Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

What blindness can tell us about seeing again: merging neuroplasticity and neuroprostheses

Abstract

Significant progress has been made in the development of visual neuroprostheses to restore vision in blind individuals. Appropriate delivery of electrical stimulation to intact visual structures can evoke patterned sensations of light in those who have been blind for many years. However, success in developing functional visual prostheses requires an understanding of how to communicate effectively with the visually deprived brain in order to merge what is perceived visually with what is generated electrically.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Summary diagram of the visual system and approaches to restore vision.
Figure 2: The multi-modal nature of our sensory world and its implications for implementing a visual prothesis to restore vision.

Similar content being viewed by others

References

  1. Sharma, R. K. & Ehinger, B. Management of hereditary retinal degenerations: present status and future directions. Surv. Ophthalmol. 43, 427–444 (1999).

    Article  CAS  Google Scholar 

  2. Marg, E. & Rudiak, D. Phosphenes induced by magnetic stimulation over the occipital brain: description and probable site of stimulation. Optom. Vis. Sci. 71, 301–311 (1994).

    Article  CAS  Google Scholar 

  3. Gothe, J. et al. Changes in visual cortex excitability in blind subjects as demonstrated by transcranial magnetic stimulation. Brain 125, 479–490 (2002).

    Article  Google Scholar 

  4. Rizzo, J. F. et al. Retinal prosthesis: an encouraging first decade with major challenges ahead. Ophthalmology 108, 13–14 (2001).

    Article  Google Scholar 

  5. Maynard, E. M. Visual prostheses. Annu. Rev. Biomed. Eng. 3, 145–168 (2001).

    Article  CAS  Google Scholar 

  6. Margalit, E. et al. Retinal prosthesis for the blind. Surv. Ophthalmol. 47, 335–356 (2002).

    Article  Google Scholar 

  7. Zrenner, E. Will retinal implants restore vision? Science 295, 1022–1025 (2002).

    Article  CAS  Google Scholar 

  8. Loewenstein, J. I., Montezuma, S. R. & Rizzo, J. F. Outer retinal degeneration: an electronic retinal prosthesis as a treatment strategy. Arch. Ophthalmol. 122, 587–596 (2004).

    Article  Google Scholar 

  9. Brindley, G. S. & Lewin, W. S. The sensations produced by electrical stimulation of the visual cortex. J. Physiol. (Lond.) 196, 479–493 (1968).

    Article  CAS  Google Scholar 

  10. Dobelle, W. H. Artificial vision for the blind by connecting a television camera to the visual cortex. ASAIO J. 46, 3–9 (2000).

    Article  CAS  Google Scholar 

  11. Schmidt, E. M. et al. Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain 119, 507–522 (1996).

    Article  Google Scholar 

  12. Normann, R. A., Warren, D. J., Ammermuller, J., Fernandez, E. & Guillory, S. High-resolution spatio-temporal mapping of visual pathways using multi-electrode arrays. Vision Res. 41, 1261–1275 (2001).

    Article  CAS  Google Scholar 

  13. Fernandez, E. et al. Towards a cortical visual neuro-prosthesis for the blind. IFMBE Proc. 3, 1690–1691 (2002).

    Google Scholar 

  14. Troyk, P. et al. A model for intracortical visual prosthesis research. Artif. Organs 27, 1005–1015 (2003).

    Article  Google Scholar 

  15. Veraart, C., Wanet-Defalque, M. C., Gerard, B., Vanlierde, A. & Delbeke, J. Pattern recognition with the optic nerve visual prosthesis. Artif. Organs 27(11), 996–1004 (2003).

    Article  Google Scholar 

  16. Klein, R., Klein, B. E., Jensen, S. C. & Meuer, S. M. The five-year incidence and progression of age-related maculopathy: the Beaver Dam Eye Study. Ophthalmology 104, 7–21 (1997).

    Article  CAS  Google Scholar 

  17. Hims, M. M., Diager, S. P. & Inglehearn, C. F. Retinitis pigmentosa: genes, proteins and prospects. Dev. Ophthalmol. 37, 109–125 (2003).

    Article  CAS  Google Scholar 

  18. Humayun, M. S. et al. Visual perception elicited by electrical stimulation of retina in blind humans. Arch. Ophthalmol. 114, 40–46 (1996).

    Article  CAS  Google Scholar 

  19. Chow, A. Y. et al. The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa. Arch. Ophthalmol. 122, 460–469 (2004).

    Article  Google Scholar 

  20. Zrenner, E. et al. Can subretinal microphotodiodes successfully replace degenerated photoreceptors? Vision Res. 39, 2555–2567 (1999).

    Article  CAS  Google Scholar 

  21. Rizzo, J. F., Wyatt, J., Loewenstein, J., Kelly, S. & Shire, D. Methods and perceptual thresholds for short-term electrical stimulation of human retina with microelectrode arrays. Invest. Ophthalmol. Vis. Sci. 44, 5355–5361 (2003).

    Article  Google Scholar 

  22. Rizzo, J. F., Wyatt, J., Loewenstein, J., Kelly, S. & Shire, D. Perceptual efficacy of electrical stimulation of human retina with a microelectrode array during short-term surgical trials. Invest. Ophthalmol. Vis. Sci. 44, 5362–5369 (2003).

    Article  Google Scholar 

  23. Humayun, M. S. et al. Visual perception in a blind subject with a chronic microelectronic retinal prosthesis. Vision Res. 43, 2573–2581 (2003).

    Article  Google Scholar 

  24. Bavelier, D. & Neville, H. Cross-modal plasticity: where and how? Nature Rev. Neurosci. 3, 443–452 (2002).

    Article  CAS  Google Scholar 

  25. Hollins, M. Understanding Blindness (Hillsdale, New Jersey: Erlbaum Associates, 1989).

    Google Scholar 

  26. Rauschecker, J. P. Compensatory plasticity and sensory substitution in the cerebral cortex. Trends Neurosci. 18, 36–43 (1995).

    Article  CAS  Google Scholar 

  27. Rauschecker, J. P. & Korte, M. Auditory compensation for early blindness in cat cerebral cortex. J. Neurosci. 10, 4538–4548 (1993).

    Article  Google Scholar 

  28. Roder, B. et al. Improved auditory spatial tuning in blind humans. Nature 400, 162–166 (1999).

    Article  CAS  Google Scholar 

  29. Van Boven, R. W., Hamilton, R. H., Kauffman, T., Keenan, J. P. & Pascual-Leone, A. Tactile spatial resolution in blind Braille readers. Neurology 54, 2230–2236 (2000).

    Article  CAS  Google Scholar 

  30. Hamilton, R. H., Pascual-Leone, A. & Schlaug, G. Absolute pitch in blind musicians. Neuroreport 15, 803–806 (2004).

    Article  Google Scholar 

  31. Gougoux, F. et al. Neuropsychology: pitch discrimination in the early blind. Nature 430, 309 (2004).

    Article  CAS  Google Scholar 

  32. Pascual-Leone, A., Hamilton, R., Tormos, J. M., Keenan, J. & Catala, M. D. in Neuroplasticity: Building a Bridge from the Laboratory to the Clinic (eds Grafman, J. & Christen, Y.) 93–108 (Springer, Munich & New York, 1998).

    Google Scholar 

  33. Sadato, N. et al. Activation of the primary visual cortex by Braille reading in blind subjects. Nature 380, 526–528 (1996).

    Article  CAS  Google Scholar 

  34. Sadato, N. et al. Neural networks for Braille reading by the blind. Brain 121, 1213–1229 (1998).

    Article  Google Scholar 

  35. Buchel, C., Price, C., Frackowiak, R. S. & Friston, K. Different activation patterns in the visual cortex of late and congenitally blind subjects. Brain 121, 409–419 (1998).

    Article  Google Scholar 

  36. Burton, H. et al. Adaptive changes in early and late blind: a fMRI study of Braille reading. J. Neurophysiol. 87, 589–607 (2002).

    Article  CAS  Google Scholar 

  37. Amedi, A., Jacobson, G., Hendler, T., Malach, R. & Zohary, E. Convergence of visual and tactile shape processing in the human lateral occipital complex. Cereb. Cortex. 12, 1202–1212 (2002).

    Article  Google Scholar 

  38. Amedi, A., Raz, N., Pianka, P., Malach, R. & Zohary, E. Early 'visual' cortex activation correlates with superior verbal-memory performance in the blind. Nature Neurosci. 6, 758–766 (2003).

    Article  CAS  Google Scholar 

  39. Cohen, L. G. et al. Functional relevance of cross-modal plasticity in blind humans. Nature 389, 180–183 (1997).

    Article  CAS  Google Scholar 

  40. Hamilton, R. H. & Pascual-Leone, A. Cortical plasticity associated with Braille learning. Trends Cogn. Sci. 2, 168–174 (1998).

    Article  CAS  Google Scholar 

  41. Hamilton, R., Keenan, J. P., Catala, M. D., Pascual-Leone, A. Alexia for Braille following bilateral occipital stroke in an early blind woman. Neuroreport 11, 237–240 (2000).

    Article  CAS  Google Scholar 

  42. Merabet, L. et al. Feeling by sight or seeing by touch? Neuron 42, 173–179 (2004).

    Article  CAS  Google Scholar 

  43. Kujala, T., Alho, K., Paavilainen, P., Summala, H. & Naatanen, R. Neural plasticity in processing of sound location by the early blind: an event-related potential study. Electroencephalogr. Clin. Neurophysiol. 84, 469–472 (1992).

    Article  CAS  Google Scholar 

  44. Weeks, R. et al. A positron emission tomographic study of auditory localization in the congenitally blind. J. Neurosci. 20, 2664–2672 (2000).

    Article  CAS  Google Scholar 

  45. Amedi, A., Floel, A., Knecht, S., Zohary, E. & Cohen, L. G. Transcranial magnetic stimulation of the occipital pole interferes with verbal processing in blind subjects. Nature Neurosci. 7, 1266–1270 (2004).

    Article  CAS  Google Scholar 

  46. Pascual-Leone, A. & Hamilton, R. The metamodal organization of the brain. Prog. Brain Res. 134, 427–445 (2001).

    Article  CAS  Google Scholar 

  47. Donoghue, J. P. Connecting cortex to machines: recent advances in brain interfaces. Nature Neurosci. 5, 1085–1088 (2002).

    Article  CAS  Google Scholar 

  48. Nicolelis, M. A. Brain-machine interfaces to restore motor function and probe neural circuits. Nature Rev. Neurosci. 4, 417–422 (2003).

    Article  CAS  Google Scholar 

  49. Loeb, G. E. Cochlear prosthetics. Annu. Rev. Neurosci. 13, 357–371 (1990).

    Article  CAS  Google Scholar 

  50. Rauschecker, J. P. & Shannon, R. V. Sending sound to the brain. Science 295, 1025–1029 (2002).

    Article  CAS  Google Scholar 

  51. Finney, E. M., Fine, I. & Dobkins, K. R. Visual stimuli activate auditory cortex in the deaf. Nature Neurosci. 4, 1171–1173 (2001).

    Article  CAS  Google Scholar 

  52. Neville, H. J. et al. Cerebral organization for language in deaf and hearing subjects: biological constraints and effects of experience. Proc. Natl Acad. Sci. USA 95, 922–929 (1998).

    Article  CAS  Google Scholar 

  53. Nishimura, H. et al. Sign language 'heard' in the auditory cortex. Nature 397, 116 (1999).

    Article  CAS  Google Scholar 

  54. Giraud, A. L, Price, C. J, Graham, J. M, Truy, E. & Frackowiak, R. S. Cross-modal plasticity underpins language recovery after cochlear implantation. Neuron 30, 657–663 (2001).

    Article  CAS  Google Scholar 

  55. Sharma, J., Angelucci, A. & Sur, M. Induction of visual orientation modules in auditory cortex. Nature 404, 841–847 (2000).

    Article  CAS  Google Scholar 

  56. Lee, D. S. et al. Cross-modal plasticity and cochlear implants. Nature 409, 149–150 (2001).

    Article  CAS  Google Scholar 

  57. Grill-Spector, K. The neural basis of object perception. Curr. Opin. Neurobiol. 13, 159–166 (2003).

    Article  CAS  Google Scholar 

  58. Deibert, E., Kraut, M., Kremen, S. & Hart, J. Neural pathways in tactile object recognition. Neurology 52, 1413–1417 (1999).

    Article  CAS  Google Scholar 

  59. James, T. W. et al. Haptic study of three-dimensional objects activates extrastriate visual areas. Neuropsychologia 40, 1706–1714 (2002).

    Article  Google Scholar 

  60. Beauchamp, M. S., Lee, K. E., Argall, B. D. & Martin, A. Integration of auditory and visual information about objects in superior temporal sulcus. Neuron 41, 809–823 (2004).

    Article  CAS  Google Scholar 

  61. Amedi, A., Malach, R., Hendler, T., Peled, S. & Zohary, E. Visuo-haptic object-related activation in the ventral visual pathway. Nature Neurosci. 4, 324–330 (2001).

    Article  CAS  Google Scholar 

  62. Pietrini, P. et al. Beyond sensory images: object-based representation in the human ventral pathway. Proc. Natl Acad. Sci. USA 101, 5658–5663 (2004).

    Article  CAS  Google Scholar 

  63. De Volder, A. P. et al. Auditory triggered mental imagery of shape involves visual association areas in early blind humans. Neuroimage 14, 129–139 (2001).

    Article  CAS  Google Scholar 

  64. Johnson, K. O. & Hsiao, S. S. Neural mechanisms of tactual form and texture perception. Annu. Rev. Neurosci. 15, 227–250 (1992).

    Article  CAS  Google Scholar 

  65. von Senden, M. Space and Sight: the Perception of Space and Shape in the Congenitally Blind Before and After Operation (Methuen, London, 1960).

    Google Scholar 

  66. Gregory, R. L. & Wallace, J. G. Recovery from early blindness: a case study. Exp. Psychol. Soc. Monogr. 2 (Heffers, Cambridge, 1963).

    Google Scholar 

  67. Fine, I. et al. Long-term deprivation affects visual perception and cortex. Nature Neurosci. 6, 915–916 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding for this work is provided by a National Research Service Award fellowship from the National Eye Institute to L.B.M., a Department of Veterans Affairs, Rehabilitation Research and Development Service grant to J.F.R., a National Science Foundation grant to D.C.S. and a National Science Foundation Science of Learning Centers Catalyst Award and National Center for Research Resources grant to A.P.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lotfi B. Merabet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FUTHER INFORMATION

Encyclopedia of Life Sciences

Cortical plasticity: use-dependent remodelling

Eye anatomy

Macular degeneration, age related

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merabet, L., Rizzo, J., Amedi, A. et al. What blindness can tell us about seeing again: merging neuroplasticity and neuroprostheses. Nat Rev Neurosci 6, 71–77 (2005). https://doi.org/10.1038/nrn1586

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1586

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing