Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of α-synuclein in Parkinson's disease: insights from animal models

Key Points

  • Since the discovery that mutations in α-synuclein can cause familial Parkinson's disease, there has been great interest in its role in the pathogenesis of the disease. Other genes that have been implicated in familial Parkinson's disease might also influence the structure or clearance of α-synuclein. In Parkinson's disease and other disorders, α-synuclein is found in intraneuronal inclusions called Lewy bodies, and it is proposed that α-synuclein forms oligomers and fibrils before aggregating into Lewy bodies. However, it is unclear whether α-synuclein oligomers, fibrils or Lewy bodies are protective or toxic to neurons.

  • Interactions between certain α-synuclein conformations and dopamine metabolism might cause selective degeneration of dopamine neurons, as is observed in Parkinson's disease. Dopamine metabolism generates reactive oxygen species, which might accelerate aggregation of α-synuclein, which itself might increase the generation of toxic reactive oxygen species.

  • Both 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and rotenone are used to generate animal models of Parkinson's disease. MPTP is converted to MPP+, which causes neurodegeneration by entering dopamine neurons through the dopamine transporter and inhibiting mitochondrial complex I. Mice lacking α-synuclein are resistant to the effects of MPTP, and it has been proposed that the increase in reactive oxygen species caused by MPP+ leads to an increase in α-synuclein aggregation which further increases the generation of reactive oxygen species. MPTP does not, however, cause Lewy body formation.

  • Rotenone is also an inhibitor of mitochondrial complex I, although it enters the cell through a different route to MPP+, and α-synuclein knockout mice are not resistant to its effects. Rats treated with rotenone show nigrostriatal degeneration accompanied by a variety of motor symptoms, and develop Lewy body-like inclusions.

  • Overexpression of normal or mutant human α-synuclein in non-rodent species can generate genetic models of Parkinson's disease. In flies, which contain no endogenous α-synuclein, α-synuclein expression causes age-related depletion of dopamine neurons. This is proposed to be related to the abnormal aggregation of α-synuclein, and can be prevented by concomitant expression of a molecular chaperone.

  • Various promoters and α-synuclein transgenes have been used to generate α-synuclein transgenic mice, with variable results. None of the transgenic mice show a true parkinsonian condition that includes Lewy bodies, but some do exhibit loss of dopamine neurons and motor impairments. It is possible that higher and more consistent levels of transgene expression will be needed to create a more useful transgenic mouse model.

  • Viral vectors have been used to introduce α-synuclein into the brains of rats and monkeys. Again, the results have been variable but this system might also prove useful if expression can be optimized.

  • No existing animal model shows the full spectrum of features of Parkinson's disease, although the models that do exist complement each other. Continued development of these models should allow studies that elucidate further the pathogenesis of Parkinson's disease, and improve our understanding of the role of α-synuclein in both health and disease.

Abstract

The abnormal accumulations of fibrillar α-synuclein in Lewy bodies and the mutations in the gene for α-synuclein in familial forms of Parkinson's disease have led to the belief that this protein has a central role in a group of neurodegenerative diseases known as the synucleinopathies. Our understanding of the biology of α-synuclein has increased significantly since its discovery in 1997, and recently developed animal models of the synucleinopathies have contributed to this understanding. The information gleaned from animal models has the potential to provide a framework for continuing the development of rational therapeutic strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: α-Synuclein conformations.
Figure 2: Mechanisms of α-synuclein and MPTP toxicity.
Figure 3: Relationship between chaperone molecules and α-synuclein toxicity.
Figure 4: Generation of animal models of the synucleinopathies.

Similar content being viewed by others

References

  1. Polymeropoulos, M. H. et al. Mutation in the α-synuclein gene identified in families with Parkinson's disease. Science 276, 2045–2047 (1997). The first report showing that a missense mutation in the α-synuclein gene (A53T) causes an early-onset, familial form of PD. This was the first study to identify a genetic cause of PD.

    Article  CAS  PubMed  Google Scholar 

  2. Kitada, T. et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605–608 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Leroy, E. et al. The ubiquitin pathway in Parkinson's disease. Nature 395, 451–452 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Bonifati, V. et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299, 256–259 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Mouradian, M. M. Recent advances in the genetics and pathogenesis of Parkinson disease. Neurology 58, 179–185 (2002).

    Article  PubMed  Google Scholar 

  6. Shimura, H. et al. Ubiquitination of a new form of α-synuclein by parkin from human brain: implications for Parkinson's disease. Science 293, 263–269 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Liu, Y., Fallon, L., Lashuel, H. A., Liu, Z. & Lansbury, P. T. Jr. The UCH-L1 gene encodes two opposing enzymatic activities that affect α-synuclein degradation and Parkinson's disease susceptibility. Cell 111, 209–218 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Miller, D. W. et al. L166P mutant DJ-1, causative for recessive Parkinson's disease, is degraded through the ubiquitin–proteasome system. J. Biol. Chem. 2003 Jul 8 (DOI: 10.1074/jbc.M304272200).

  9. Mitsumoto, A. & Nakagawa, Y. DJ-1 is an indicator for endogenous reactive oxygen species elicited by endotoxin. Free Radic. Res. 35, 885–893 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Mitsumoto, A. et al. Oxidized forms of peroxiredoxins and DJ-1 on two-dimensional gels increased in response to sublethal levels of paraquat. Free Radic. Res. 35, 301–310 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Wilson, M. A., Collins, J. L., Hod, Y., Ringe, D. & Petsko, G. A. The 1.1-Å resolution crystal structure of DJ-1, the protein mutated in autosomal recessive early onset Parkinson's disease. Proc. Natl Acad. Sci. USA 100, 9256–9261 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Spillantini, M. G. et al. α-Synuclein in Lewy bodies. Nature 388, 839–840 (1997). The first study to demonstrate the presence of α-synuclein in the Lewy bodies and Lewy neurites of patients with idiopathic PD and Lewy body dementia.

    Article  CAS  PubMed  Google Scholar 

  13. Wakabayashi, K. et al. Synphilin-1 is present in Lewy bodies in Parkinson's disease. Ann. Neurol. 47, 521–523 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Schlossmacher, M. G. et al. Parkin localizes to the Lewy bodies of Parkinson disease and dementia with Lewy bodies. Am. J. Pathol. 160, 1655–1667 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kawamoto, Y. et al. 14-3-3 proteins in Lewy bodies in Parkinson disease and diffuse Lewy body disease brains. J. Neuropathol. Exp. Neurol. 61, 245–253 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Yamazaki, M. et al. α-Synuclein inclusions in amygdala in the brains of patients with the parkinsonism–dementia complex of Guam. J. Neuropathol. Exp. Neurol. 59, 585–591 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Baba, M. et al. Aggregation of α-synuclein in Lewy bodies of sporadic Parkinson's disease and dementia with Lewy bodies. Am. J. Pathol. 152, 879–884 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Gai, W. P. et al. α-Synuclein fibrils constitute the central core of oligodendroglial inclusion filaments in multiple system atrophy. Exp. Neurol. 181, 68–78 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Conway, K. A., Harper, J. D. & Lansbury, P. T. Accelerated in vitro fibril formation by a mutant α-synuclein linked to early-onset Parkinson disease. Nature Med. 4, 1318–1320 (1998). This work described the formation of α-synuclein protofibrils and fibrils during the process of fibrillization. A53T α-synuclein mutant protein was shown to fibrillize faster than wild-type protein.

    Article  CAS  PubMed  Google Scholar 

  20. Wood, S. J. et al. α-Synuclein fibrillogenesis is nucleation-dependent. Implications for the pathogenesis of Parkinson's disease. J. Biol. Chem. 274, 19509–19512 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. El-Agnaf, O. M. et al. Aggregates from mutant and wild-type α-synuclein proteins and NAC peptide induce apoptotic cell death in human neuroblastoma cells by formation of β-sheet and amyloid-like filaments. FEBS Lett. 440, 71–75 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Giasson, B. I. & Lee, V. M. Parkin and the molecular pathways of Parkinson's disease. Neuron 31, 885–888 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Conway, K. A. et al. Accelerated oligomerization by Parkinson's disease linked α-synuclein mutants. Ann. NY Acad. Sci. 920, 42–45 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Conway, K. A. et al. Acceleration of oligomerization, not fibrillization, is a shared property of both α-synuclein mutations linked to early-onset Parkinson's disease: implications for pathogenesis and therapy. Proc. Natl Acad. Sci. USA 97, 571–576 (2000). This seminal study indicated that both α-synuclein mutations responsible for familial PD increase the rate of protofibril formation during the process of fibrillization.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Volles, M. J. & Lansbury, P. T. Jr. Vesicle permeabilization by protofibrillar α-synuclein is sensitive to Parkinson's disease-linked mutations and occurs by a pore-like mechanism. Biochemistry 41, 4595–4602 (2002). This paper demonstrated that α-synuclein protofibrils can permeabilize vesicles in vitro , leading to the release of small cytoplasmic molecules such as DA.

    Article  CAS  PubMed  Google Scholar 

  26. Lashuel, H. A., Hartley, D., Petre, B. M., Walz, T. & Lansbury, P. T. Jr. Neurodegenerative disease: amyloid pores from pathogenic mutations. Nature 418, 291 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Xu, J. et al. Dopamine-dependent neurotoxicity of α-synuclein: a mechanism for selective neurodegeneration in Parkinson disease. Nature Med. 8, 600–606 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Lo Bianco, C., Ridet, J. L., Schneider, B. L., Deglon, N. & Aebischer, P. α-Synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinson's disease. Proc. Natl Acad. Sci. USA 99, 10813–10818 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ostrerova-Golts, N. et al. The A53T α-synuclein mutation increases iron-dependent aggregation and toxicity. J. Neurosci. 20, 6048–6054 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim, K. S. et al. The ceruloplasmin and hydrogen peroxide system induces α-synuclein aggregation in vitro. Biochimie 84, 625–631 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Junn, E. & Mouradian, M. M. Human α-synuclein over-expression increases intracellular reactive oxygen species levels and susceptibility to dopamine. Neurosci. Lett. 320, 146–150 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Tabner, B. J., Turnbull, S., El-Agnaf, O. M. & Allsop, D. Formation of hydrogen peroxide and hydroxyl radicals from A(β) and α-synuclein as a possible mechanism of cell death in Alzheimer's disease and Parkinson's disease. Free Radic. Biol. Med. 32, 1076–1083 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. George, J. M., Jin, H., Woods, W. S. & Clayton, D. F. Characterization of a novel protein regulated during the critical period for song learning in the zebra finch. Neuron 15, 361–372 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Quilty, M. C., Gai, W. P., Pountney, D. L., West, A. K. & Vickers, J. C. Localization of α-, β-, and γ-synuclein during neuronal development and alterations associated with the neuronal response to axonal trauma. Exp. Neurol. 182, 195–207 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Abeliovich, A. et al. Mice lacking α-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 25, 239–252 (2000). The first study to create α-synuclein-knockout mice, showing that α-synuclein deletion only led to slight changes in synaptic transmission.

    Article  CAS  PubMed  Google Scholar 

  36. Cabin, D. E. et al. Synaptic vesicle depletion with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking α-synuclein. J. Neurosci. 22, 8797–8807 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Perez, R. G. et al. A role for α-synuclein in the regulation of dopamine biosynthesis. J. Neurosci. 22, 3090–3099 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dauer, W. et al. Resistance of α-synuclein null mice to the parkinsonian neurotoxin MPTP. Proc. Natl Acad. Sci. USA 99, 14524–14529 (2002). These authors were the first to show that α-synuclein- knockout mice, and neuronal cultures derived from these mice, are resistant to the neurotoxin MPTP.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schluter, O. M. et al. Role of α-synuclein in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in mice. Neuroscience 118, 985–1002 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Fearnley, J. M. & Lees, A. J. Ageing and Parkinson's disease: substantia nigra regional selectivity. Brain 114, 2283–2301 (1991).

    Article  PubMed  Google Scholar 

  41. Marsden, C. D. Problems with long-term levodopa therapy for Parkinson's disease. Clin. Neuropharmacol. 17, S32–S44 (1994).

    Article  PubMed  Google Scholar 

  42. Dawson, T. M. & Dawson, V. L. Neuroprotective and neurorestorative strategies for Parkinson's disease. Nature Neurosci. 5, S1058–S1061 (2002).

    Article  CAS  Google Scholar 

  43. Langston, J. W., Ballard, P., Tetrud, J. W. & Irwin, I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219, 979–980 (1983).

    Article  CAS  PubMed  Google Scholar 

  44. Cardellach, F. et al. Mitochondrial respiratory chain activity in skeletal muscle from patients with Parkinson's disease. Neurology 43, 2258–2262 (1993).

    Article  CAS  PubMed  Google Scholar 

  45. Blin, O. et al. Mitochondrial respiratory failure in skeletal muscle from patients with Parkinson's disease and multiple system atrophy. J. Neurol. Sci. 125, 95–101 (1994).

    Article  CAS  PubMed  Google Scholar 

  46. Owen, A. D., Schapira, A. H., Jenner, P. & Marsden, C. D. Indices of oxidative stress in Parkinson's disease, Alzheimer's disease and dementia with Lewy bodies. J. Neural Transm. Suppl. 51, 167–173 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Liu, Y., Fiskum, G. & Schubert, D. Generation of reactive oxygen species by the mitochondrial electron transport chain. J. Neurochem. 80, 780–787 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Kang, J. H. & Kim, K. S. Enhanced oligomerization of the α-synuclein mutant by the Cu,Zn-superoxide dismutase and hydrogen peroxide system. Mol. Cells 15, 87–93 (2003).

    CAS  PubMed  Google Scholar 

  49. Forno, L. S., DeLanney, L. E., Irwin, I. & Langston, J. W. Electron microscopy of Lewy bodies in the amygdala–parahippocampal region. Comparison with inclusion bodies in the MPTP-treated squirrel monkey. Adv. Neurol. 69, 217–228 (1996).

    CAS  PubMed  Google Scholar 

  50. Spillantini, M. G. et al. Filamentous α-synuclein inclusions link multiple system atrophy with Parkinson's disease and dementia with Lewy bodies. Neurosci. Lett. 251, 205–208 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Kowall, N. W. et al. MPTP induces α-synuclein aggregation in the substantia nigra of baboons. Neuroreport 11, 211–213 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Vila, M., Wu, D. C. & Przedborski, S. Engineered modeling and the secrets of Parkinson's disease. Trends Neurosci. 24, S49–S55 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Kuhn, K. et al. The mouse MPTP model: gene expression changes in dopaminergic neurons. Eur. J. Neurosci. 17, 1–12 (2003).

    Article  PubMed  Google Scholar 

  54. Beal, M. F. Experimental models of Parkinson's disease. Nature Rev. Neurosci. 2, 325–334 (2001).

    Article  CAS  Google Scholar 

  55. Meredith, G. E. et al. Lysosomal malfunction accompanies α-synuclein aggregation in a progressive mouse model of Parkinson's disease. Brain Res. 956, 156–165 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Neystat, M. et al. α-Synuclein expression in substantia nigra and cortex in Parkinson's disease. Mov. Disord. 14, 417–422 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Gorell, J. M., Johnson, C. C., Rybicki, B. A., Peterson, E. L. & Richardson, R. J. The risk of Parkinson's disease with exposure to pesticides, farming, well water, and rural living. Neurology 50, 1346–1350 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Menegon, A., Board, P. G., Blackburn, A. C., Mellick, G. D. & Le Couteur, D. G. Parkinson's disease, pesticides, and glutathione transferase polymorphisms. Lancet 352, 1344–1346 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Hensley, K. et al. Interaction of α-phenyl-N-tert-butyl nitrone and alternative electron acceptors with complex I indicates a substrate reduction site upstream from the rotenone binding site. J. Neurochem. 71, 2549–2557 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Seaton, T. A., Cooper, J. M. & Schapira, A. H. Free radical scavengers protect dopaminergic cell lines from apoptosis induced by complex I inhibitors. Brain Res. 777, 110–118 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. Betarbet, R., Sherer, T. B. & Greenamyre, J. T. Animal models of Parkinson's disease. Bioessays 24, 308–318 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Betarbet, R. et al. Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nature Neurosci. 3, 1301–1306 (2000). This study described the rotenone rat model of PD. These animals showed nigrostriatal system degeneration, Lewy-like inclusion bodies and motor impairment.

    Article  CAS  PubMed  Google Scholar 

  63. Masliah, E. et al. Dopaminergic loss and inclusion body formation in α-synuclein mice: implications for neurodegenerative disorders. Science 287, 1265–1269 (2000). These authors were the first to develop α-synuclein transgenic mice. These mice were created using the PDGFβ promoter, and exhibited a loss of striatal dopaminergic terminals.

    Article  CAS  PubMed  Google Scholar 

  64. Auluck, P. K. & Bonini, N. M. Pharmacological prevention of Parkinson disease in Drosophila. Nature Med. 8, 1185–1186 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Feany, M. B. & Bender, W. W. A Drosophila model of Parkinson's disease. Nature 404, 394–398 (2000). The first published example of α-synuclein Drosophila transgenics. The wild-type and mutant (A53T and A30P) α-synuclein transgenic flies exhibited DA neuron loss and neuronal inclusions resembling Lewy bodies.

    Article  CAS  PubMed  Google Scholar 

  66. Takahashi, M. et al. Phosphorylation of α-synuclein characteristic of synucleinopathy lesions is recapitulated in α-synuclein transgenic Drosophila. Neurosci. Lett. 336, 155–158 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Pendleton, R. G., Parvez, F., Sayed, M. & Hillman, R. Effects of pharmacological agents upon a transgenic model of Parkinson's disease in Drosophila melanogaster. J. Pharmacol. Exp. Ther. 300, 91–96 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Fujiwara, H. et al. α-Synuclein is phosphorylated in synucleinopathy lesions. Nature Cell Biol. 4, 160–164 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Kahle, P. J. et al. Selective insolubility of α-synuclein in human Lewy body diseases is recapitulated in a transgenic mouse model. Am. J. Pathol. 159, 2215–2225 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Warrick, J. M. et al. Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nature Genet. 23, 425–428 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Bonini, N. M. Chaperoning brain degeneration. Proc. Natl Acad. Sci. USA 99, S16407–S16411 (2002).

    Article  CAS  Google Scholar 

  72. Yang, Y., Nishimura, I., Imai, Y., Takahashi, R. & Lu, B. Parkin suppresses dopaminergic neuron-selective neurotoxicity induced by Pael-R in Drosophila. Neuron 37, 911–924 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Greene, J. C. et al. Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc. Natl Acad. Sci. USA 100, 4078–4083 (2003). The first deletion of the parkin gene in Drosophila . The parkin-null flies exhibited muscle degeneration but no defects in the dopaminergic system.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Adams, M. D. et al. The genome sequence of Drosophila melanogaster. Science 287, 2185–2195 (2000).

    Article  PubMed  Google Scholar 

  75. Sturchler-Pierrat, C. et al. Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc. Natl Acad. Sci. USA 94, 13287–13292 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wiessner, C. et al. Neuron-specific transgene expression of Bcl-X L but not Bcl-2 genes reduced lesion size after permanent middle cerebral artery occlusion in mice. Neurosci. Lett. 268, 119–122 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. van der Putten, H. et al. Neuropathology in mice expressing human α-synuclein. J. Neurosci. 20, 6021–6029 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kahle, P. J., Neumann, M., Ozmen, L. & Haass, C. Physiology and pathophysiology of α-synuclein. Cell culture and transgenic animal models based on a Parkinson's disease-associated protein. Ann. NY Acad. Sci. 920, 33–41 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Matsuoka, Y. et al. Lack of nigral pathology in transgenic mice expressing human α-synuclein driven by the tyrosine hydroxylase promoter. Neurobiol. Dis. 8, 535–539 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Rathke-Hartlieb, S. et al. Sensitivity to MPTP is not increased in Parkinson's disease-associated mutant α-synuclein transgenic mice. J. Neurochem. 77, 1181–1184 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Richfield, E. K. et al. Behavioral and neurochemical effects of wild-type and mutated human α-synuclein in transgenic mice. Exp. Neurol. 175, 35–48 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Giasson, B. I. et al. Neuronal α-synucleinopathy with severe movement disorder in mice expressing A53T human α-synuclein. Neuron 34, 521–533 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Lee, M. K. et al. Human α-synuclein-harboring familial Parkinson's disease-linked Ala-53→Thr mutation causes neurodegenerative disease with α-synuclein aggregation in transgenic mice. Proc. Natl Acad. Sci. USA 99, 8968–8973 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hashimoto, M., Rockenstein, E., Mante, M., Mallory, M. & Masliah, E. β-Synuclein inhibits α-synuclein aggregation: a possible role as an anti-parkinsonian factor. Neuron 32, 213–223 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Park, J. Y. & Lansbury, P. T. Jr. β-Synuclein inhibits formation of α-synuclein protofibrils: a possible therapeutic strategy against Parkinson's disease. Biochemistry 42, 3696–3700 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Klein, R. L., King, M. A., Hamby, M. E. & Meyer, E. M. Dopaminergic cell loss induced by human A30P α-synuclein gene transfer to the rat substantia nigra. Hum. Gene Ther. 13, 605–612 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Kirik, D. et al. Parkinson-like neurodegeneration induced by targeted overexpression of α-synuclein in the nigrostriatal system. J. Neurosci. 22, 2780–2791 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Rochet, J. C., Conway, K. A. & Lansbury, P. T. Jr. Inhibition of fibrillization and accumulation of prefibrillar oligomers in mixtures of human and mouse α-synuclein. Biochemistry 39, 10619–10626 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Kirik, D. et al. Nigrostriatal α-synucleinopathy induced by viral vector-mediated overexpression of human α-synuclein: a new primate model of Parkinson's disease. Proc. Natl Acad. Sci. USA 100, 2884–2889 (2003). The first study attempting to create a primate model overexpressing the α-synuclein gene. These primates exhibited nigrostriatal degeneration, but lacked a motor phenotype resembling PD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Uversky, V. N. & Fink, A. L. Amino acid determinants of α-synuclein aggregation: putting together pieces of the puzzle. FEBS Lett. 522, 9–13 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Couzin, J. Parkinson's disease. Dopamine may sustain toxic protein. Science 294, 1257–1258 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Hishikawa, N., Hashizume, Y., Yoshida, M. & Sobue, G. Clinical and neuropathological correlates of Lewy body disease. Acta Neuropathol. (Berl.) 105, 341–350 (2003).

    Google Scholar 

  93. Conway, K. A., Rochet, J. C., Bieganski, R. M. & Lansbury, P. T. Jr. Kinetic stabilization of the α-synuclein protofibril by a dopamine-α-synuclein adduct. Science 294, 1346–1349 (2001). This prominent work showed that DA stabilizes the protofibrillary conformation of α-synuclein.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathy Steece-Collier.

Related links

Related links

DATABASES

LocusLink

GAL4

PDGFβ

PRKN

Prp

OMIM

Alzheimer disease

ARJP

β-amyloid

dementia with Lewy bodies

DJ1

Parkin

Parkinson disease

α-synuclein

β-synuclein

γ-synuclein

ubiquitin

UCHL1

FURTHER INFORMATION

Adeno-associated viruses

Glossary

MISSENSE MUTATION

A mutation that results in the substitution of an amino acid in a protein.

PENETRANCE

The probability that an individual with a particular genotype manifests a given phenotype. Complete penetrance corresponds to the situation in which every individual with the same specific genotype manifests the phenotype in question.

ROTAROD TEST

Motor test that probes the ability of rodents to keep their balance on a cylinder that rotates continuously at a slow speed, commonly 5–6 revolutions per minute.

ADENO-ASSOCIATED VIRUSES

A group of viruses that require co-infection with an adenovirus or a herpesvirus for their replication. If no helper virus is present, the genome of adeno-associated viruses can be integrated into the host DNA, resulting in latent infection.

LENTIVIRUSES

A group of retroviruses that includes HIV. Virus derivatives that are engineered to be replication-defective can be used as expression vectors. Lentiviral vectors have advantages over retroviral vectors because of their ability to infect non-dividing human cells, particularly neurons.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maries, E., Dass, B., Collier, T. et al. The role of α-synuclein in Parkinson's disease: insights from animal models. Nat Rev Neurosci 4, 727–738 (2003). https://doi.org/10.1038/nrn1199

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1199

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing