Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

LTP: perils and progress

Abstract

On the thirtieth birthday of long-term potentiation (LTP), it is appropriate to step back from the fray, evaluate what has been learned and look to the future. Two of us (J.W.L. and J.R.S.) published such an evaluation a few years ago in the hope that the ignorance conferred to us by our status as outsiders to the field might be offset, at least in part, by a freshness of perspective. The responses to that article have been numerous and fascinating, with experts and non-experts raising points in private that would benefit from open discussion. Here, joined by an LTP 'insider' (J.L.), we initiate such a discussion, restating, clarifying and debating some of the points that were raised in the original article.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sanes, J. R. & Lichtman, J. W. Can molecules explain long-term potentiation? Nature Neurosci. 2, 597–604 (1999).

    Article  CAS  Google Scholar 

  2. Neveu, D. & Zucker, R. S. Long-lasting potentiation and depression without presynaptic activity. J. Neurophysiol. 75, 2157–2160 (1996).

    Article  CAS  Google Scholar 

  3. Lee, H. K. et al. Phosphorylation of the AMPA receptor GluR1 subunit is required for synaptic plasticity and retention of spatial memory. Cell 112, 631–643 (2003).

    Article  CAS  Google Scholar 

  4. Takahashi, T., Svoboda, K. & Malinow, R. Experience strengthening transmission by driving AMPA receptors into synapses. Science 299, 1585–1588 (2003).

    Article  CAS  Google Scholar 

  5. Ostroff, L. E., Fiala, J. C., Allwardt, B. & Harris, K. M. Polyribosomes redistribute from dendritic shafts into spines with enlarged synapses during LTP in developing rat hippocampal slices. Neuron 35, 535–545 (2002).

    Article  CAS  Google Scholar 

  6. Choi, S., Klingauf, J. & Tsien, R. W. Fusion pore modulation as a presynaptic mechanism contributing to expression of long-term potentiation. Philos. Trans. R. Soc. 358, 695–705 (2003).

    Article  Google Scholar 

  7. Lisman, J. Long-term potentiation: outstanding questions and attempted synthesis. Philos. Trans. R. Soc. Lond. B 358, 829–842 (2003).

    Article  CAS  Google Scholar 

  8. Matsuzaki, M. et al. Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nature Neurosci. 4, 1086–1092 (2001).

    Article  CAS  Google Scholar 

  9. Malenka, R. C. & Nicoll, R. A. Long-term potentiation — a decade of progress? Science 285, 1870–1874 (1999).

    Article  CAS  Google Scholar 

  10. Malinow, R., Mainen, Z. F. & Hayashi, Y. LTP mechanisms: from silence to four-lane traffic. Curr. Opin. Neurobiol. 10, 352–357 (2000).

    Article  CAS  Google Scholar 

  11. Zakharenko, S. S., Zablow, L. & Siegelbaum, S. A. Visualization of changes in presynaptic function during long-term synaptic plasticity. Nature Neurosci. 4, 711–717 (2001).

    Article  CAS  Google Scholar 

  12. Emptage, N. J., Reid, C. A., Fine, A. & Bliss, T. V. Optical quantal analysis reveals a presynaptic component of LTP at hippocampal Schaffer-associational synapses. Neuron 38, 797–804 (2003).

    Article  CAS  Google Scholar 

  13. Lisman, J. E. & Harris, K. M. Quantal analysis and synaptic anatomy — integrating two views of hippocampal plasticity. Trends Neurosci. 16, 141–147 (1993).

    Article  CAS  Google Scholar 

  14. Hartwell, L. H., Hopfield, J. J., Leibler, S. & Murray, A. W. From molecular to modular cell biology. Nature 402, 47–52 (1999).

    Article  Google Scholar 

  15. Strohman, R. C. Organization becomes cause in the matter. Nature Biotechnol. 18, 575–576 (2000).

    Article  CAS  Google Scholar 

  16. Nurse, P. Reductionism and explanation in cell biology. Novartis Found. Symp. 213, 93–101; discussion 102–105 (1998).

    CAS  PubMed  Google Scholar 

  17. Jung, J. C. & Schnitzer, M. J. Multiphoton endoscopy. Opt. Lett. 28, 902–904 (2003).

    Article  Google Scholar 

  18. Giese, K. P., Fedorov, N. B., Filipkowski, R. K. & Silva, A. J. Autophosphorylation at Thr286 of the α-calcium-calmodulin kinase II in LTP and learning. Science 279, 870–873 (1998).

    Article  CAS  Google Scholar 

  19. Nakazawa, K. et al. Requirement for hippocampal CA3 NMDA receptors in associative memory recall. Science 12, 211–218 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Lisman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lisman, J., Lichtman, J. & Sanes, J. LTP: perils and progress. Nat Rev Neurosci 4, 926–929 (2003). https://doi.org/10.1038/nrn1259

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1259

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing