Biol. 19, 1410–1415 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Chung, J. K. et al. Synaptojanin inhibition of phospholipase D activity by hydrolysis of phosphatidylinositol 4,5-bisphosphate. J. Biol. Chem. 272, 15980–15985 (1997).

    Article  CAS  PubMed  Google Scholar 

  105. Lee, S. Y., Wenk, M. R., Kim, Y., Nairn, A. C. & De Camilli, P. Regulation of synaptojanin 1 by cyclin-dependent kinase 5 at synapses. Proc. Natl Acad. Sci. USA 101, 546–551 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Tan, T. C. et al. Cdk5 is essential for synaptic vesicle endocytosis. Nature Cell Biol. 5, 701–710 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Verstreken, P. et al. Synaptojanin is recruited by endophilin to promote synaptic vesicle uncoating. Neuron 40, 733–748 (2003). References 94 and 107 describe two studies in D. melanogaster . The first shows that endophilin is required for clathrin-dependent synaptic vesicle endocytosis and to maintain synaptic vesicle population, although it is not required for the transmission mediated by a small pool of vesicles released and cycled at the active zone. The second study investigates endophilin and synaptojanin, and shows that the proteins are colocalized in synaptic terminals, interact biochemically and function in the same pathway to regulate synaptic vesicle endocytosis and transmission.

    Article  CAS  PubMed  Google Scholar 

  108. Schuske, K. R. et al. Endophilin is required for synaptic vesicle endocytosis by localizing synaptojanin. Neuron 40, 749–762 (2003). This study showed that endo and synj mutants in C. elegans have almost indistinguishable endocytic and functional transmitter defects and function at the same trafficking steps. Furthermore, the results show that endophilin is required to stabilize synaptojanin synaptic localization.

    Article  CAS  PubMed  Google Scholar 

  109. Kim, W. T. et al. Delayed reentry of recycling vesicles into the fusion-competent synaptic vesicle pool in synaptojanin 1 knockout mice. Proc. Natl Acad. Sci. USA 99, 17143–17148 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Guichet, A. et al. Essential role of endophilin A in synaptic vesicle budding at the Drosophila neuromuscular junction. EMBO J. 21, 1661–1672 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Gad, H. et al. Fission and uncoating of synaptic clathrin-coated vesicles are perturbed by disruption of interactions with the SH3 domain of endophilin. Neuron 27, 301–312 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Harris, T. W., Hartwieg, E., Horvitz, H. R. & Jorgensen, E. M. Mutations in synaptojanin disrupt synaptic vesicle recycling. J. Cell Biol. 150, 589–600 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kanzaki, M., Furukawa, M., Raab, W. & Pessin, J. E. Phosphatidylinositol 4,5-bisphosphate regulates adipocyte actin dynamics and GLUT4 vesicle recycling. J. Biol. Chem. 279, 30622–30633 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Takenawa, T. & Itoh, T. Phosphoinositides, key molecules for regulation of actin cytoskeletal organization and membrane traffic from the plasma membrane. Biochim. Biophys. Acta 1533, 190–206 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Romiti, E. et al. Localization of neutral ceramidase in caveolin-enriched light membranes of murine endothelial cells. FEBS Lett. 506, 163–168 (2001).

    Article  CAS  PubMed  Google Scholar 

  116. Acharya, U. et al. Modulating sphingolipid biosynthetic pathway rescues photoreceptor degeneration. Science 299, 1740–1743 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Kuromi, H. & Kidokoro, Y. Two distinct pools of synaptic vesicles in single presynaptic boutons in a temperature-sensitive Drosophila mutant, shibire. Neuron 20, 917–925 (1998).

    Article  CAS  PubMed  Google Scholar 

  118. Delgado, R., Maureira, C., Oliva, C., Kidokoro, Y. & Labarca, P. Size of vesicle pools, rates of mobilization, and recycling at neuromuscular synapses of a Drosophila mutant, shibire. Neuron 28, 941–953 (2000).

    Article  CAS  PubMed  Google Scholar 

  119. Mozhayeva, M. G., Sara, Y., Liu, X. & Kavalali, E. T. Development of vesicle pools during maturation of hippocampal synapses. J. Neurosci. 22, 654–665 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ceccaldi, P. E. et al. Dephosphorylated synapsin I anchors synaptic vesicles to actin cytoskeleton: an analysis by videomicroscopy. J. Cell Biol. 128, 905–912 (1995).

    Article  CAS  PubMed  Google Scholar 

  121. Dunaevsky, A. & Connor, E. A. F-actin is concentrated in nonrelease domains at frog neuromuscular junctions. J. Neurosci. 20, 6007–6012 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Humeau, Y. et al. Synapsin controls both reserve and releasable synaptic vesicle pools during neuronal activity and short-term plasticity in Aplysia. J. Neurosci. 21, 4195–4206 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kuromi, H. & Kidokoro, Y. Tetanic stimulation recruits vesicles from reserve pool via a cAMP-mediated process in Drosophila synapses. Neuron 27, 133–143 (2000).

    Article  CAS  PubMed  Google Scholar 

  124. Bloom, O. et al. Colocalization of synapsin and actin during synaptic vesicle recycling. J. Cell Biol. 161, 737–747 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Morales, M., Colicos, M. A. & Goda, Y. Actin-dependent regulation of neurotransmitter release at central synapses. Neuron 27, 539–550 (2000).

    Article  CAS  PubMed  Google Scholar 

  126. Shupliakov, O. et al. Impaired recycling of synaptic vesicles after acute perturbation of the presynaptic actin cytoskeleton. Proc. Natl Acad. Sci. USA 99, 14476–14481 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Sankaranarayanan, S., Atluri, P. P. & Ryan, T. A. Actin has a molecular scaffolding, not propulsive, role in presynaptic function. Nature Neurosci. 6, 127–135 (2003).

    Article  CAS  PubMed  Google Scholar 

  128. Chi, P., Greengard, P. & Ryan, T. A. Synaptic vesicle mobilization is regulated by distinct synapsin I phosphorylation pathways at different frequencies. Neuron 38, 69–78 (2003). This study extends previous work showing that synapsin phosphorylation regulates its dissociation from the synaptic vesicle, thereby allowing the synaptic vesicle mobilization and release. The results indicate that several kinase and phosphorylation pathways are differentially activated at different levels of synaptic activity, allowing synapsin dispersal and vesicle mobilization to be correlated by multiple pathways activated at different levels of neuronal stimulation.

    Article  CAS  PubMed  Google Scholar 

  129. Angers, A. et al. Serotonin stimulates phosphorylation of Aplysia synapsin and alters its subcellular distribution in sensory neurons. J. Neurosci. 22, 5412–5422 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Jovanovic, J. N. et al. Opposing changes in phosphorylation of specific sites in synapsin I during Ca2+-dependent glutamate release in isolated nerve terminals. J. Neurosci. 21, 7944–7953 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Chi, P., Greengard, P. & Ryan, T. A. Synapsin dispersion and reclustering during synaptic activity. Nature Neurosci. 4, 1187–1193 (2001).

    Article  CAS  PubMed  Google Scholar 

  132. Cheetham, J. J. et al. Identification of synapsin I peptides that insert into lipid membranes. Biochem. J. 354, 57–66 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Benfenati, F. et al. Interactions of synapsin I with phospholipids: possible role in synaptic vesicle clustering and in the maintenance of bilayer structures. J. Cell Biol. 123, 1845–1855 (1993).

    Article  CAS  PubMed  Google Scholar 

  134. Benfenati, F., Valtorta, F., Chieregatti, E. & Greengard, P. Interaction of free and synaptic vesicle-bound synapsin I with F-actin. Neuron 8, 377–386 (1992).

    Article  CAS  PubMed  Google Scholar 

  135. Hosaka, M., Hammer, R. E. & Sudhof, T. C. A phospho-switch controls the dynamic association of synapsins with synaptic vesicles. Neuron 24, 377–387 (1999).

    Article  CAS  PubMed  Google Scholar 

  136. Fiumara, F. et al. Phosphorylation by cAMP-dependent protein kinase is essential for synapsin-induced enhancement of neurotransmitter release in invertebrate neurons. J. Cell Sci. 117, 5145–5154 (2004).

    Article  CAS  PubMed  Google Scholar 

  137. Chin, J., Angers, A., Cleary, L. J., Eskin, A. & Byrne, J. H. Transforming growth factor β1 alters synapsin distribution and modulates synaptic depression in Aplysia. J. Neurosci. 22, RC220 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Pagano, R. E. Endocytic trafficking of glycosphingolipids in sphingolipid storage diseases. Philos. Trans. R. Soc. Lond. B 358, 885–891 (2003).

    Article  CAS  Google Scholar 

  139. Zanolari, B. et al. Sphingoid base synthesis requirement for endocytosis in Saccharomyces cerevisiae. EMBO J. 19, 2824–2833 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Benfenati, F., Bahler, M., Jahn, R. & Greengard, P. Interactions of synapsin I with small synaptic vesicles: distinct sites in synapsin I bind to vesicle phospholipids and vesicle proteins. J. Cell Biol. 108, 1863–1872 (1989).

    Article  CAS  PubMed  Google Scholar 

  141. Esch, S. W., Williams, T. D., Biswas, S., Chakrabarty, A. & Levine, S. M. Sphingolipid profile in the CNS of the twitcher (globoid cell leukodystrophy) mouse: a lipidomics approach. Cell. Mol. Biol. (Noisy-le-grand) 49, 779–787 (2003).

    CAS  Google Scholar 

  142. Forrester, J. S., Milne, S. B., Ivanova, P. T. & Brown, H. A. Computational lipidomics: a multiplexed analysis of dynamic changes in membrane lipid composition during signal transduction. Mol. Pharmacol. 65, 813–821 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank R. Shattuck for assistance with the artwork, and P. De Camilli and A. Brown for insightful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kendal Broadie.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

CaMKII

CDK5

PI3K

PI4K

PIP5K

Flybase

Cdase

endo

rbo

synj

FURTHER INFORMATION

Broadie's homepage

Glossary

SPHINGOLIPIDS

Lipid subclass including ceramides and sphingomyelin, distinguished by a long-chain sphingoid base group and fatty acid chain.

ACTIVE ZONE

An electron-dense structure in the presynaptic terminal at which secretory protein complexes are assembled for synaptic vesicle exocytosis.

PERIACTIVE ZONE

Region surrounding an active zone at which endocytic protein complexes are assembled for synaptic vesicle endocytosis.

PRESYNAPTIC RIBBON

Large, specialized active zones in photoreceptor neurons, at which arrays of synaptic vesicles are released.

RBO

(Rolling blackout). Novel lipase that is required for Drosophila melanogaster synaptic transmission.

LIPID RAFTS

Sphingolipid- and sterol-rich membrane microdomains, which are defined primarily by detergent insolubility or by the localization of protein or lipid markers thought to be targeted specifically to rafts.

SNARE

Soluble N-ethyl-maleimide-sensitive fusion protein attachment protein receptors. Highly conserved vesicle (synaptobrevin) and plasma membrane (synaxin, SNAP25) proteins mediating regulated vesicle fusion.

CERAMIDASE

A key enzyme in the sphingolipid metabolic pathway that cleaves ceramide to sphingosine.

SLAB

(Slug-a-bed). Drosophila melanogaster ceramidase that is required for normal synaptic vesicle priming/fusion and reserve pool trafficking.

BAR

(BIN/amphiphysin/Rvsp). A domain present in endophilin and amphiphysin that confers membrane binding and structural reformation activity.

FM1-43

Lipophilic fluorescent dye that is taken up by recycling vesicles, allowing visualization of cycling synaptic vesicle pools.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rohrbough, J., Broadie, K. Lipid regulation of the synaptic vesicle cycle. Nat Rev Neurosci 6, 139–150 (2005). https://doi.org/10.1038/nrn1608

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1608

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing