Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The other side of the engram: experience-driven changes in neuronal intrinsic excitability

Key Points

  • In addition to synaptic plasticity, which confers neurons with the ability to modify the strength of individual synapses, nerve cells also possess forms of intrinsic plasticity (changes in intrinsic excitability), which affect largest ensembles of synapses and might affect the whole cell. This form of plasticity might endow neurons with an additional capacity to store information.

  • Different learning tasks induce changes in intrinsic excitability in several vertebrate and invertebrate species. In many cases, these changes manifest as reductions in spike threshold, spike accommodation and amplitude of burst-evoked afterhyperpolarization, all of which point to the modulation of K+ channels as one potential underlying mechanism.

  • Forms of experience-dependent plasticity other than learning also elicit intrinsic plasticity, which share similar mechanisms as learning-mediated plastic changes. These forms of experience include adaptive and maladaptive states, such as seizures.

  • Studies in cell culture and brain slices have shown that it is possible to study intrinsic excitability in vitro. These studies have pointed to a series of K+, Ca2+ and Na+ conductances as possible molecular substrates of the plastic changes.

  • The signal transduction cascades mediating the conductance changes that seem to be crucial for intrinsic plasticity remain unknown for most model systems. Ca2+/calmodulin-dependent protein kinase II and other kinases, the action of G-proteins, and the release of intracellular Ca2+ have been proposed, but the definitive experiments remain to be reported.

  • Many changes remain to be answered in this nascent field. What is the relationship between intrinsic and synaptic plasticities, particularly in cases when both phenomena seem to co-exist? What is the duration of intrinsic plasticity? Does it really function to encode information? If so, what kind of memories could it store? These and many other issues should generate as much attention of intrinsic excitability changes as there has been on synaptic plasticity.

Abstract

Modern theories of memory storage have largely focused on persistent, experience-dependent changes in synaptic function such as long-term potentiation and depression. But in addition to these synaptic changes, certain learning tasks produce enduring changes in the intrinsic excitability of neurons by changing the function of voltage-gated ion channels, a change that can produce broader, even neuron-wide changes in synaptic throughput. We will consider the evidence for persistent changes in intrinsic neuronal excitability — what we will call intrinsic plasticity — that is produced by training in behaving animals and by artificial patterns of activation in brain slices and neuronal cultures. These intrinsic changes might function as part of the engram itself, or as a related phenomenon such as a trigger for the consolidation or adaptive generalization of memories.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Input-specificity and candidate memory storage mechanisms.
Figure 2: Intrinsic plasticity evoked by associative eyelid conditioning.
Figure 3: Intrinsic plasticity evoked by brief synaptic stimulation in the deep cerebellar nuclei.
Figure 4: Intrinsic plasticity in neocortical pyramidal cells produces an improvement in the temporal precision and reliability of throughput.

Similar content being viewed by others

References

  1. Martin, S. J. & Morris, R. G. New life in an old idea: the synaptic plasticity and memory hypothesis revisited. Hippocampus 12, 609–636 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Bear, M. F. & Linden, D. J. in Synapses (eds Cowan, W. M., Südhof, T. C. & Stevens, C. F.) 455–517 (Johns Hopkins University Press, Baltimore, 2001).

    Google Scholar 

  3. Johnston, D. et al. Active dendrites, potassium channels and synaptic plasticity. Philos. Trans. R. Soc. Lond. B 358, 667–674 (2003).

    Article  CAS  Google Scholar 

  4. Alkon, D. L. Calcium-mediated reduction of ionic currents: a biophysical memory trace. Science 226, 1037–1045 (1984). The nudibranch mollusk Hermissenda was trained with a classical conditioning task where the animal's positive phototactic response was reduced after repeated pairings to rotation, an aversive stimulus. Training caused an increase in the intrinsic excitability of the type B photoreceptor neuron, which persisted for days.

    Article  CAS  PubMed  Google Scholar 

  5. Alkon, D. L. et al. Reduction of two voltage-dependent K+ currents mediates retention of a learned association. Behav. Neural Biol. 44, 278–300 (1985).

    Article  CAS  PubMed  Google Scholar 

  6. Gainutdinov, K. L., Chekmarev, L. J. & Gainutdinova, T. H. Excitability increase in withdrawal interneurons after conditioning in snail. Neuroreport 9, 517–520 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Gainutdinov, K. L., Andrianov, V. V., Gainutdinova, T. K. & Tarasova, E. A. The electrical characteristics of command and motor neurons during acquisition of a conditioned defensive reflex and formation of long-term sensitization in snails. Neurosci. Behav. Physiol. 30, 81–88 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Antonov, I., Antonova, I., Kandel, E. R. & Hawkins, R. D. The contribution of activity-dependent synaptic plasticity to classical conditioning in Aplysia. J. Neurosci. 21, 6413–6422 (2001). The sea hare Aplysia was trained with a brief siphon tap as the conditioned stimulus and a tail shock as the unconditioned stimulus. After training, the siphon sensory neuron showed a sustained increase in intrinsic excitability, with an increase in the number of spikes evoked by either a direct current injection or a siphon tap.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Antonov, I., Antonova, I., Kandel, E. R. & Hawkins, R. D. Activity-dependent presynaptic facilitation and hebbian LTP are both required and interact during classical conditioning in Aplysia. Neuron 37, 135–147 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Cleary, L. J., Lee, W. L. & Byrne, J. H. Cellular correlates of long-term sensitization in Aplysia. J. Neurosci. 18, 5988–5998 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sahley, C. L. What we have learned from the study of learning in the leech. J. Neurobiol. 27, 434–445 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Burrell, B. D., Sahley, C. L. & Muller, K. J. Non-associative learning and serotonin induce similar bi-directional changes in excitability of a neuron critical for learning in the medicinal leech. J. Neurosci. 21, 1401–1412 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brons, J. F. & Woody, C. D. Long-term changes in excitability of cortical neurons after Pavlovian conditioning and extinction. J. Neurophysiol. 44, 605–615 (1980). Possibly the first report of a persistent change in neuronal excitability evoked by behavioural training. Pavlovian training caused an increase in the excitability of neurons in the pericruciate sensorimotor cortex, which was retained after extinction of the learned response.

    Article  CAS  PubMed  Google Scholar 

  14. Disterhoft, J. F., Coulter, D. A. & Alkon, D. L. Conditioning-specific membrane changes of rabbit hippocampal neurons measured in vitro. Proc. Natl Acad. Sci. USA 83, 2733–2737 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Coulter, D. A. et al. Classical conditioning reduces amplitude and duration of calcium-dependent afterhyperpolarization in rabbit hippocampal pyramidal cells. J. Neurophysiol. 61, 971–981 (1989).

    Article  CAS  PubMed  Google Scholar 

  16. de Jonge, M. C., Black, J., Deyo, R. A. & Disterhoft, J. F. Learning-induced afterhyperpolarization reductions in hippocampus are specific for cell type and potassium conductance. Exp. Brain Res. 80, 456–462 (1990).

    Article  CAS  PubMed  Google Scholar 

  17. Sanchez-Andres, J. V. & Alkon, D. L. Voltage-clamp analysis of the effects of classical conditioning on the hippocampus. J. Neurophysiol. 65, 796–807 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Disterhoft, J. F., Golden, D. T., Read, H. L., Coulter, D. A. & Alkon, D. L. AHP reductions in rabbit hippocampal neurons during conditioning correlate with acquisition of the learned response. Brain Res. 462, 118–125 (1988).

    Article  CAS  PubMed  Google Scholar 

  19. Power, J. M., Wu, W. W., Sametsky, E., Oh, M. M. & Disterhoft, J. F. Age-related enhancement of the slow outward calcium-activated potassium current in hippocampal CA1 pyramidal neurons in vitro. J. Neurosci. 22, 7234–7243 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Moyer, J. R., Jr, Thompson, L. T. & Disterhoft, J. F. Trace eyeblink conditioning increases CA1 excitability in a transient and learning-specific manner. J. Neurosc. 16, 5536–5546 (1996). Rabbits were trained in trace eye blink conditioning, the acquisition of which is dependent on the hippocampus. Recordings from CA1 pyramidal neurons showed a rapid but transient (1–3 day) increase in excitability, whereas the memory of the behavioural task persisted for months. The transient increase in excitability might be permissive for the consolidation of the memory trace by other mechanisms such as LTP and LTD.

    Article  CAS  Google Scholar 

  21. Thompson, L. T., Moyer, J. R., Jr & Disterhoft, J. F. Transient changes in excitability of rabbit CA3 neurons with a time course appropriate to support memory consolidation. J. Neurophysiol. 76, 1836–1849 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Thompson, R. F., Swain, R., Clark, R. & Shinkman, P. Intracerebellar conditioning — Brogden and Gantt revisited. Behav. Brain. Res. 110, 3–11 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Schreurs, B. G., Tomsic, D., Gusev, P. A. & Alkon, D. L. Dendritic excitability microzones and occluded long-term depression after classical conditioning of the rabbit's nictitating membrane response. J. Neurophysiol. 77, 86–92 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Schreurs, B. G., Gusev, P. A., Tomsic, D., Alkon, D. L. & Shi, T. Intracellular correlates of acquisition and long-term memory of classical conditioning in Purkinje cell dendrites in slices of rabbit cerebellar lobule HVI. J. Neurosci. 18, 5498–5507 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Saar, D., Grossman, Y. & Barkai, E. Reduced after-hyperpolarization in rat piriform cortex pyramidal neurons is associated with increased learning capability during operant conditioning. Eur. J. Neurosci. 10, 1518–1523 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Saar, D., Grossman, Y. & Barkai, E. Long-lasting cholinergic modulation underlies rule learning in rats. J. Neurosci. 21, 1385–1392 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Seroussi, Y., Brosh, I. & Barkai, E. Learning-induced reduction in post-burst after-hyperpolarization (AHP) is mediated by activation of PKC. Eur. J. Neurosci. 16, 965–969 (2002).

    Article  PubMed  Google Scholar 

  28. Saar, D. & Barkai, E. Long-term modifications in intrinsic neuronal properties and rule learning in rats. Eur. J. Neurosci. 17, 2727–2734 (2003).

    Article  PubMed  Google Scholar 

  29. Sin, W. C., Haas, K., Ruthazer, E. S. & Cline, H. T. Dendrite growth increased by visual activity requires NMDA receptor and Rho GTPases. Nature 419, 475–480 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Aizenman, C. D., Munoz-Elias, G. & Cline, H. T. Visually driven modulation of glutamatergic synaptic transmission is mediated by the regulation of intracellular polyamines. Neuron 34, 623–634 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Aizenman, C. D., Akerman, C. J., Jensen, K. R. & Cline, H. T. Visually driven regulation of intrinsic neuronal excitability improves stimulus detection in vivo. Neuron 39, 831–842 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Darlington, C. L., Dutia, M. B. & Smith, P. F. The contribution of the intrinsic excitability of vestibular nucleus neurons to recovery from vestibular damage. Eur. J. Neurosci. 15, 1719–1727 (2002).

    Article  PubMed  Google Scholar 

  33. Cameron, S. A. & Dutia, M. B. Cellular basis of vestibular compensation: changes in intrinsic excitability of MVN neurones. Neuroreport 8, 2595–2599 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Him, A. & Dutia, M. B. Intrinsic excitability changes in vestibular nucleus neurons after unilateral deafferentation. Brain Res. 908, 58–66 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Vibert, N. et al. Post-lesional plasticity in the central nervous system of the guinea-pig: a 'top-down' adaptation process? Neuroscience 94, 1–5 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Beraneck, M. et al. Long-term plasticity of ipsilesional medial vestibular nucleus neurons after unilateral labyrinthectomy. J. Neurophysiol. 90, 184–203 (2003).

    Article  PubMed  Google Scholar 

  37. Johnston, A. R., Seckl, J. R. & Dutia, M. B. Role of the flocculus in mediating vestibular nucleus neuron plasticity during vestibular compensation in the rat. J. Physiol. (Lond.) 545, 903–911 (2002).

    Article  CAS  Google Scholar 

  38. Cameron, S. A. & Dutia, M. B. Lesion-induced plasticity in rat vestibular nucleus neurones dependent on glucocorticoid receptor activation. J. Physiol. (Lond.) 518, 151–158 (1999).

    Article  CAS  Google Scholar 

  39. Vibert, N., Beraneck, M., Bantikyan, A. & Vidal, P. P. Vestibular compensation modifies the sensitivity of vestibular neurones to inhibitory amino acids. Neuroreport 11, 1921–1927 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Yamanaka, T., Him, A., Cameron, S. A. & Dutia, M. B. Rapid compensatory changes in GABA receptor efficacy in rat vestibular neurones after unilateral labyrinthectomy. J. Physiol. (Lond.) 523, 413–424 (2000).

    Article  CAS  Google Scholar 

  41. Chen, K., Baram, T. Z. & Soltesz, I. Febrile seizures in the developing brain result in persistent modification of neuronal excitability in limbic circuits. Nature Medicine 5, 888–894 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen, K. et al. Persistently modified h-channels after complex febrile seizures convert the seizure-induced enhancement of inhibition to hyperexcitability. Nature Medicine 7, 331–337 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Brewster, A. et al. Developmental febrile seizures modulate hippocampal gene expression of hyperpolarization-activated channels in an isoform- and cell-specific manner. J. Neurosci. 22, 4591–4599 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sanabria, E. R., Su, H. & Yaari, Y. Initiation of network bursts by Ca2+-dependent intrinsic bursting in the rat pilocarpine model of temporal lobe epilepsy. J. Physiol. (Lond.) 532, 205–216 (2001).

    Article  CAS  Google Scholar 

  45. Wellmer, J., Su, H., Beck, H. & Yaari, Y. Long-lasting modification of intrinsic discharge properties in subicular neurons following status epilepticus. Eur. J. Neurosci. 16, 259–266 (2002).

    Article  PubMed  Google Scholar 

  46. Su, H. et al. Upregulation of a T-type Ca2+ channel causes a long-lasting modification of neuronal firing mode after status epilepticus. J. Neurosci. 22, 3645–3655 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Harris-Warrick, R. M. Voltage-sensitive ion channels in rhythmic motor systems. Curr. Opin. Neurobiol. 12, 646–651 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Turrigiano, G., Abbott, L. F. & Marder, E. Activity-dependent changes in the intrinsic-properties of cultured neurons. Science 264, 974–977 (1994).

    Article  CAS  PubMed  Google Scholar 

  49. Turrigiano, G., LeMasson, G. & Marder, E. Selective regulation of current densities underlies spontaneous changes in the activity of cultured neurons. J. Neurosci. 15, 3640–3652 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Desai, N. S., Rutherford, L. C. & Turrigiano, G. G. Plasticity in the intrinsic excitability of cortical pyramidal neurons. Nature Neurosci. 2, 515–520 (1999). Pyramidal neurons of the rat visual cortex that were cultured in the presence of TTX showed an increase in firing frequency and a decreased spike threshold. This increase was caused by an upregulation of the Na+ current and a downregulation of the tetraethylammonium-sensitive K+ current. This response could be a homeostatic adaptation to maintain sensitivity to reduced levels of activity.

    Article  CAS  PubMed  Google Scholar 

  51. Nick, T. A. & Ribera, A. B. Synaptic activity modulates presynaptic excitability. Nature Neurosci. 3, 142–149 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Golowasch, J., Abbott, L. F. & Marder, E. Activity-dependent regulation of potassium currents in an identified neuron of the stomatogastric ganglion of the crab Cancer borealis. J. Neurosci. 19, RC33 1–5 (1999).

    Article  Google Scholar 

  53. Franklin, J. L., Fickbohm, D. J. & Willard, A. L. Long-term regulation of neuronal calcium currents by prolonged changes of membrane potential. J. Neurosci. 12, 1726–1735 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Garcia, D. E., Cavalie, A. & Lux, H. D. Enhancement of voltage-gated Ca2+ currents induced by daily stimulation of hippocampal neurons with glutamate. J. Neurosci. 14, 545–553 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Li, M., Jia, M., Fields, R. D. & Nelson, P. G. Modulation of calcium currents by electrical activity. J. Neurophysiol. 76, 2595–2607 (1996).

    Article  CAS  PubMed  Google Scholar 

  56. Aizenman, C. D. & Linden, D. J. Rapid, synaptically driven increases in the intrinsic excitability of cerebellar deep nuclear neurons. Nature Neurosci. 3, 109–111 (2000). A rapid and persistent increase in the intrinsic excitability of deep cerebellar nucleus neurons was elicited by application of an excitatory synaptic tetanus, which was blocked by an NMDA receptor antagonist. Intracellular application of depolarizing pulses also evoked an excitability increase, and was blocked by Cd2+, indicating a requirement for Ca2+ influx.

    Article  CAS  PubMed  Google Scholar 

  57. Armano, S., Rossi, P., Taglietti, V. & D'Angelo, E. Long-term potentiation of intrinsic excitability at the mossy fiber-granule cell synapse of rat cerebellum. J. Neurosci. 20, 5208–5216 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Egorov, A. V., Hamam, B. N., Fransen, E., Hasselmo, M. E. & Alonso, A. A. Graded persistent activity in entorhinal cortex neurons. Nature 420, 173–178 (2002). Persistent graded increases in firing frequency were induced in pyramidal neurons of the rat entorhinal cortex by repetitive excitatory synaptic activation in the presence of the muscarinic agonist carbachol. The firing frequency can be increased or decreased in an input-specific manner, and is robust to 'distractor stimuli'. This phenomenon is suggested to underlie certain forms of working memory.

    Article  CAS  PubMed  Google Scholar 

  59. Sourdet, V., Russier, M., Daoudal, G., Ankri, N. & Debanne, D. Long-term enhancement of neuronal excitability and temporal fidelity mediated by mGluR5. J. Neurosci. (in the press). Synaptic or pharmacological activation of mGluR5 induced a persistent increase in intrinsic excitability of layer V pyramidal neurons. The increase was blocked and occluded by apamin, indicating that downregulation of SK channels mediates this process. Presentation of simulated EPSPs to the neurons with dynamic clamping showed that the increase in intrinsic excitability increased the temporal fidelity and reliability of evoked spiking, thereby facilitating throughput.

  60. Nelson, A. B., Krispel, C. M. C. S. & du Lac, S. Long-lasting increases in intrinsic excitability triggered by inhibition. Neuron (in the press). The first report of intrinsic plasticity evoked by synaptically driven hyperpolarization. Trains of IPSPs delivered to neurons of the medial vestibular nuclei produced a persistent increase in the basal firing rate and in the degree to which firing was accelerated by depolarizing current injection. This effect could be mimicked by brief injection of hyperpolarizing current and occluded by iberiotoxin, pointing to a role for attenuation of BK-type Ca2+-sensitive K+ channels.

  61. Ganguly, K., Kiss, L. & Poo, M. Enhancement of presynaptic neuronal excitability by correlated presynaptic and postsynaptic spiking. Nature Neurosci. 3, 1018–1026 (2000). An interesting example of rapid changes in intrinsic excitability in cultured neurons. Dual recordings of two connected rat hippocampal neurons showed that correlated spiking induced a rapid and persistent increase in the excitability of the presynaptic neuron as a result of changes in the voltage-dependence of Na+ channels. The action of a retrograde factor seems to be necessary.

    Article  CAS  PubMed  Google Scholar 

  62. Aizenman, C. D., Manis, P. B. & Linden, D. J. Polarity of long-term synaptic gain change is related to postsynaptic spike firing at a cerebellar inhibitory synapse. Neuron 21, 827–835 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Aizenman, C. D. & Linden, D. J. Regulation of the rebound depolarization and spontaneous firing patterns of deep nuclear neurons in slices of rat cerebellum. J. Neurophysiol. 82, 1697–1709 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Lisman, J. E. & McIntyre, C. C. Synaptic plasticity: a molecular memory switch. Curr. Biol. 11, R788–R791 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Etcheberrigaray, R., Matzel, L. D., Lederhendler, I. I. & Alkon, D. L. Classical conditioning and protein kinase C activation regulate the same single potassium channel in Hermissenda crassicornis photoreceptors. Proc. Natl Acad. Sci. USA 89, 7184–7188 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Giese, K. P. et al. Reduced K+ channel inactivation, spike broadening, and after-hyperpolarization in Kvβ1.1-deficient mice with impaired learning. Learn. Mem. 5, 257–273 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Matsukawa, H., Wolf, A. M., Matsushita, S., Joho, R. H. & Knopfel, T. Motor dysfunction and altered synaptic transmission at the parallel fiber-Purkinje cell synapse in mice lacking potassium channels Kv3.1 and Kv3.3. J. Neurosci. 23, 7677–7684 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Giese, K. P., Peters, M. & Vernon, J. Modulation of excitability as a learning and memory mechanism: a molecular genetic perspective. Physiol. Behav. 73, 803–810 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Desai, N. S., Rutherford, L. C. & Turrigiano, G. G. BDNF regulates the intrinsic excitability of cortical neurons. Learn. Mem. 6, 284–291 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Turrigiano, G. G. & Nelson, S. B. Hebb and homeostasis in neuronal plasticity. Curr. Opin. Neurobiol. 10, 358–364 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Davis, G. W. & Bezprozvanny, I. Maintaining the stability of neural function: a homeostatic hypothesis. Ann. Rev. Physiol. 63, 847–869 (2001).

    Article  CAS  Google Scholar 

  72. Stemmler, M. & Koch, C. How voltage-dependent conductances can adapt to maximize the information encoded by neuronal firing rate. Nature Neurosci. 2, 521–527 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Turrigiano, G. G. Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same. Trends Neurosci. 22, 221–227 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Linden, D. J. The return of the spike: postsynaptic action potentials and the induction of LTP and LTD. Neuron 22, 661–666 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Sourdet, V. & Debanne, D. The role of dendritic filtering in associative long-term synaptic plasticity. Learn. Mem. 6, 422–447 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Sah, P. & Bekkers, J. M. Apical dendritic location of slow afterhyperpolarization current in hippocampal pyramidal neurons: implications for the integration of long-term potentiation. J. Neurosci. 16, 4537–4542 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Cohen, A. S. & Abraham, W. C. Facilitation of long-term potentiation by prior activation of metabotropic glutamate receptors. J. Neurophysiol. 76, 953–962 (1996).

    Article  CAS  PubMed  Google Scholar 

  78. Cohen, A. S., Raymond, C. R. & Abraham, W. C. Priming of long-term potentiation induced by activation of metabotropic glutamate receptors coupled to phospholipase C. Hippocampus 8, 160–170 (1998).

    Article  CAS  PubMed  Google Scholar 

  79. Cohen, A. S., Coussens, C. M., Raymond, C. R. & Abraham, W. C. Long-lasting increase in cellular excitability associated with the priming of LTP induction in rat hippocampus. J. Neurophysiol. 82, 3139–3148 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Watanabe, S., Hoffman, D. A., Migliore, M. & Johnston, D. Dendritic K+ channels contribute to spike-timing dependent long-term potentiation in hippocampal pyramidal neurons. Proc. Natl Acad. Sci. USA 99, 8366–8371 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tsubokawa, H., Offermanns, S., Simon, M. & Kano, M. Calcium-dependent persistent facilitation of spike backpropagation in the CA1 pyramidal neurons. J. Neurosci. 20, 4878–4884 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yasuda, R., Sabatini, B. L. & Svoboda, K. Plasticity of calcium channels in dendritic spines. Nature Neurosci. 6, 948–955 (2003). A train of backpropagating action potentials produced a persistent attenuation of R-type Ca2+ channels in individual dendritic spines, as measured by two-photon imaging of depolarization-evoked Ca2+ transients. This had a metaplastic effect, reducing the probability of subsequent LTP induction by an EPSP-spike timing protocol.

    Article  CAS  PubMed  Google Scholar 

  83. Daoudal, G., Hanada, Y. & Debanne, D. Bidirectional plasticity of excitatory postsynaptic potential (EPSP)-spike coupling in CA1 hippocampal pyramidal neurons. Proc. Natl Acad. Sci. USA 99, 14512–14517 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chung, H. J., Steinberg, J. P., Huganir, R. L. & Linden, D. J. Requirement of AMPA receptor GluR2 phosphorylation for cerebellar long-term depression. Science 300, 1751–1755 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Lonart, G. et al. Phosphorylation of RIM1α by PKA triggers presynaptic long-term potentiation at cerebellar parallel fiber synapses. Cell 115, 49–60 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Bliss, T. V. & Lomo, T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. (Lond.) 232, 331–356 (1973).

    Article  CAS  Google Scholar 

  87. Douglas, R. M. & Goddard, G. V. Long-term potentiation of the perforant path-granule cell synapse in the rat hippocampus. Brain Res. 86, 205–215 (1975).

    Article  CAS  PubMed  Google Scholar 

  88. Wilson, R. C. Changes in translation of synaptic excitation to dentate granule cell discharge accompanying long-term potentiation. I. Differences between normal and reinnervated dentate gyrus. J. Neurophysiol. 46, 324–338 (1981).

    Article  CAS  PubMed  Google Scholar 

  89. Hvalby, O., Lacaille, J. C., Hu, G. Y. & Andersen, P. Postsynaptic long-term potentiation follows coupling of dendritic glutamate application and synaptic activation. Experientia 43, 599–601 (1987).

    Article  CAS  PubMed  Google Scholar 

  90. Taube, J. S. & Schwartzkroin, P. A. Mechanisms of long-term potentiation: EPSP/spike dissociation, intradendritic recordings, and glutamate sensitivity. J. Neurosci. 8, 1632–1644 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Reymann, K. G., Matthies, H. K., Schulzeck, K. & Matthies, H. N-methyl-D-aspartate receptor activation is required for the induction of both early and late phases of long-term potentiation in rat hippocampal slices. Neurosci. Lett. 96, 96–101 (1989).

    Article  CAS  PubMed  Google Scholar 

  92. Bernard, C. & Wheal, H. V. Simultaneous expression of excitatory postsynaptic potential/spike potentiation and excitatory postsynaptic potential/spike depression in the hippocampus. Neuroscience 67, 73–82 (1995).

    Article  CAS  PubMed  Google Scholar 

  93. Andersen, P., Sundberg, S. H., Sveen, O., Swann, J. W. & Wigstrom, H. Possible mechanisms for long-lasting potentiation of synaptic transmission in hippocampal slices from guinea-pigs. J. Physiol. (Lond.) 302, 463–482 (1980).

    Article  CAS  Google Scholar 

  94. Wigstrom, H. & Swann, J. W. Strontium supports synaptic transmission and long-lasting potentiation in the hippocampus. Brain Res. 194, 181–191 (1980).

    Article  CAS  PubMed  Google Scholar 

  95. Chavez-Noriega, L. E., Halliwell, J. V. & Bliss, T. V. A decrease in firing threshold observed after induction of the EPSP-spike (E-S) component of long-term potentiation in rat hippocampal slices. Exp. Brain Res. 79, 633–641 (1990).

    Article  CAS  PubMed  Google Scholar 

  96. Wilson, R. C., Levy, W. B. & Steward, O. Changes in translation of synaptic excitation to dentate granule cell discharge accompanying long-term potentiation. II. An evaluation of mechanisms utilizing dentate gyrus dually innervated by surviving ipsilateral and sprouted crossed temporodentate inputs. J. Neurophysiol. 46, 339–355 (1981).

    Article  CAS  PubMed  Google Scholar 

  97. Abraham, W. C., Gustafsson, B. & Wigstrom, H. Long-term potentiation involves enhanced synaptic excitation relative to synaptic inhibition in guinea-pig hippocampus. J. Physiol. (Lond.) 394, 367–380 (1987).

    Article  CAS  Google Scholar 

  98. Chavez-Noriega, L. E., Bliss, T. V. & Halliwell, J. V. The EPSP-spike (E-S) component of long-term potentiation in the rat hippocampal slice is modulated by GABAergic but not cholinergic mechanisms. Neurosci. Lett. 104, 58–64 (1989).

    Article  CAS  PubMed  Google Scholar 

  99. Taube, J. S. & Schwartzkroin, P. A. Intracellular recording from hippocampal CA1 interneurons before and after development of long-term potentiation. Brain Res. 419, 32–38 (1987).

    Article  CAS  PubMed  Google Scholar 

  100. Taube, J. S. & Schwartzkroin, P. A. Mechanisms of long-term potentiation: a current-source density analysis. J. Neurosci. 8, 1645–1655 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hess, G. & Gustafsson, B. Changes in field excitatory postsynaptic potential shape induced by tetanization in the CA1 region of the guinea-pig hippocampal slice. Neuroscience 37, 61–69 (1990).

    Article  CAS  PubMed  Google Scholar 

  102. Wathey, J. C., Lytton, W. W., Jester, J. M. & Sejnowski, T. J. Computer simulations of EPSP-spike (E-S) potentiation in hippocampal CA1 pyramidal cells. J. Neurosci. 12, 607–618 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Asztely, F. & Gustafsson, B. Dissociation between long-term potentiation and associated changes in field EPSP waveform in the hippocampal CA1 region: an in vitro study in guinea pig brain slices. Hippocampus 4, 148–156 (1994).

    Article  CAS  PubMed  Google Scholar 

  104. Jester, J. M., Campbell, L. W. & Sejnowski, T. J. Associative EPSP-spike potentiation induced by pairing orthodromic and antidromic stimulation in rat hippocampal slices. J. Physiol. (Lond.) 484, 689–705 (1995).

    Article  CAS  Google Scholar 

  105. Vida, I., Czopf, J. & Czeh, G. A current-source density analysis of the long-term potentiation in the hippocampus. Brain Res. 671, 1–11 (1995).

    Article  CAS  PubMed  Google Scholar 

  106. Bernard, C. & Wheal, H. V. A role for synaptic and network plasticity in controlling epileptiform activity in CA1 in the kainic acid-lesioned rat hippocampus in vitro. J. Physiol. (Lond.) 495 (Pt 1), 127–142 (1996).

    Article  Google Scholar 

  107. Noguchi, K., Saito, H. & Abe, K. Medial amygdala stimulation produces a long-lasting excitatory postsynaptic potential/spike dissociation in the dentate gyrus in vivo. Brain Res. 794, 151–154 (1998).

    Article  CAS  PubMed  Google Scholar 

  108. Tomasulo, R. A., Levy, W. B. & Steward, O. LTP-associated EPSP/spike dissociation in the dentate gyrus: GABAergic and non-GABAergic components. Brain Res. 561, 27–34 (1991).

    Article  CAS  PubMed  Google Scholar 

  109. Kairiss, E. W., Abraham, W. C., Bilkey, D. K. & Goddard, G. V. Field potential evidence for long-term potentiation of feed-forward inhibition in the rat dentate gyrus. Brain Res. 401, 87–94 (1987).

    Article  CAS  PubMed  Google Scholar 

  110. Staff, N. P. & Spruston, N. Intracellular correlate of EPSP-spike potentiation in CA1 pyramidal neurons is controlled by GABAergic modulation. Hippocampus 15 May 2003 (doi: 10.1002/hipo.10129).

  111. McMahon, L. L. & Kauer, J. A. Hippocampal interneurons express a novel form of synaptic plasticity. Neuron 18, 295–305 (1997).

    Article  CAS  PubMed  Google Scholar 

  112. Lu, Y. M., Mansuy, I. M., Kandel, E. R. & Roder, J. Calcineurin-mediated LTD of GABAergic inhibition underlies the increased excitability of CA1 neurons associated with LTP. Neuron 26, 197–205 (2000).

    Article  CAS  PubMed  Google Scholar 

  113. Pugliese, A. M., Ballerini, L., Passani, M. B. & Corradetti, R. EPSP-spike potentiation during primed burst-induced long-term potentiation in the CA1 region of rat hippocampal slices. Neuroscience 62, 1021–1032 (1994).

    Article  CAS  PubMed  Google Scholar 

  114. Haas, H. L. & Rose, G. The role of inhibitory mechanisms in hippocampal long-term potentiation. Neurosci. Lett. 47, 301–306 (1984).

    Article  CAS  PubMed  Google Scholar 

  115. Griffith, W. H., Brown, T. H. & Johnston, D. Voltage-clamp analysis of synaptic inhibition during long-term potentiation in hippocampus. J. Neurophysiol. 55, 767–775 (1986).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to H. Nishiyama, A. Sdrulla and J. H. Shin for helpful suggestions. This work was supported by the USPHS and the Develbiss Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Linden.

Related links

Related links

DATABASES

LocusLink

PubMed

FURTHER INFORMATION

Encyclopedia of Life Sciences

long-term depression and depotentiation

long-term potentiation

Glossary

SYNAPTIC STRENGTH

The amplitude of the postsynaptic potential that is evoked by a single shock to a population of axons.

ASSOCIATIVITY

The property of long-term potentiation (LTP) whereby weak stimulation of a synaptic input, which will not elicit an increase in synaptic strength, can lead to the onset of LTP if strong stimulation is simultaneously applied to an independent input to the same postsynaptic cell.

INPUT SPECIFICITY

The property of long-term potentiation whereby strong synaptic stimulation only elicits an increase in synaptic strength at the activated pathway, leaving every other input unaffected.

THROUGHPUT

The probability of a single synapse evoking an action potential.

STATOCYST

Organ that mediates balance in many invertebrates. It consists of a fluid-filled sac that contains statoliths (minute calcareous particles) that stimulate sensory cells and help indicate position when the animal moves.

PNEUMOSTOME

A small opening in the mantle of gastropods through which air passes.

HABITUATION

The cessation of a response upon repeated presentations of a stimulus.

SENSITIZATION

The unspecific augmentation of a behavioural response to a stimulus after the animal has been exposed to an injurious stimulus.

INPUT RESISTANCE

The voltage change that is elicited by the injection of current into a cell, divided by the amount of current injected.

GLABELLA

The smooth area between the eyebrows just above the nose.

AFTERHYPERPOLARIZATION

The membrane hyperpolarization that follows the occurrence of an action potential.

OPERANT CONDITIONING

Form of conditioning in which the subject learns from the consequences of its actions, thereby modifying its behaviour.

ACCOMMODATION

The cessation of spike firing despite constant depolarization above firing threshold.

INWARD PLATEAU CURRENT

A current that inactivates slowly, resulting in a sustained depolarization.

DELAYED OUTWARD-RECTIFIER K+ CURRENT

A slowly activating and very slowly inactivating voltage-gated K+ conductance that preferentially passes K+ out of the cell.

REFRACTORY PERIOD

The period after a spike during which a neuron cannot fire a new action potential.

MACROPATCHES

Giant membrane patches that are commonly obtained to study membrane currents of cells that are too large to record with conventional patch-clamp methods.

CURRENT–VOLTAGE RELATION

A plot of the changes in ionic current as a function of membrane voltage.

POPULATION SPIKE

The summated action potential of the postsynaptic neurons that respond to a given stimulus as recorded with an extracellular electrode.

SCHAFFER COLLATERALS

Axons of the CA3 pyramidal cells of the hippocampus that form synapses with the apical dendrites of CA1 neurons.

THETA BURSTS

Rhythmic neural activity with a frequency of 4–8 Hz.

DYNAMIC CLAMPING

Recording configuration in which the current that is injected into the cell mimics a specific pattern of synaptic activation.

METAPLASTICITY

Term that has been coined to refer to the higher-order plasticity of synaptic plasticity. In other words, how synaptic activity or other stimuli modify the properties of synaptic plasticity itself.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W., Linden, D. The other side of the engram: experience-driven changes in neuronal intrinsic excitability. Nat Rev Neurosci 4, 885–900 (2003). https://doi.org/10.1038/nrn1248

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1248

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing