Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Metabotropic glutamate receptors in the basal ganglia motor circuit

Key Points

  • An important achievement in the quest to bridge cellular and integrative neuroscience has been the development of an understanding of the basal ganglia motor circuit, how activity in this circuit affects motor behaviour and how changes in this circuit give rise to motor dysfunction in disorders such as Parkinson's disease (PD). This is a rare example of a field in which our understanding at a circuit level began with clinical studies in humans and studies in non-human primates. These findings are now driving studies at the cellular and molecular levels that, in turn, drive further studies at the behavioural and system levels.

  • Metabotropic glutamate receptors (mGluRs) are richly distributed throughout the basal ganglia. We now have a growing appreciation of the distributions and functional roles of various mGluR subtypes in regulating activity throughout this circuit. In addition to providing new insights into mechanisms by which these receptors can regulate normal motor function, these studies indicate that mGluR ligands might be useful as novel therapeutic agents for the treatment of PD and other basal ganglia disorders.

  • Activation of group I mGluRs (mGluR1 and mGluR5) has effects at various sites in the basal ganglia that could contribute to the overactivity that occurs at some synapses of this circuit in PD. This has led to the idea that antagonists of these receptors could have anti-parkinsonian effects. Recent behavioural studies with mGluR5-selective antagonists are consistent with this and show that blockade of this receptor reduces motor symptoms in parkinsonian animals.

  • Activation of group II (mGluR2 and mGluR3) or group III (mGluR4) receptor subtypes reduces transmission at specific synapses that are overactive in patients with PD and parkinsonian animals. Again, behavioural studies reveal that activators of these receptors can have anti-parkinsonian effects. This is especially true for agonists or allosteric potentiators of mGluR4, which induce robust anti-parkinsonian effects in various rodent models.

  • In addition to providing symptomatic relief of the motor symptoms of PD, recent studies suggest that the same mGluR ligands have potential for neuroprotective activity in both PD and Huntington's disease. Although the potential neuroprotective activity of these compounds has not been fully tested across many compounds and animal models, recent studies are promising and raise the possibility of combined symptomatic and neuroprotective activity in these compounds.

Abstract

In recent years there have been tremendous advances in our understanding of the circuitry of the basal ganglia and our ability to predict the behavioural effects of specific cellular changes in this circuit on voluntary movement. These advances, combined with a new understanding of the rich distribution and diverse physiological roles of metabotropic glutamate receptors in the basal ganglia, indicate that these receptors might have a key role in motor control and raise the exciting possibility that they might provide therapeutic targets for the treatment of Parkinson's disease and related disorders.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Localization of metabotropic glutamate receptor (mGluR) subtypes in the basal ganglia motor circuit.
Figure 2: Functional interactions between group I metabotropic glutamate receptors (mGluRs) and dopamine receptors in striatal neurons.
Figure 3: Metabotropic glutamate receptors (mGluRs) and Parkinson's disease.
Figure 4: Metabotropic glutamate receptors (mGluRs) and Huntington's disease.

Similar content being viewed by others

References

  1. Wichmann, T. & DeLong, M. R. Functional and pathophysiological models of the basal ganglia. Curr. Opin. Neurobiol. 6, 751–758 (1996). This review provides a nice summary of the model of basal ganglia circuitry and the impact of PD on this circuit, which has guided much of the work in this area. Although this model is being refined as more data become available, this review provides an important context in which to consider more recent findings.

    CAS  PubMed  Google Scholar 

  2. Wichmann, T. & DeLong, M. R. Models of basal ganglia function and pathophysiology of movement disorders. Neurosurg. Clin. N. Am. 9, 223–236 (1998).

    CAS  PubMed  Google Scholar 

  3. Marino, M. J. & Conn, P. J. Modulation of the basal ganglia by metabotropic glutamate receptors: potential for novel therapeutics. Curr. Drug Target. CNS Neurol. Disord. 1, 239–250 (2002).

    CAS  Google Scholar 

  4. Marino, M. J., Valenti, O. & Conn, P. J. Glutamate receptors and Parkinson's disease. Drugs Aging 20, 377–397 (2003).

    CAS  PubMed  Google Scholar 

  5. Conn, P. J. & Pin, J. P. Pharmacology and functions of metabotropic glutamate receptors. Annu. Rev. Pharmacol. Toxicol. 37, 205–237 (1997).

    CAS  PubMed  Google Scholar 

  6. Pin, J. P. & Acher, F. The metabotropic glutamate receptors: structure, activation mechanism and pharmacology. Curr. Drug Target. CNS Neurol. Disord. 1, 297–317 (2002). This review provides an interesting summary of the mGluR family, with a focus on their molecular biology and structure, and drug effects on mGluR subtypes.

    CAS  Google Scholar 

  7. Kawaguchi, Y. Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum. J. Neurosci. 13, 4908–4923 (1993).

    CAS  PubMed  Google Scholar 

  8. Kawaguchi, Y., Wilson, C. J., Augood, S. J. & Emson, P. C. Striatal interneurons: chemical, physiological and morphological characterization. Trends Neurosci. 18, 527–535 (1995).

    CAS  PubMed  Google Scholar 

  9. Levy, R. et al. Re-evaluation of the functional anatomy of the basal ganglia in the normal and parkinsonian states. Neuroscience 76, 335–343 (1997).

    CAS  PubMed  Google Scholar 

  10. Wilson, C. J., Chang, H. T. & Kitai, S. T. Firing patterns and synaptic potentials of identified giant aspiny interneurons in the rat neostriatum. J. Neurosci. 10, 508–519 (1990).

    CAS  PubMed  Google Scholar 

  11. Wilson, C. J. & Kawaguchi, Y. The origins of two-state spontaneous membrane fluctuations of neostriatal spiny neurons. J. Neurosci. 16, 2397–2410 (1996).

    CAS  PubMed  Google Scholar 

  12. Smith, Y., Charara, A., Hanson, J. E., Paquet, M. & Levey, A. I. GABAB and group I metabotropic glutamate receptors in the striatopallidal complex in primates. J. Anat. 196, 555–576 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Fiorillo, C. D. & Williams, J. T. Glutamate mediates an inhibitory postsynaptic potential in dopamine neurons. Nature 394, 78–82 (1998).

    CAS  PubMed  Google Scholar 

  14. Mercuri, N. B., Stratta, F., Calabresi, P. & Bernardi, G. Electrophysiological evidence for the presence of ionotropic and metabotropic excitatory amino acid receptors on dopaminergic neurons of the rat mesencephalon: an in vitro study. Funct. Neurol. 7, 231–234 (1992).

    CAS  PubMed  Google Scholar 

  15. Zhang, H. & Sulzer, D. Glutamate spillover in the striatum depresses dopaminergic transmission by activating group-I metabotropic glutamate receptors. J. Neurosci. 23, 1585–1592 (2003).

    Google Scholar 

  16. Calò, L. et al. Interactions between ephrin-b and mGlu1 metabotropic glutamate receptors in brain tissue and cultured neurons. J. Neurosci. 25, 2245–2254 (2005).

    PubMed  Google Scholar 

  17. Kullander, K. & Klein, R. Mechanisms and functions of Eph and ephrin signalling. Nature Rev. Mol. Cell Biol. 3, 457–486 (2002).

    Google Scholar 

  18. Plenz, D. & Kitai, S. T. Regulation of the nigro-striatal pathway by metabotropic glutamate receptors during development. J. Neurosci. 18, 4133–4144 (1998).

    CAS  PubMed  Google Scholar 

  19. Gubellini, P., Pisani, A., Centonze, D., Bernardi, G. & Calabresi, P. Metabotropic glutamate receptors and striatal synaptic plasticity: implications for neurological diseases. Prog. Neurobiol. 74, 271–300 (2004). An excellent review describing the involvement of mGluRs in plasticity and disease.

    CAS  PubMed  Google Scholar 

  20. Pisani, A. et al. Metabotropic glutamate receptor 5 mediates the potentiation of N-methyl-D-aspartate responses in medium spiny striatal neurons. Neuroscience 106, 579–587 (2001).

    CAS  PubMed  Google Scholar 

  21. Domenici, M. R. et al. Permissive role of adenosine A2A receptors on metabotropic glutamate receptor 5 (mGluR5)-mediated effects in the striatum. J. Neurochem. 90, 1276–1279 (2004).

    CAS  PubMed  Google Scholar 

  22. Aniksztejn, L., Otani, S. & Ben-Ari, Y. Quisqualate metabotropic receptors modulate NMDA currents and facilitate induction of long-term potentiation through protein kinase C. Eur. J. Neurosci. 4, 500–505 (1992).

    PubMed  Google Scholar 

  23. Harvey, J. & Collingridge, G. L. Signal transduction pathways in the acute potentiation of NMDA responses by 1S, 3R-ACPD in rat hippocampal slices. Br. J. Pharmacol. 109, 1085–1090 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Mannaioni, G., Marino, M. J., Valenti, O., Traynelis, S. F. & Conn, P. J. Metabotropic glutamate receptors 1 and 5 differentially regulate CA1 pyramidal cell function. J. Neurosci. 21, 5925–5934 (2001).

    CAS  PubMed  Google Scholar 

  25. Alagarsamy, S. et al. Activation of NMDA receptors reverses desensitization of mGluR5 in native and recombinant systems. Nature Neurosci. 2, 234–240 (1999).

    CAS  PubMed  Google Scholar 

  26. Alagarsamy, S. et al. NMDA-induced phosphorylation and regulation of mGluR5. Pharmacol. Biochem. Behav. 73, 299–306 (2002).

    CAS  PubMed  Google Scholar 

  27. Tu, J. C. et al. Coupling of mGluR/Homer and PSD-95 complexes by the Shank family of postsynaptic density proteins. Neuron 23, 583–592 (1999).

    CAS  PubMed  Google Scholar 

  28. Mao, L. & Wang, J. Q. Selective activation of group I metabotropic glutamate receptors upregulates preprodynorphin, substance P, and preproenkephalin mRNA expression in rat dorsal striatum. Synapse 39, 82–94 (2001).

    CAS  PubMed  Google Scholar 

  29. Mao, L. & Wang, J. Q. Group I metabotropic glutamate receptor-mediated calcium signaling and immediate early gene expression in cultured rat striatal neurons. Eur. J. Neurosci. 17, 741–750 (2003).

    PubMed  Google Scholar 

  30. Choe, E. S. et al. The protein phosphatase 1/2A inhibitor okadaic acid increases CREB and Elk-1 phosphorylation and c-fos expression in the rat striatum in vivo. J. Neurochem. 89, 383–390 (2004).

    CAS  PubMed  Google Scholar 

  31. Ferre, S. et al. Synergistic interaction between adenosine A2A and glutamate mGlu5 receptors: implications for striatal neuronal function. Proc. Natl Acad. Sci. USA 99, 11940–11945 (2002).

    CAS  PubMed  Google Scholar 

  32. Nishi, S. et al. Metabotropic mGlu5 receptors regulate adenosine A2A receptor signaling. Proc. Natl Acad. Sci. USA 100, 1322–1327 (2003).

    PubMed  Google Scholar 

  33. Calabresi, P., Centonze, D., Gubellini, P., Pisani, A. & Bernardi, G. Endogenous ACh enhances striatal NMDA responses via M1-like muscarinic receptors and PKC activation. Eur. J. Neurosci. 10, 2887–2895 (1998).

    CAS  PubMed  Google Scholar 

  34. Galarraga, E. et al. Cholinergic modulation of neostriatal output: a functional antagonism between different types of muscarinic receptors. J. Neurosci. 19, 3629–3638 (1999).

    CAS  PubMed  Google Scholar 

  35. Tallaksen-Greene, S. J., Kaatz, K. W., Romano, C. & Albin, R. L. Localization of mGluR1a-like immunoreactivity and mGluR5-like immunoreactivity in identified populations of striatal neurons. Brain Res. 780, 210–217 (1998).

    CAS  PubMed  Google Scholar 

  36. Marti, M. et al. Plasticity of glutamatergic control of striatal acetylcholine release in experimental parkinsonism: opposite changes at group-I metabotropic and NMDA receptors. J. Neurochem. 84, 792–802 (2003).

    CAS  PubMed  Google Scholar 

  37. Valenti, O., Conn, P. J. & Marino M. J. Distinct physiological roles of the Gq-coupled metabotropic glutamate receptors co-expressed in the same neuronal populations. J. Cell Physiol. 191, 125–137 (2002).

    CAS  PubMed  Google Scholar 

  38. Poisik, O. V., Mannaioni, G., Traynelis, S., Smith, Y. & Conn, P. J. Distinct functional roles of the metabotropic glutamate receptors 1 and 5 in the rat globus pallidus. J. Neurosci. 23, 122–130 (2003).

    PubMed  Google Scholar 

  39. Liu, F. et al. Regulation of cyclin-dependent kinase 5 and casein kinase 1 by metabotropic glutamate receptors. Proc. Natl Acad. Sci. USA 98, 11062–11068 (2001). An elegant description of how group I mGluRs regulate dopamine D1 receptor signalling in striatal neurons.

    CAS  PubMed  Google Scholar 

  40. Liu, F., Virshup, D. M., Nairn, A. C. & Greengard, P. Mechanism of regulation of casein kinase 1 activity by group I metabotropic glutamate receptors. J. Biol. Chem. 277, 45393–45399 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Stefani, A., Pisani, A., Mercuri, N. B. & Calabresi, P. The modulation of calcium currents by the activation of mGluRs. Functional implications. Mol. Neurobiol. 13, 81–95 (1996).

    CAS  PubMed  Google Scholar 

  42. Beurrier, C., Congar, P., Bioulac, B. & Hammond, C. Subthalamic nucleus neurons switch from single spike activity to burst firing mode. J. Neurosci. 19, 599–609 (1999).

    CAS  PubMed  Google Scholar 

  43. Awad, H., Hubert, G. W., Smith, Y., Levey, A. I. & Conn, P. J. Activation of metabotropic glutamate receptor 5 has direct excitatory effects and potentiates NMDA receptor currents in neurons of the subthalamic nucleus. J. Neurosci. 20, 7871–7879 (2000).

    CAS  PubMed  Google Scholar 

  44. Awad-Granko, H. & Conn, P. J. Activation of groups I or III metabotropic glutamate receptors inhibits excitatory transmission in the rat subthalamic nucleus. Neuropharmacology 41, 32–41 (2001).

    CAS  PubMed  Google Scholar 

  45. Marino, M. J. et al. Activation of group I metabotropic glutamate receptors produces a direct excitation and disinhibition of GABAergic projection neurons in the substantia nigra pars reticulata. J. Neurosci. 21, 7001–7012 (2001).

    CAS  PubMed  Google Scholar 

  46. Lovinger, D. M. Trans-1-aminocyclopentane-1, 3-dicarboxylic acid (t-ACPD) decreases synaptic excitation in rat striatal slices through a presynaptic action. Neurosci. Lett. 129, 17–21 (1991).

    CAS  PubMed  Google Scholar 

  47. Lovinger, D. M. & McCool, B. A. Metabotropic glutamate receptor-mediated presynaptic depression at corticostriatal synapses involves mGluR2 or 3. J. Neurophysiol. 73, 1076–1083 (1995).

    CAS  PubMed  Google Scholar 

  48. Battaglia, G., Monn, J. A. & Schoepp, D. D. In vivo inhibition of veratridine-evoked release of striatal excitatory amino acids by the group II metabotropic glutamate receptor agonist LY354740 in rats. Neurosci. Lett. 229, 161–164 (1997).

    CAS  PubMed  Google Scholar 

  49. Cozzi, A. et al. Type 2 metabotropic glutamate (mGlu) receptors tonically inhibit transmitter release in rat caudate nucleus: in vivo studies with (2S, 1′S, 2′S, 3′R)-2-(2′-carboxy-3′-phenylcyclopropyl)glycine, a new potent and selective antagonist. Eur. J. Neurosci. 9, 1350–1355 (1997).

    CAS  PubMed  Google Scholar 

  50. Baker, D. A., Xi, Z. X., Shen, H., Swanson, C. J. & Kalivas, P. W. The origin and neuronal function of in vivo nonsynaptic glutamate. J. Neurosci. 22, 9134–9141 (2002).

    CAS  PubMed  Google Scholar 

  51. Wigmore, M. A. & Lacey, M. G. Metabotropic glutamate receptors depress glutamate-mediated synaptic input to rat midbrain dopamine neurones in vitro. Br. J. Pharmacol. 123, 667–674 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Cartmell, J., Salhoff, C. R., Perry, K. W., Monn, J. A. & Schoepp, D. D. Dopamine and 5-HT turnover are increased by the mGlu2/3 receptor agonist LY379268 in rat medial prefrontal cortex, nucleus accumbens and striatum. Brain Res. 887, 378–384 (2000).

    CAS  PubMed  Google Scholar 

  53. Bradley, S. R. et al. Activation of group II metabotropic glutamate receptors inhibits synaptic excitation of the substantia nigra pars reticulata. J. Neurosci. 20, 3085–3094 (2000). Provides one of the first descriptions of the effects of activation of mGluRs at a specific basal ganglia synapse and the corresponding behavioural changes induced by in vivo administration of an mGluR2/3 agonist.

    CAS  PubMed  Google Scholar 

  54. Corti, C., Aldegheri, L., Somogyi, P. & Ferraguti, F. Distribution and synaptic localisation of the metabotropic glutamate receptor 4 (mGluR4) in the rodent CNS. Neuroscience 110, 403–420 (2002).

    CAS  PubMed  Google Scholar 

  55. Matsui, T. & Kita, H. Activation of group III metabotropic glutamate receptors presynaptically reduces both GABAergic and glutamatergic transmission in the rat globus pallidus. Neuroscience 122, 727–737 (2003).

    CAS  PubMed  Google Scholar 

  56. Valenti, O. et al. Group III metabotropic glutamate receptor-mediated modulation of the striatopallidal synapse. J. Neurosci. 23, 7218–7226 (2003). Illustrates the use of a combination of anatomy, pharmacology, electrophysiology and behavioural studies to show that mGluR4 activation induces a powerful depression of synaptic transmission at the first synapse in the indirect pathway and that a group III mGluR agonist has robust anti-parkinsonian effects in many rodent models.

    CAS  PubMed  Google Scholar 

  57. Wittmann, M., Marino, M. J., Bradley, S. R. & Conn, P. J. Activation of group III mGluRs inhibits GABAergic and glutamatergic transmission in the substantia nigra pars reticulata. J. Neurophysiol. 85, 1960–1968 (2001).

    CAS  PubMed  Google Scholar 

  58. Hyman, S. E. & Malenka, R. C. Addiction and the brain: the neurobiology of compulsion and its persistence. Nature Rev. Neurosci. 2, 695–703 (2001).

    CAS  Google Scholar 

  59. Calabresi, P., Maj, R., Pisani, A., Mercuri, N. B. & Bernardi, G. Long-term synaptic depression in the striatum: physiological and pharmacological characterization. J. Neurosci. 12, 4224–4233 (1992). This early report of striatal LTD set the stage for numerous studies of the roles of mGluRs in striatal synaptic plasticity during the past 13 years.

    CAS  PubMed  Google Scholar 

  60. Calabresi, P., Pisani, A., Mercuri, N. B. & Bernardi, G. Post-receptor mechanisms underlying striatal long-term depression. J. Neurosci. 14, 4871–4881 (1994).

    CAS  PubMed  Google Scholar 

  61. Choi, S. & Lovinger, D. M. Decreased frequency but not amplitude of quantal synaptic responses associated with expression of cortico-striatal long-term depression. J. Neurosci. 17, 8613–8620 (1997).

    CAS  PubMed  Google Scholar 

  62. Conquet, F. et al. Motor deficit and impairment of synaptic plasticity in mice lacking mGluR1. Nature 372, 237–243 (1994).

    CAS  PubMed  Google Scholar 

  63. Gubellini, P. et al. Selective involvement of mGluR1 receptors in corticostriatal LTD. Neuropharmacology 40, 839–846 (2001).

    CAS  PubMed  Google Scholar 

  64. Sung, K. W., Choi, S. & Lovinger, D. M. Activation of group I mGluRs is necessary for induction of long-term depression at striatal synapses. J. Neurophysiol. 86, 2405–2412 (2001).

    CAS  PubMed  Google Scholar 

  65. Calabresi, P., Pisani, A., Mercuri, N. B. & Bernardi, G. The corticostriatal projection: from synaptic plasticity to dysfunctions of the basal ganglia. Trends Neurosci. 19, 19–24 (1996).

    CAS  PubMed  Google Scholar 

  66. Gerdeman, G. L., Ronesi, J. & Lovinger, D. M. Postsynaptic endocannabinoid release is critical to long-term depression in the striatum. Nature Neurosci. 5, 446–451 (2002). Showed that endocannabinoids act as retrograde messengers that are important for the mGluR-mediated induction of striatal LTD.

    CAS  PubMed  Google Scholar 

  67. Calabresi, P. et al. Dopamine and cAMP-regulated phosphoprotein 32 kDa controls both striatal long-term depression and long-term potentiation, opposing forms of synaptic plasticity. J. Neurosci. 20, 8443–8451 (2000).

    CAS  PubMed  Google Scholar 

  68. Calabresi, P. et al. Inhibition of mitochondrial complex II induces a long-term potentiation of NMDA-mediated synaptic excitation in the striatum requiring endogenous dopamine. J. Neurosci. 21, 5110–5120 (2001).

    CAS  PubMed  Google Scholar 

  69. Beal, M. F. et al. Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. J. Neurosci. 13, 4181–4192 (1993).

    CAS  PubMed  Google Scholar 

  70. Greene, J. G., Porter, R. H., Eller, R. V. & Greenamyre, J. T. Inhibition of succinate dehydrogenase by malonic acid produces an 'excitotoxic' lesion in rat striatum. J. Neurochem. 61, 1151–1154 (1993). References 69 and 70 show that inhibition of mitochondrial complex II produces striatal lesions reminiscent of those that occur in patients with HD.

    CAS  PubMed  Google Scholar 

  71. Brouillet, E. et al. Chronic mitochondrial energy impairment produces selective striatal degeneration and abnormal choreiform movements in primates. Proc. Natl Acad. Sci. USA 92, 7105–7109 (1995).

    CAS  PubMed  Google Scholar 

  72. Browne, S. E. et al. Oxidative damage and metabolic dysfunction in Huntington's disease: selective vulnerability of the basal ganglia. Ann. Neurol. 41, 646–653 (1997).

    CAS  PubMed  Google Scholar 

  73. Yan, Z., Feng, J., Fienberg, A. A. & Greengard, P. D2 dopamine receptors induce mitogen-activated protein kinase and cAMP response element-binding protein phosphorylation in neurons. Proc. Natl Acad. Sci. USA 96, 11607–11612 (1999).

    CAS  PubMed  Google Scholar 

  74. Jakel, R. J. & Maragos, W. F. Neuronal cell death in Huntington's disease: a potential role for dopamine. Trends Neurosci. 23, 239–245 (2000).

    CAS  PubMed  Google Scholar 

  75. Sweatt, J. D. The neuronal MAP kinase cascade: a biochemical signal integration system subserving synaptic plasticity and memory. J. Neurochem. 76, 1–10 (2001).

    CAS  PubMed  Google Scholar 

  76. Poewe, W. H., Lees, A. J. & Stern, G. M. Low-dose L-dopa therapy in Parkinson's disease: a 6-year follow-up study. Neurology 36, 1528–1530 (1986).

    CAS  PubMed  Google Scholar 

  77. Walter, B. L. & Vitek, J. L. Surgical treatment for Parkinson's disease. Lancet Neurol. 3, 719–728 (2004). This paper provides a useful review of the utility of surgical approaches for altering activity in the basal ganglia circuit in patients with PD. These surgical approaches provide clinical validation for the idea of treating PD by manipulating activity through the indirect pathway and provide a basis for much of the thinking about the possible therapeutic effects of mGluR ligands in this circuit.

    PubMed  Google Scholar 

  78. Boucai, L., Cerquetti, D. & Merello, M. Functional surgery for Parkinson's disease treatment: a structured analysis of a decade of published literature. Br. J. Neurosurg. 18, 213–222 (2004).

    CAS  PubMed  Google Scholar 

  79. Kearney, J. A., Frey, K. A. & Albin, R. L. Metabotropic glutamate agonist-induced rotation: a pharmacological, FOS immunohistochemical, and [14C]-2-deoxyglucose autoradiographic study. J. Neurosci. 17, 4415–4425 (1997).

    CAS  PubMed  Google Scholar 

  80. Kearney, J. A., Becker, J. B., Frey, K. A. & Albin, R. L. The role of nigrostriatal dopamine in metabotropic glutamate agonist-induced rotation. Neuroscience 87, 881–891 (1998).

    CAS  PubMed  Google Scholar 

  81. Gasparini, F. et al. 2-Methyl-6-(phenylethynyl)-pyridine (MPEP), a potent, selective and systemically active mGlu5 receptor antagonist. Neuropharmacology 38, 1493–1503 (1999).

    CAS  PubMed  Google Scholar 

  82. Varney, M. A. et al. SIB-1757 and SIB-1893: selective, noncompetitive antagonists of metabotropic glutamate receptor type 5. J. Pharmacol. Exp. Ther. 290, 170–181 (1999).

    CAS  PubMed  Google Scholar 

  83. Spooren, W. P., Gasparini, F., Bergmann, R. & Kuhn, R. Effects of the prototypical mGlu(5) receptor antagonist 2-methyl-6-(phenylethynyl)-pyridine on rotarod, locomotor activity and rotational responses in unilateral 6-OHDA-lesioned rats. Eur. J. Pharmacol. 406, 403–410 (2000).

    CAS  PubMed  Google Scholar 

  84. Breysse, N., Baunez, C., Spooren, W., Gasparini, F. & Amalric, M. Chronic but not acute treatment with a metabotropic glutamate 5 receptor antagonist reverses the akinetic deficits in a rat model of parkinsonism. J. Neurosci. 22, 5669–5678 (2002). This paper provides an important demonstration of the anti-parkinsonian effects of mGluR5 antagonists in a rodent model. The behavioural effects of mGluR5 antagonists fit well with previously described physiological effects of mGluR5 in the basal ganglia circuit.

    CAS  PubMed  Google Scholar 

  85. Breysse, N., Amalric, M. & Salin, P. Metabotropic glutamate receptor blockade alleviates akinesia by normalizing activity of selective basal ganglia structures in parkinsonian rats. J. Neurosci. 23, 8302–8309 (2003).

    CAS  PubMed  Google Scholar 

  86. Coccurello, R., Breysse, N. & Amalric, M. Simultaneous blockade of adenosine A2A and metabotropic glutamate mGlu5 receptors increase their efficacy in reversing parkinsonian deficits in rats. Neuropsychopharmacology 29, 1451–1461 (2004).

    CAS  PubMed  Google Scholar 

  87. Wardas, J., Pietraszek, M., Wolfarh, S. & Ossowska, K. The role of metabotropic glutamate receptors in regulation of striatal proenkephlin expression: implications for the therapy of Parkinson's disease. Neuroscience 122, 747–756 (2003).

    CAS  PubMed  Google Scholar 

  88. Pisani, A. et al. Targeting striatal cholinergic interneurons in Parkinson's disease: focus on metabotropic glutamate receptors. Neuropharmacology 45, 45–56 (2003).

    CAS  PubMed  Google Scholar 

  89. Marino, M., Awad-Gzanko, H., Ciombor, K. & Conn, P. Haloperidol-induced alteration in the physiological actions of group I mGlus in the subthalamic nucleus and the substantia nigra pars reticulata. Neuropharmacology 43, 147–159 (2002).

    CAS  PubMed  Google Scholar 

  90. Bradley, S. R. et al. Activation of group II metabotropic glutamate receptors inhibits synaptic excitation of the substantia nigra pars reticulata. J. Neurosci. 20, 3085–3094 (2000).

    CAS  PubMed  Google Scholar 

  91. Rouse, S. T. et al. Distribution and roles of metabotropic glutamate receptors in the basal ganglia motor circuit: implications for treatment of Parkinson's disease and related disorders. Pharmacol. Ther. 88, 427–435 (2000).

    CAS  PubMed  Google Scholar 

  92. Pisani, A. et al. Metabotropic glutamate 2 receptors modulate synaptic inputs and calcium signals in striatal cholinergic interneurons. J. Neurosci. 22, 6176–6185 (2002).

    CAS  PubMed  Google Scholar 

  93. Monn, J. A. et al. Synthesis, pharmacological characterization, and molecular modeling of heterobicyclic amino acids related to (+)-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (LY354740): identification of two new potent, selective, and systemically active agonists for group II metabotropic glutamate receptors. J. Med. Chem. 42, 1027–1040 (1999).

    CAS  PubMed  Google Scholar 

  94. Konieczny, J., Ossowska, K., Wolfarth, S. & Pilc, A. LY354740, a group II metabotropic glutamate receptor agonist with potential antiparkinsonian properties in rats. Naunyn Schmiedebergs Arch. Pharmacol. 358, 500–502 (1998).

    CAS  PubMed  Google Scholar 

  95. Dawson, L., Chadha, A., Megalou, M. & Duty, S. The group II metabotropic glutamate receptor agonist, DCG-IV, alleviates akinesia following intranigral or intraventricular administration in the reserpine-treated rat. Br. J. Pharmacol. 129, 541–546 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Murray, T. K. et al. Evaluation of the mGluR2/3 agonist LY379268 in rodent models of Parkinson's disease. Pharmacol. Biochem. Behav. 73, 455–466 (2002).

    CAS  PubMed  Google Scholar 

  97. Picconi, B. et al. Striatal metabotropic glutamate receptor function following experimental parkinsonism and chronic levodopa treatment. Brain 125, 2635–2645 (2002).

    PubMed  Google Scholar 

  98. Wittmann, M., Marino, M. J. & Conn, P. J. Dopamine modulates the function of group II and group III metabotropic glutamate receptors in the substantia nigra pars reticulata. J. Pharmacol. Exp. Ther. 302, 433–441 (2002).

    CAS  PubMed  Google Scholar 

  99. MacInnes, N., Messenger, M. J. & Duty, S. Activation of group III metabotropic glutamate receptors in selected regions of the basal ganglia alleviates akinesia in the reserpine-treated rat. Br. Pharmacol. 141, 15–22 (2004).

    CAS  Google Scholar 

  100. Marino, M. J. et al. Allosteric modulation of group III metabotropic glutamate receptor 4: a potential approach to Parkinson's disease treatment. Proc. Natl Acad. Sci. USA 100, 13668–13673 (2003). Provides an important advance in demonstrating the utility of a selective allosteric potentiator of mGluR4 in regulating transmission at the striato-pallidal synapse and inducing anti-parkinsonian effects in rats.

    CAS  PubMed  Google Scholar 

  101. Maj, M. et al. (-)-PHCCC, a positive allosteric modulator of mGluR4: characterization, mechanism of action, and neuroprotection. Neuropharmacology 45, 895–906 (2003).

    CAS  PubMed  Google Scholar 

  102. Chung, K. K., Dawson, V. L. & Dawson, T. M. The role of the ubiquitin-proteasomal pathway in Parkinson's disease and other neurodegenerative disorders. Trends Neurosci. 24, S7–S14 (2001).

    CAS  PubMed  Google Scholar 

  103. Greenamyre, J. T. & Hastings, T. G. Biomedicine. Parkinson's — divergent causes, convergent mechanisms. Science 304, 1120–1122 (2004).

    CAS  PubMed  Google Scholar 

  104. Giasson, B. I. & Lee, V. M. Are ubiquitination pathways central to Parkinson's disease? Cell 114, 1–8 (2003).

    CAS  PubMed  Google Scholar 

  105. Turski, L., Bressler, K., Rettig, K. J., Loschmann, P. A. & Wachtel, H. Protection of substantia nigra from MPP+ neurotoxicity by N-methyl-D-aspartate antagonists. Nature 349, 414–418 (1991). The first evidence that excitotoxicity contributes to nigrostriatal degeneration.

    CAS  PubMed  Google Scholar 

  106. Lange, K. W. & Riederer, P. Glutamatergic drugs in Parkinson's disease. Life Sci. 55, 2067–2075 (1994).

    CAS  PubMed  Google Scholar 

  107. Srivastava, R., Brouillet, E., Beal, M. F., Storey, E. & Hyman, B. T. Blockade of 1-methyl-4-phenylpyridinium ion (MPP+) nigral toxicity in the rat by prior decortication or MK-801 treatment: a stereological estimate of neuronal loss. Neurobiol. Aging 14, 295–301 (1993).

    CAS  PubMed  Google Scholar 

  108. Vaglini, F., Fascetti, F., Fornai, F., Maggio, R. & Corsini, G. U. (+)MK-801 prevents the DDC-induced enhancement of MPTP toxicity in mice. Brain Res. 668, 194–203 (1994).

    CAS  PubMed  Google Scholar 

  109. Sonsalla, P. K., Alberts, D. S. & Zeevalk, G. D. Role of glutamate in neurodegeneration of dopamine neurons in several animal models of parkinsonism. Amino Acids 14, 69–74 (1998).

    CAS  PubMed  Google Scholar 

  110. Blandini, F., Greenamyre, J. T., Fancellu, R. & Nappi, G. Blockade of subthalamic glutamatergic activity corrects changes in neuronal metabolism and motor behavior in rats with nigrostriatal lesions. Neurol. Sci. 22, 49–50 (2001).

    CAS  PubMed  Google Scholar 

  111. Blandini, F., Nappi, G. & Greenamyre, J. T. Subthalamic infusion of an NMDA antagonist prevents basal ganglia metabolic changes and nigral degeneration in a rodent model of Parkinson's disease. Ann. Neurol. 49, 525–529 (2001).

    CAS  PubMed  Google Scholar 

  112. Battaglia, G. et al. Endogenous activation of mGlu5 metabotropic glutamate receptors contributes to the development of nigro-striatal damage induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice. J. Neurosci. 24, 828–835 (2004).

    CAS  PubMed  Google Scholar 

  113. Aguirre, J. A. et al. Protection but maintained dysfunction of nigral dopaminergic nerve cell bodies and striatal dopaminergic terminals in MPTP-lesioned mice after acute treatment with the mGluR5 antagonist MPEP. Brain Res. 1033, 216–220 (2005).

    CAS  PubMed  Google Scholar 

  114. Battaglia, G. et al. Selective blockade of mGlu5 metabotropic glutamate receptors is protective against methamphetamine neurotoxicity. J. Neurosci. 22, 2135–2141 (2002).

    CAS  PubMed  Google Scholar 

  115. Wagner, G. C. et al. Long-lasting depletion of striatal dopamine and loss of dopamine uptake sites following repeated administration of methamphetamine. Brain Res. 181, 151–160 (1980).

    CAS  PubMed  Google Scholar 

  116. Wilson, J. M. et al. Striatal dopamine nerve terminals markers in human chronic methamphetamine users. Nature Med. 2, 699–703 (1996).

    CAS  PubMed  Google Scholar 

  117. Hubert, G. W., Paquet, M. & Smith, Y. Differential subcellular localization of mGluR1a and mGluR5 in the rat and monkey substantia nigra. J. Neurosci. 21, 1838–1847 (2001).

    CAS  PubMed  Google Scholar 

  118. Smith, Y. et al. Ionotropic and metabotropic GABA and glutamate receptors in primate basal ganglia. J. Chem. Neuroanatom. 22, 13–42 (2001).

    CAS  Google Scholar 

  119. Page, G., Peeters, M., Najimi, M., Maloteaux, J. M. & Hermans, E. Modulation of the neuronal dopamine transporter activity by the metabotropic glutamate receptor mGluR5 in rat striatal synaptosomes through phosphorylation mediated processes. J. Neurochem. 76, 1282–1290 (2001).

    CAS  PubMed  Google Scholar 

  120. Matarredona, E. R., Santiago, M., Venero, J. L., Cano, J. & Machado, A. Group-II metabotropic glutamate receptor activation protects striatal dopaminergic nerve terminals against MPP+-induced neurotoxicity along with brain-derived neurotrophic factor induction. J. Neurochem. 76, 351–360 (2001).

    CAS  PubMed  Google Scholar 

  121. Venero, J. L. et al. DCG-IV but not other group-II metabotropic receptor agonists induces microglial BDNF mRNA expression in the rat striatum. Correlation with neuronal injury. Neuroscience 113, 857–869 (2002).

    CAS  PubMed  Google Scholar 

  122. Battaglia, G. et al. Protective role of group-II metabotropic glutamate receptors against nigro-striatal degeneration induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice. Neuropharmacology 45, 155–166 (2003).

    CAS  PubMed  Google Scholar 

  123. Bruno, V. et al. The neuroprotective activity of group-II metabotropic glutamate receptors requires new protein synthesis and involves a glial–neuronal signaling. J. Neurosci. 17, 1891–1897 (1997).

    CAS  PubMed  Google Scholar 

  124. Bruno, V. et al. Neuroprotection by glial metabotropic glutamate receptors is mediated by transforming growth factor-β. J. Neurosci. 18, 9594–9600 (1998). Provides evidence that activation of group II mGluRs offer neuroprotection through a mechanism mediated by an increased production of transforming growth factor-β in astrocytes.

    CAS  PubMed  Google Scholar 

  125. D'Onofrio, M. et al. Neuroprotection mediated by glial group-II metabotropic glutamate receptors requires the activation of the MAP kinase and the phosphatidylinositol-3-kinase pathways. J. Neurochem. 78, 435–445 (2001).

    CAS  PubMed  Google Scholar 

  126. Shigemoto, R., Masugi, M. & Fugjmoto, K. Assembly–disassembly of metabotropic glutamate receptor 3 and water channel aquaporin 4 in astrocytes and membranes. Neuropharmacology 38, A42 (1999).

    Google Scholar 

  127. Valenti, O., Mannaioni, G., Seabrook, G. R., Conn, P. J. & Marino, M. J. Group III metabotropic glutamate receptor-mediated modulation of excitatory transmission in rodent substantia nigra pars compacta dopamine neurons. J. Pharmacol. Exp. Ther. 313, 1296–1304 (2005).

    CAS  PubMed  Google Scholar 

  128. Besong, G. et al. Activation of group III metabotropic glutamate receptors inhibits the production of RANTES in glial cell cultures. J. Neurosci. 22, 5403–5411 (2002).

    CAS  PubMed  Google Scholar 

  129. Gasparini, F. et al. (R,S)-4-phosphophenylglycine, a potent and selective group III metabotropic glutamate receptor agonist, is anticonvulsive and neuroprotective in vivo. J. Pharm. Exp. Ther. 289, 1678–1687 (1999).

    CAS  Google Scholar 

  130. Bruno, V. et al. Selective activation of mGlu4 metabotropic glutamate receptors is protective against excitotoxic neuronal death. J. Neurosci. 20, 6413–6420 (2000).

    CAS  PubMed  Google Scholar 

  131. Flor, P. J., Battaglia, G., Nicoletti, F., Gasparini, F. & Bruno, V. Neuroprotective activity of metabotropic glutamate receptor ligands. Adv. Exp. Med. Biol. 513, 197–223 (2002).

    CAS  PubMed  Google Scholar 

  132. Beal, M. F. & Ferrante, R. J. Experimental therapeutics in transgenic mouse models of Huntington's disease. Nature Rev. Neurosci. 5, 373–384 (2004). An excellent review describing all mouse models of HD.

    CAS  Google Scholar 

  133. Bruno, V. et al. Neuroprotective activity of the potent and selective mGlu1a metabotropic glutamate receptor antagonist, (+)-2-methyl-4-carboxyphenylglycine (LY367385): comparison with LY357366, an antagonist of mGlu1a and mGlu5 receptors. Neuropharmacology 38, 199–207 (1999).

    CAS  PubMed  Google Scholar 

  134. Bruno, V. et al. Selective blockade of metabotropic glutamate receptor subtype 5 is neuroprotective. Neuropharmacology 39, 2223–2230 (2000).

    CAS  PubMed  Google Scholar 

  135. Battaglia, G. et al. Selective blockade of type-I metabotropic glutamate receptors induces neuroprotection by enhancing GABAergic transmission. Mol. Cell. Neurosci. 17, 1071–1083 (2001).

    CAS  PubMed  Google Scholar 

  136. Popoli, P. et al. Neuroprotective effects of the mGlu5R antagonist MPEP towards quinolinic acid-induced striatal toxicity: involvement of pre- and post-synaptic mechanisms and lack of direct NMDA blocking activity. J. Neurochem. 89, 1479–1489 (2004).

    CAS  PubMed  Google Scholar 

  137. Orlando, L. R., Alsdorf, S. A., Penney, J. B. Jr & Young, A. B. The role of group I and group II metabotropic glutamate receptors in modulation of striatal NMDA and quinolinic acid toxicity. Exp. Neurol. 167, 196–204 (2001).

    CAS  PubMed  Google Scholar 

  138. Gu, M. et al. Mitochondrial defect in Huntington's disease caudate nucleus. Ann. Neurol. 39, 385–389 (1996).

    CAS  PubMed  Google Scholar 

  139. Greene, J. G. & Greenamyre, J. T. Bioenergetics and glutamate excitotoxicity. Prog. Neurobiol. 48, 613–634 (1996).

    CAS  PubMed  Google Scholar 

  140. Palfi, S. et al. Chronic 3-nitropropionic acid treatment in baboons replicates the cognitive and motor deficits of Huntington's disease. J. Neurosci. 16, 3019–3025 (1996).

    CAS  PubMed  Google Scholar 

  141. Cha, J. J., Talati, A., Kerner, A. J., Lichtenbaum, A. R. & Young, A. B. Antisense oligodeoxynucleotides directed against mGluR5 glutamate receptor protect against malonic acid lesions in rat striatum. Neuropharmacology 35, A7 (1996).

    Google Scholar 

  142. Cha, J. J. et al. Altered brain neurotransmitter receptors in transgenic mice expressing a portion of an abnormal human Huntington disease gene. Proc. Natl Acad. Sci. USA 95, 6480–6485 (1998).

    CAS  PubMed  Google Scholar 

  143. Schiefer, J. et al. The metabotropic glutamate receptor 5 antagonist MPEP and the mGluR2 agonist LY379268 modify disease progression in a transgenic mouse model of Huntington's disease. Brain Res. 1019, 246–254 (2004).

    CAS  Google Scholar 

  144. Bruno V. et al. Metabotropic glutamate receptor subtype as target for neuroprotective drugs. J. Cereb. Blood Flow Metab. 21, 1013–1033 (2001).

    CAS  PubMed  Google Scholar 

  145. Testa, C. M., Standaert, D. G., Young, A. B. & Penney, J. B. Jr. Metabotropic glutamate receptor mRNA expression in the basal ganglia of the rat. J. Neurosci. 14, 3005–3018 (1994).

    CAS  PubMed  Google Scholar 

  146. Testa, C. M., Standaert, D. G., Landwehrmeyer, G. B., Penney, J. B. Jr & Young, A. B. Differential expression of mGluR5 metabotropic glutamate receptor mRNA by rat striatal neurons. J. Comp. Neurol. 354, 241–252 (1995).

    CAS  PubMed  Google Scholar 

  147. Testa, C. M., Friberg, I. K., Weiss, S. W. & Standaert, D. G. Immunohistochemical localization of metabotropic glutamate receptors mGluR1a and mGluR2/3 in the rat basal ganglia. J. Comp. Neurol. 390, 5–19 (1998).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in P.J.C.'s laboratory is supported by grants from the National Institutes of Health (National Institute of Neurological Disorders and Stroke, NINDS, and National Institute of Mental Health, NIMH) and the Michael J. Fox Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Jeffrey Conn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

A2A adenosine receptor

CDK5

CREB

DARPP-32

D2R

ELK1

Homer

PSD-95

Shank

OMIM

Huntington's disease

Parkinson's disease

FURTHER INFORMATION

Conn's laboratory

Glossary

CROSS-DESENSITIZATION

Cross-desensitization refers to receptor desensitization (the loss of receptor response to agonist activation) that is triggered by the activation of a different type of receptor located in the same cell, which might or might not share the same coupling mechanism.

CIRCLING BEHAVIOUR

Rotational behaviour induced by systemic administration of dopaminergic drugs to rodents with unilateral lesions of the nigrostriatal pathway or by unilateral infusion of drugs into different nuclei of the basal ganglia motor circuit. In the classical model of 6-hydroxydopamine-induced degeneration of the nigrostriatal pathway, dopamine receptor agonists (for example, apomorphine) induce contralateral circling, whereas drugs that stimulate dopamine release (for example, amphetamines) induce ipsilateral circling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conn, P., Battaglia, G., Marino, M. et al. Metabotropic glutamate receptors in the basal ganglia motor circuit. Nat Rev Neurosci 6, 787–798 (2005). https://doi.org/10.1038/nrn1763

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1763

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing