Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Brain–machine interfaces to restore motor function and probe neural circuits

Abstract

Recent studies have shown that it is possible to create functional, bidirectional, real-time interfaces between living brain tissue and artificial devices. It is reasonable to predict that further research on brain–machine interfaces will lead to the development of a new generation of neuroprosthetic devices aimed at restoring motor functions in severely paralysed patients. In addition, I propose that such interfaces can become the core of a new experimental approach with which to investigate the operation of neural systems in behaving animals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of a cortical neuroprosthetic device.
Figure 2: Experimental design used to test a closed-loop control brain–machine interface for motor control in macaque monkeys.
Figure 3: Distributed neural coding in colour vision.

Similar content being viewed by others

References

  1. Nobunaga, A. I., Go, B. K. & Karunas, R. B. Recent demographic and injury trends in people served by the model spinal cord injury care systems. Arch. Phys. Med. Rehabil. 80, 1372–1382 (1999).

    Article  CAS  Google Scholar 

  2. Bomze, H. M., Bulsara, K. R., Iskandar, B. J., Caroni, P. & Skene, J. H. Spinal axon regeneration evoked by replacing two growth cone proteins in adult neurons. Nature Neurosci. 4, 38–43 (2001).

    Article  CAS  Google Scholar 

  3. Chapin, J. K., Moxon, K. A., Markowitz, R. S. & Nicolelis, M. A. L. Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nature Neurosci. 2, 664–670 (1999).

    Article  CAS  Google Scholar 

  4. Talwar, S. K. et al. Rat navigation guided by remote control. Nature 417, 37–38 (2002).

    Article  CAS  Google Scholar 

  5. Wessberg, J. et al. Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature 408, 361–365 (2000).

    Article  CAS  Google Scholar 

  6. Serruya, M. D., Hatsopoulos, N. G., Paninski, L., Fellows, M. R. & Donoghue, J. P. Instant neural control of a movement signal. Nature 416, 141–142 (2002).

    Article  CAS  Google Scholar 

  7. Taylor, D. M., Tillery, S. I. & Schwartz, A. B. Direct cortical control of 3D neuroprosthetic devices. Science 296, 1829–1832 (2002).

    Article  CAS  Google Scholar 

  8. Wolpaw, J. R., McFarland, D. J., Neat, G. W. & Forneris, C. A. An EEG-based brain-computer interface for cursor control. Electroencephalogr. Clin. Neurophysiol. 78, 252–259 (1991).

    Article  CAS  Google Scholar 

  9. Kennedy, P. R. & Bakay, R. A. Restoration of neural output from a paralyzed patient by a direct brain connection. Neuroreport 9, 1707–1711 (1998).

    Article  CAS  Google Scholar 

  10. Birbaumer, N. et al. A spelling device for the paralysed. Nature 398, 297–298 (1999).

    Article  CAS  Google Scholar 

  11. Keith, M. W. et al. Tendon transfers and functional electrical stimulation for restoration of hand function in spinal cord injury. J. Hand Surg. 21, 89–99 (1996).

    Article  CAS  Google Scholar 

  12. Schmidt, E. M. Single neuron recording from motor cortex as a possible source of signals for control of external devices. Ann. Biomed. Eng. 8, 339–349 (1980).

    Article  CAS  Google Scholar 

  13. Nicolelis, M. A. L. Actions from thoughts. Nature 409, 403–407 (2001).

    Article  CAS  Google Scholar 

  14. Donoghue, J. P. Connecting cortex to machines: recent advances in brain interfaces. Nature Neurosci. Suppl. 5, 1085–1088 (2002).

    Article  CAS  Google Scholar 

  15. Nicolelis, M. A. L. & Ribeiro, S. Multi-electrode recordings: the next steps. Curr. Opin. Neurobiol. 12, 602–606 (2002).

    Article  CAS  Google Scholar 

  16. Le Masson, G., Renaud-Le Masson, S., Debay, D. & Bal, T. Feedback inhibition controls spike transfer in hybrid thalamic circuits. Nature 417, 854–858 (2002).

    Article  CAS  Google Scholar 

  17. Kalaska, J. F. & Crammond, D. J. Cerebral cortical mechanisms of reaching movements. Science 255, 1517–1523 (1992).

    Article  CAS  Google Scholar 

  18. Kalaska, J. F., Scott, S. H., Cisek, P. & Sergio, L. E. Cortical control of reaching movements. Curr. Opin. Neurobiol. 7, 849–859 (1997).

    Article  CAS  Google Scholar 

  19. Mitz, A. R., Godschalk, M. & Wise, S. P. Learning-dependent neuronal activity in the premotor cortex: activity during the acquisition of conditional motor associations. J. Neurosci. 11, 1855–1872 (1991).

    Article  CAS  Google Scholar 

  20. Fetz, E. E. & Baker, M. A. Operantly conditioned patterns of precentral unit activity and correlated responses in adjacent cells and contralateral muscles. J. Neurophysiol. 36, 179–204 (1973).

    Article  CAS  Google Scholar 

  21. Fetz, E. E. & Finocchio, D. V. Correlations between activity of motor cortex cells and arm muscles during operantly conditioned response patterns. Exp. Brain Res. 23, 217–240 (1975).

    Article  CAS  Google Scholar 

  22. Olds, J. The limbic system and behavioral reinforcement. Prog. Brain Res. 27, 144–164 (1967).

    Article  CAS  Google Scholar 

  23. Fetz, E. E. Operant conditioning of cortical unit activity. Science 163, 955–957 (1969).

    Article  CAS  Google Scholar 

  24. Fetz, E. E. & Finocchio, D. V. Operant conditioning of specific patterns of neural and muscular activity. Science 174, 431–435 (1971).

    Article  CAS  Google Scholar 

  25. Iriki, A., Tanka, M. & Iwamura, Y. Coding of modified body schema during tool use by macaque postcentral neurones. Neuroreport 7, 2325–2330 (1996).

    Article  CAS  Google Scholar 

  26. Ishibashi, H. et al. Tool-use learning selectively induces expression of brain-derived neurotrophic factor, its receptor trkB, and neurotrophin 3 in the intraparietal multisensorycortex of monkeys. Brain Res. Cogn. Brain Res. 14, 3–9 (2002).

    Article  CAS  Google Scholar 

  27. Brooks, R. A. Flesh and Machines: How Robots Will Change Us (Knopf, New York, 2002).

    Google Scholar 

  28. Young, T. On the theory of light and colours. Phil. Trans. R. Soc. Lond. 92, 12–48 (1802).

    Article  Google Scholar 

  29. Hebb, D. O. Organization of Behavior (John Wiley & Sons, New York, 1949).

    Google Scholar 

  30. Georgopoulos, A. P., Schwartz, A. B. & Ketter, R. E. Neuronal population coding of movement direction. Science 233, 1416–1419 (1986).

    Article  CAS  Google Scholar 

  31. Johnson, M. T. & Ebner, T. J. Processing of multiple kinematic signals in the cerebellum and motor cortices. Brain Res. Rev. 33, 155–168 (2000).

    Article  CAS  Google Scholar 

  32. Messier, J. & Kalaska, J. F. Covariation of primate dorsal premotor cell activity with direction and amplitude during a memorized-delay reaching task. J. Neurophysiol. 84, 152–165 (2000).

    Article  CAS  Google Scholar 

  33. Johnson, M. T. V., Mason, C. R. & Ebner, T. J. Central processes for the multiparametric control of arm movements in primates. Curr. Opin. Neurobiol. 11, 684–688 (2001).

    Article  CAS  Google Scholar 

  34. Gribble, P. L. & Scott, S. H. Overlap of internal models in motor cortex for mechanical loads during reaching. Nature 417, 938–941 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank S. Simon for his comments on the manuscript and G. Licholai for his help with statistical data on spinal cord injuries.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASE

OMIM

Parkinson disease

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicolelis, M. Brain–machine interfaces to restore motor function and probe neural circuits. Nat Rev Neurosci 4, 417–422 (2003). https://doi.org/10.1038/nrn1105

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1105

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing