Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

An integrated approach to classifying neuronal phenotypes

Abstract

Characterizing the functional phenotypes of neurons is essential for understanding how genotypes can be related to the neural basis of behaviour. Traditional classifications of neurons by single features (such as morphology or firing behaviour) are increasingly inadequate for reflecting functional phenotypes, as they do not integrate functions across different neuronal types. Here, we describe a set of rules for identifying and predicting functional phenotypes that combine morphology, intrinsic ion channel species and their distributions in dendrites, and functional properties. This more comprehensive neuronal classification should be an improvement on traditional classifications for relating genotype to functional phenotype.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Basic phenotypic categories of cells with thick dendrites and high dendritic Na+ channel density, and cells with thin dendrites and low dendritic Na+ channel density.
Figure 2: Cells with thick dendrites and high dendritic Na+ channel density are further subcategorized by back-propagating action potentials and modulation by I h currents.
Figure 3: Cells with thick dendrites and high dendritic Na+ channels have a second 'unmodulated' subcategory characterized by back-propagating action potentials but no I h.
Figure 4: Cells in the category of thin dendrites and low dendritic Na+ channels, with limited back-propagating action potentials and complex firing because of Ih.
Figure 5: Cells belonging to a slow integration phenotype, characterized by thin dendrites and low dendritic Na+ channels, which make up a simple firing subcategory because they have no Ih.
Figure 6: Schema for the differentiation of neuronal phenotypes.

Similar content being viewed by others

References

  1. Llinas, R. R. The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science 242, 1654–1664 (1988).

    CAS  PubMed  Google Scholar 

  2. Migliore, M. & Shepherd, G. M. Emerging rules for the distributions of active dendritic conductances. Nature Rev. Neurosci. 3, 362–370 (2002).

    CAS  Google Scholar 

  3. Toledo-Rodriguez, M. et al. Correlation maps allow neuronal electrical properties to be predicted from single-cell gene expression profiles in rat neocortex. Cereb. Cortex 14, 1310–1327 (2004).

    PubMed  Google Scholar 

  4. Frick, A., Magee, J., Koester, H. J., Migliore, M. & Johnston, D. Normalization of Ca2+ signals by small oblique dendrites of CA1 pyramidal neurons. J. Neurosci. 23, 3243–3250 (2003).

    CAS  PubMed  Google Scholar 

  5. Stuart, G. & Hausser, M. Initiation and spread of sodium action potentials in cerebellar Purkinje cells. Neuron 13, 703–712 (1994).

    CAS  PubMed  Google Scholar 

  6. Williams, S. R. & Stuart, G. J. Action potential backpropagation and somato-dendritic distribution of ion channels in thalamocortical neurons. J. Neurosci. 20, 1307–1317 (2000).

    CAS  PubMed  Google Scholar 

  7. Trimmer, J. S. & Rhodes, K. J. Localization of voltage-gated ion channels in mammalian brain. Annu. Rev. Physiol. 66, 477–519 (2004).

    CAS  PubMed  Google Scholar 

  8. Larkum, M. E., Zhu, J. J. & Sakmann, B. A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature 398, 338–341 (1999).

    CAS  PubMed  Google Scholar 

  9. Womack, M. D. & Khodakhah, K. Dendritic control of spontaneous bursting in cerebellar Purkinje cells. J. Neurosci. 24, 3511–3521 (2004).

    CAS  PubMed  Google Scholar 

  10. Magee, J. C. Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. J. Neurosci. 18, 7613–7624 (1998).

    CAS  PubMed  Google Scholar 

  11. Waters, J., Schaefer, A. & Sakmann, B. Backpropagating action potentials in neurones: measurement, mechanisms and potential functions. Prog. Biophys. Mol. Biol. 87, 145–170 (2005).

    PubMed  Google Scholar 

  12. Hoffman, D. A., Magee, J. C., Colbert, C. M. & Johnston, D. K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature 387, 869–875 (1997).

    CAS  PubMed  Google Scholar 

  13. Stuart, G. J. & Sakmann, B. Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367, 69–72 (1994).

    CAS  PubMed  Google Scholar 

  14. Williams, S. R. & Stuart, G. J. Site independence of EPSP time course is mediated by dendritic Ih in neocortical pyramidal neurons. J. Neurophysiol. 83, 3177–3182 (2000).

    CAS  PubMed  Google Scholar 

  15. Berger, T., Larkum, M. E. & Luscher, H. R. High Ih channel density in the distal apical dendrite of layer V pyramidal cells increases bidirectional attenuation of EPSPs. J. Neurophysiol. 85, 855–868 (2001).

    CAS  PubMed  Google Scholar 

  16. Lorincz, A., Notomi, T., Tamas, G., Shigemoto, R. & Nusser, Z. Polarized and compartment-dependent distribution of HCN1 in pyramidal cell dendrites. Nature Neurosci. 5, 1185–1193 (2002).

    PubMed  Google Scholar 

  17. Hausser, M., Stuart, G., Racca, C. & Sakmann, B. Axonal initiation and active dendritic propagation of action potentials in substantia nigra neurons. Neuron 15, 637–647 (1995).

    CAS  PubMed  Google Scholar 

  18. D'Antuono, M., Biagini, G., Tancredi, V. & Avoli, M. Electrophysiology of regular firing cells in the rat perirhinal cortex. Hippocampus 11, 662–672 (2001).

    CAS  PubMed  Google Scholar 

  19. Van der Linden, S. & Lopes da Silva, F. H. Comparison of the electrophysiology and morphology of layers III and II neurons of the rat medial entorhinal cortex in vitro. Eur. J. Neurosci. 10, 1479–1489 (1998).

    CAS  PubMed  Google Scholar 

  20. Buckmaster, P. S., Alonso, A., Canfield, D. R. & Amaral, D. G. Dendritic morphology, local circuitry, and intrinsic electrophysiology of principal neurons in the entorhinal cortex of macaque monkeys. J. Comp. Neurol. 470, 317–329 (2004).

    PubMed  Google Scholar 

  21. Protopapas, A. D. & Bower, J. M. Physiological characterization of layer III non-pyramidal neurons in piriform (olfactory) cortex of rat. Brain Res. 865, 1–11 (2000).

    CAS  PubMed  Google Scholar 

  22. Cooper, A. J. & Stanford, I. M. Electrophysiological and morphological characteristics of three subtypes of rat globus pallidus neurone in vitro. J. Physiol. (Lond.) 527, 291–304 (2000).

    CAS  Google Scholar 

  23. Kaiser, K. M., Zilberter, Y. & Sakmann, B. Back-propagating action potentials mediate calcium signalling in dendrites of bitufted interneurons in layer 2/3 of rat somatosensory cortex. J. Physiol. (Lond.) 535, 17–31 (2001).

    CAS  Google Scholar 

  24. Lien, C. C., Martina, M., Schultz, J. H., Ehmke, H. & Jonas, P. Gating, modulation and subunit composition of voltage-gated K+ channels in dendritic inhibitory interneurones of rat hippocampus. J. Physiol. (Lond.) 538, 405–419 (2002).

    CAS  Google Scholar 

  25. Bennett, B. D., Callaway, J. C. & Wilson, C. J. Intrinsic membrane properties underlying spontaneous tonic firing in neostriatal cholinergic interneurons. J. Neurosci. 20, 8493–8503 (2000).

    CAS  PubMed  Google Scholar 

  26. Koizumi, A., Jakobs, T. C. & Masland, R. H. Inward rectifying currents stabilize the membrane potential in dendrites of mouse amacrine cells: patch-clamp recordings and single-cell RT-PCR. Mol. Vis. 10, 328–340 (2004).

    CAS  PubMed  Google Scholar 

  27. Bischofberger, J. & Jonas, P. Action potential propagation into the presynaptic dendrites of rat mitral cells. J. Physiol. (Lond.) 504, 359–365 (1997).

    CAS  Google Scholar 

  28. Holderith, N. B., Shigemoto, R. & Nusser, Z. Cell type-dependent expression of HCN1 in the main olfactory bulb. Eur. J. Neurosci. 18, 344–354 (2003).

    PubMed  Google Scholar 

  29. Waters, J., Larkum, M., Sakmann, B. & Helmchen, F. Supralinear Ca2+ influx into dendritic tufts of layer 2/3 neocortical pyramidal neurons in vitro and in vivo. J. Neurosci. 23, 8558–8567 (2003).

    CAS  PubMed  Google Scholar 

  30. Maravall, M., Stern, E. A. & Svoboda, K. Development of intrinsic properties and excitability of layer 2/3 pyramidal neurons during a critical period for sensory maps in rat barrel cortex, J. Neurophysiol. 92, 144–156 (2004).

    CAS  PubMed  Google Scholar 

  31. Faber, E. S., Callister, R. J. & Sah, P. Morphological and electrophysiological properties of principal neurons in the rat lateral amygdala in vitro. J. Neurophysiol. 85, 714–723 (2001).

    CAS  PubMed  Google Scholar 

  32. Migliore, M., Hoffman, D., Magee, J. C. & Johnston, D. Role of an A-type K+ conductance in the back-propagation of action potentials in the dendrites of hippocampal neurons. J. Comput. Neurosci. 7, 5–15 (1999).

    CAS  PubMed  Google Scholar 

  33. Margrie, T. W., Sakmann, B. & Urban, N. N. Action potential propagation in mitral cell lateral dendrites is decremental and controls recurrent and lateral inhibition in the mammalian olfactory bulb. Proc. Natl Acad. Sci. USA 98, 319–324 (2001).

    CAS  PubMed  Google Scholar 

  34. Stewart, A. E. & Foehring, R. C. Effects of spike parameters and neuromodulators on action potential waveform-induced calcium entry into pyramidal neurons. J. Neurophysiol. 85, 1412–1423 (2001).

    CAS  PubMed  Google Scholar 

  35. Magee, J. C. & Johnston, D. A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275, 209–213 (1997).

    CAS  PubMed  Google Scholar 

  36. Martina, M., Yao, G. L. & Bean, B. P. Properties and functional role of voltage-dependent potassium channels in dendrites of rat cerebellar Purkinje neurons. J. Neurosci. 23, 5698–5707 (2003).

    CAS  PubMed  Google Scholar 

  37. Velte, T. J. & Masland, R. H. Action potentials in the dendrites of retinal ganglion cells. J. Neurophysiol. 81, 1412–1417 (1999).

    CAS  PubMed  Google Scholar 

  38. Buzsaki, G., Penttonen, M., Nadasdy, Z. & Bragin, A. Pattern and inhibition-dependent invasion of pyramidal cell dendrites by fast spikes in the hippocampus in vivo. Proc. Natl Acad. Sci. USA 93, 9921–9925 (1996).

    CAS  PubMed  Google Scholar 

  39. Toris, C. B., Eiesland, J. L. & Miller, R. F. Morphology of ganglion cells in the neotenous tiger salamander retina. J. Comp. Neurol. 352, 535–559 (1995).

    CAS  PubMed  Google Scholar 

  40. Pinato, G. & Midtgaard, J. Dendritic sodium spikelets and low-threshold calcium spikes in turtle olfactory bulb granule cells. J. Neurophysiol. 93, 1285–1294 (2005).

    CAS  PubMed  Google Scholar 

  41. Song, D., Xie, X., Wang, Z. & Berger, T. W. Differential effect of TEA on long-term synaptic modification in hippocampal CA1 and dentate gyrus in vitro. Neurobiol. Learn. Mem. 76, 375–387 (2001).

    CAS  PubMed  Google Scholar 

  42. Song, D., Wang, Z. & Berger, T. W. Contribution of T-type VDCC to TEA-induced long-term synaptic modification in hippocampal CA1 and dentate gyrus. Hippocampus 12, 689–697 (2002).

    CAS  PubMed  Google Scholar 

  43. Williams, S. R., Christensen, S. R., Stuart, G. J. & Hausser, M. Membrane potential bistability is controlled by the hyperpolarization-activated current IH in rat cerebellar Purkinje neurons in vitro. J. Physiol. (Lond.) 539, 469–483 (2002).

    CAS  Google Scholar 

  44. Magee, J. C. Dendritic Ih normalizes temporal summation in hippocampal CA1 neurons. Nature Neurosci. 2, 508–514 (1999).

    CAS  PubMed  Google Scholar 

  45. Migliore, M. On the integration of subthreshold inputs from perforant path and Schaffer collaterals in hippocampal CA1 pyramidal neurons. J. Comput. Neurosci. 14, 185–192 (2003).

    PubMed  Google Scholar 

  46. Henderson, D. & Miller, R. F. Evidence for low-voltage-activated (LVA) calcium currents in the dendrites of tiger salamander retinal ganglion cells. Vis. Neurosci. 20, 141–152 (2003).

    PubMed  Google Scholar 

  47. Lee, S. C., Hayashida, Y. & Ishida, A. T. Availability of low-threshold Ca2+ current in retinal ganglion cells. J. Neurophysiol. 90, 3888–3901 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Isope, P. & Murphy, T. H. Low threshold calcium currents in rat cerebellar Purkinje cell dendritic spines are mediated by T-type calcium channels. J. Physiol. (Lond.) 562, 257–269 (2005).

    CAS  Google Scholar 

  49. Usowicz, M. M., Sugimori, M., Cherksey, B. & Llinas, R. P-type calcium channels in the somata and dendrites of adult cerebellar Purkinje cells. Neuron 9, 1185–1199 (1992).

    CAS  PubMed  Google Scholar 

  50. McQuiston, A. R. & Katz, L. C. Electrophysiology of interneurons in the glomerular layer of the rat olfactory bulb. J. Neurophysiol. 86, 1899–1907 (2001).

    CAS  PubMed  Google Scholar 

  51. Schoppa, N. E. & Westbrook, G. L. Regulation of synaptic timing in the olfactory bulb by an A-type potassium current. Nature Neurosci. 2, 1106–1113 (1999).

    CAS  PubMed  Google Scholar 

  52. Egger, V., Svoboda, K. & Mainen, Z. F. Mechanisms of lateral inhibition in the olfactory bulb: efficiency and modulation of spike-evoked calcium influx into granule cells. J. Neurosci. 23, 7551–7558 (2003).

    CAS  PubMed  Google Scholar 

  53. Fisher, R. E., Gray, R. & Johnston, D. Properties and distribution of single voltage-gated calcium channels in adult hippocampal neurons. J. Neurophysiol. 64, 91–104 (1990).

    CAS  PubMed  Google Scholar 

  54. Buckmaster, P. S. & Amaral, D. G. Intracellular recording and labeling of mossy cells and proximal CA3 pyramidal cells in macaque monkeys. J. Comp. Neurol. 430, 264–281 (2001).

    CAS  PubMed  Google Scholar 

  55. Vasilyev, D. V. & Barish, M. E. Postnatal development of the hyperpolarization-activated excitatory current Ih in mouse hippocampal pyramidal neurons. J. Neurosci. 22, 8992–9004 (2002).

    CAS  PubMed  Google Scholar 

  56. Golgi, C. Sulla Fina Anatomia Degli Organi Centrali del Sistema Nervoso (Hoepli, Milano, 1886)

    Google Scholar 

  57. Ramón y Cajal, S. Histologie du Système Nerveaux de l'Homme et des Vertebres Vol. II (Maloine, Paris, 1911).

    Google Scholar 

  58. Ramon-Moliner, E. in The Structure and Function of Nervous Tissue (ed. Bourne, G. H.) 205–267 (Academic, New York, 1968).

    Google Scholar 

  59. Kandel, E. R., Schwartz, J. H. & Jessell, T. M. Principles of Neural Science (McGraw-Hill, USA, 2000).

    Google Scholar 

  60. Shepherd, G. M. in The Synaptic Organization of the Brain (ed. Shepherd, G. M) 1–38 (Oxford Univ. Press, New York, 2004).

    Google Scholar 

  61. Douglas, R., Markram, H. & Martin, K. in The Synaptic Organization of the Brain (ed. Shepherd, G. M.) 499–558 (Oxford Univ. Press, New York, 2004).

    Google Scholar 

  62. Rall, W., Shepherd, G. M., Reese, T. S. & Brightman, M. W. Dendrodendritic synaptic pathway for inhibition in the olfactory bulb. Exp. Neurol. 14, 44–56 (1966).

    CAS  PubMed  Google Scholar 

  63. Seamans, J. K. & Yang, C. R. The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog. Neurobiol. 74, 1–58 (2004). Erratum: Prog. Neurobiol. 74, 321 (2004).

    CAS  PubMed  Google Scholar 

  64. Trudeau, L. E. Glutamate co-transmission as an emerging concept in monoamine neuron function. J. Psychiatry Neurosci. 29, 296–310 (2004).

    PubMed  PubMed Central  Google Scholar 

  65. Cherubini, E., Gaiarsa, J. L. & Ben-Ari, Y. GABA: an excitatory transmitter in early postnatal life. Trends Neurosci. 14, 515–519 (1991).

    CAS  PubMed  Google Scholar 

  66. Fuxe, K. & Hillarp, N. A. Uptake of L-DOPA and noradrenaline by central catecholamine neurons. Life Sci. 74, 1403–1406 (1964).

    Google Scholar 

  67. Williams, S. R., Toth, T. I., Turner, J. P., Hughes, S. W. & Crunelli, V. The 'window' component of the low threshold Ca2+ current produces input signal amplification and bistability in cat and rat thalamocortical neurones. J. Physiol. (Lond.) 505, 689–705 (1997).

    CAS  Google Scholar 

  68. Glanzer, J. G. & Eberwine, J. H. Mechanisms of translational control in dendrites. Neurobiol. Aging 24, 1105–1111 (2003).

    CAS  PubMed  Google Scholar 

  69. Treloar, H. B., Uboha, U., Jeromin, A. & Greer, C. A. Expression of the neuronal calcium sensor protein NCS-1 in the developing mouse olfactory pathway. J. Comp. Neurol. 482, 201–216 (2005).

    CAS  PubMed  Google Scholar 

  70. Stuart, G. & Spruston, N. Determinants of voltage attenuation in neocortical pyramidal neuron dendrites. J. Neurosci. 18, 3501–3510 (1998).

    CAS  PubMed  Google Scholar 

  71. Spruston, N. & Johnston, D. Perforated patch-clamp analysis of the passive membrane properties of three classes of hippocampal neurons. J. Neurophysiol. 67, 508–529 (1992).

    CAS  PubMed  Google Scholar 

  72. Williams, S. R. & Stuart, G. J. Mechanisms and consequences of action potential burst firing in rat neocortical pyramidal neurons. J. Physiol. (Lond.) 521, 467–482 (1999).

    CAS  Google Scholar 

  73. Morin, F., Beaulieu, C. & Lacaille, J. C. Membrane properties and synaptic currents evoked in CA1 interneuron subtypes in rat hippocampal slices. J. Neurophysiol. 76, 1–16 (1996).

    CAS  PubMed  Google Scholar 

  74. Bennett, B. D. & Wilson, C. J. Spontaneous activity of neostriatal cholinergic interneurons in vitro. J. Neurosci. 19, 5586–5596 (1999).

    CAS  PubMed  Google Scholar 

  75. Manis, P. B. Membrane properties and discharge characteristics of guinea pig dorsal cochlear nucleus neurons studied in vitro. J. Neurosci. 10, 2338–2351 (1990).

    CAS  PubMed  Google Scholar 

  76. Chen, W. R. & Shepherd, G. M. Membrane and synaptic properties of mitral cells in slices of rat olfactory bulb. Brain Res. 745, 189–196 (1997).

    CAS  PubMed  Google Scholar 

  77. Mason, A. & Larkman, A. Correlations between morphology and electrophysiology of pyramidal neurons in slices of rat visual cortex. II. Electrophysiology. J. Neurosci. 10, 1415–1428 (1990).

    CAS  PubMed  Google Scholar 

  78. Kroner, S., Gottmann, K., Hatt, H. & Gunturkun, O. Electrophysiological and morphological properties of cell types in the chick neostriatum caudolaterale. Neuroscience 110, 459–473 (2002).

    CAS  PubMed  Google Scholar 

  79. Hughes, S. W., Cope, D. W. & Crunelli, V. Dynamic clamp study of Ih modulation of burst firing and δ oscillations in thalamocortical neurons in vitro. Neuroscience 87, 541–550 (1998).

    CAS  PubMed  Google Scholar 

  80. Swensen, A. M. & Bean, B. P. Ionic mechanisms of burst firing in dissociated Purkinje neurons. J. Neurosci. 23, 9650–9663 (2003).

    CAS  PubMed  Google Scholar 

  81. Chang, W., Strahlendorf, J. C. & Strahlendorf, H. K. Ionic contributions to the oscillatory firing activity of rat Purkinje cells in vitro. Brain Res. 614, 335–341 (1993).

    CAS  PubMed  Google Scholar 

  82. Sheasby, B. W. & Fohlmeister, J. F. Impulse encoding across the dendritic morphologies of retinal ganglion cells. J. Neurophysiol. 81, 1685–1698 (1999).

    CAS  PubMed  Google Scholar 

  83. Tabata, T. & Ishida, A. T. Transient and sustained depolarization of retinal ganglion cells by Ih. J. Neurophysiol. 75, 1932–1943 (1996).

    CAS  PubMed  Google Scholar 

  84. Molitor, S. C. & Manis, P. B. Dendritic Ca2+ transients evoked by action potentials in rat dorsal cochlear nucleus pyramidal and cartwheel neurons. J. Neurophysiol. 89, 2225–2237 (2003).

    CAS  PubMed  Google Scholar 

  85. Manis, P. B., Spirou, G. A., Wright, D. D., Paydar, S. & Ryugo, D. K. Physiology and morphology of complex spiking neurons in the guinea pig dorsal cochlear nucleus. J. Comp. Neurol. 348, 261–276 (1994).

    CAS  PubMed  Google Scholar 

  86. D'Angelo, E. et al. Theta-frequency bursting and resonance in cerebellar granule cells: experimental evidence and modeling of a slow K+-dependent mechanism. J. Neurosci. 21, 759–770 (2001).

    CAS  PubMed  Google Scholar 

  87. St. John, J. L., Rosene, D. L. & Luebke, J. I. Morphology and electrophysiology of dentate granule cells in the rhesus monkey: comparison with the rat. J. Comp. Neurol. 387, 136–147 (1997).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful for support from the National Institutes of Health, the Human Brain Project (funded by the National Institute of Deafness and Other Communication Disorders, the National Institute of Mental Health, the National Institute of Neurological Disorders and Stroke, and the National Institute on Aging) and the Office of Naval Research (Multi-university Research Initiative). We thank W. Chen, T. Morse, D. Willhite and M. Hines for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon M. Shepherd.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

SenseLab

Duke/Southampton Archive of Neuronal Morphology

Rights and permissions

Reprints and permissions

About this article

Cite this article

Migliore, M., Shepherd, G. An integrated approach to classifying neuronal phenotypes. Nat Rev Neurosci 6, 810–818 (2005). https://doi.org/10.1038/nrn1769

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1769

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing