Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neural crest specification: migrating into genomics

Key Points

  • Neural crest cells migrate from the neural tube to colonize the far reaches of the embryo, where they form peripheral neurons, glia, connective tissue, bone, secretory cells and the outflow tract of the heart. This article provides an overview of early neural crest development, and discusses how genomic techniques are helping us to understand this process at the genetic level.

  • During neurulation, the neural plate border bends to form the neural folds, which become the dorsal aspect of the neural tube. Depending on the organism and the axial level, neural crest cells initiate migration from the closing neural folds or the dorsal neural tube. Although the neural folds are viewed as 'premigratory' neural crest, only a fraction of these cells will actually migrate.

  • Wnt proteins, bone morphogenetic proteins (BMPs) and fibroblast growth factors (FGFs) mimic the tissue interactions that induce neural crest. The main neural crest-inducing signal from the non-neural ectoderm seems to be a Wnt protein, although the Wnts, BMPs and FGFs might have different roles in neural crest induction and maintenance in different species.

  • Less is known about the events downstream of the signals that induce neural crest, although a growing list of genes has been found to be necessary and/or sufficient to initiate neural crest development. This list includes epidermal, neural and neural crest markers. The relationships between these genes are not clear.

  • Many neural crest genes stimulate proliferation and prevent differentiation (Zic genes, Pax3, c-Myc, Ap2, Msx1 and Msx2, Id2, Notch1 and Twist) or maintain stem cell potential (Foxd3 and Sox10). They include genes for transcriptional repressors (Slug/Snail, Zic1, Msx1 and Msx2, Nbx and Id2) and activators (Sox9 and Sox10, Pax3, c-Myc, Ap2 and Notch1).

  • Genomic level screens could potentially identify all the genes that are involved in early neural crest development, which could then be assembled into functional networks. In chick and Xenopus, it is possible to combine powerful array technologies with experimental embryology, and equally enticing is the intersection of genetics, transgenics and genomics in zebrafish.

Abstract

The bones in your face, the pigment in your skin and the neural circuitry that controls your digestive tract have one thing in common: they are all derived from neural crest cells. The formation of these migratory multipotent cells poses an interesting developmental problem, as neural crest cells are not a distinct cell type until they migrate away from the central nervous system. What defines the pool of cells with neural crest potential, and why do only some of these cells become migratory? New genomic approaches in chick, zebrafish and Xenopus might hold the key.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Border induction and neurulation.
Figure 2: The current status of a neural crest gene regulatory network.
Figure 3: Integrating embryology and genomics to define a neural crest gene regulatory network.

Similar content being viewed by others

References

  1. LeDouarin, N. & Kalcheim, C. The Neural Crest (eds. Bard, J., Barlow, P. & Kirk, D.) (Cambridge Univ. Press, 1999).

    Book  Google Scholar 

  2. His, W. Untersuchungen über die erste Anlage des Wirbeltierleibes. Die erste Entwicklung des Hühnchens im Ei. (F. C. W. Vogel, Leipzig, 1868). The first description of the neural crest.

    Book  Google Scholar 

  3. Bronner-Fraser, M. & Fraser, S. Cell lineage analysis shows multipotentiality of some avian neural crest cells. Nature 335, 161–164 (1988).

    Article  CAS  PubMed  Google Scholar 

  4. Collazo, A., Bronner-Fraser, M. & Fraser, S. Vital dye labelling of Xenopus laevis trunk neural crest reveals multipotency and novel pathways of migration. Development 118, 363–376 (1993).

    CAS  PubMed  Google Scholar 

  5. Selleck, M. & Bronner-Fraser, M. Origins of the avian neural crest: the role of neural plate/epidermal interactions. Development 121, 525–538 (1995).

    CAS  PubMed  Google Scholar 

  6. Serbedzija, G. N., Bronner-Fraser, M. & Fraser, S. E. Developmental potential of trunk neural crest cells in the mouse. Development 120, 1709–1718 (1994).

    CAS  PubMed  Google Scholar 

  7. Streit, A. & Stern, C. Establishment and maintenance of the border of the neural plate in the chick: involvement of FGF and BMP activity. Mech. Dev. 82, 51–66 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Moury, J. & Jacobson, A. Neural fold formation at newly created boundaries between neural plate and epidermis in the axolotl. Dev. Biol. 133, 44–57 (1989).

    Article  CAS  PubMed  Google Scholar 

  9. Mancilla, A. & Mayor, R. Neural crest formation in Xenopus laevis: mechanisms of Xslug induction. Dev. Biol. 177, 580–589 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Dickinson, M., Selleck, M., McMahon, A. & Bronner-Fraser, M. Dorsalization of the neural tube by the non-neural ectoderm. Development 121, 2099–2106 (1995).

    CAS  PubMed  Google Scholar 

  11. Raven, C. & Kloos, J. Induction by medial and lateral pieces of the archenteron roof, with special reference to the determination of neural crest. Acta Neerl. Morphol. 5, 384–362 (1945).

    Google Scholar 

  12. Bonstein, L., Elias, S. & Frank, D. Paraxial-fated mesoderm is required for neural crest induction in Xenopus embryos. Dev. Biol. 193, 156–168 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Marchant, L., Linker, C., Ruiz, P., Guerrero, N. & Mayor, R. The induction properties of mesoderm suggest that the neural crest cells are specified by a BMP gradient. Dev. Biol. 198, 319–329 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. LaBonne, C. & Bronner-Fraser, M. Neural crest induction in Xenopus: evidence for a two signal model. Development 125, 2403–2414 (1998).

    CAS  PubMed  Google Scholar 

  15. Monsoro-Burq, A. -H., Fletcher, R. & Harland, R. Neural crest induction by paraxial mesoderm in Xenopus embryos requires FGF signals. Development 130, 3111–3124 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Yang, L. et al. An early phase of embryonic Dlx5 expression defines the rostral boundary of the neural plate. J. Neurosci. 18, 8322–8330 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pera, E., Stein, S. & Kessel, M. Ectodermal patterning in the avian embryo: epidermis versus neural plate. Development 126, 63–73 (1999).

    CAS  PubMed  Google Scholar 

  18. McLarren, K., Litsiou, A. & Streit, A. DLX5 positions the neural crest and preplacode region at the border of the neural plate. Dev. Biol. 259, 34–47 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Woda, J., Pastagia, J., Mercola, M. & Artinger, K. Dlx proteins position the neural plate border and determine adjacent cell fates. Development 130, 331–342 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Knecht, A. & Bronner-Fraser, M. Induction of the neural crest: a multigene process. Nature Rev. Genet. 3, 453–461 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Liem, K., Tremml, G. & Jessel, T. A role for the roof plate and its resident TGFβ-related proteins in neuronal patterning in the dorsal spinal cord. Cell 91, 127–138 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Liem, K., Tremmi, G., Roelink, H. & Jessell, T. Dorsal differentiation of neural plate cells induced by BMP4-mediated signals from epidermal ectoderm. Cell 82, 969–979 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Selleck, M., Garcia-Castro, M., Artinger, K. & Bronner-Fraser, M. Effects of Shh and noggin on neural crest formation demonstrate that BMP is required in the neural tube but not the ectoderm. Development 125, 4919–4930 (1998).

    CAS  PubMed  Google Scholar 

  24. Sela-Donenfeld, D. & Kalchiem, C. Regulation of the onset of neural crest emigration by coordinated activity of BMP4 and Noggin in the dorsal neural tube. Development 126, 4749–4762 (1999).

    CAS  PubMed  Google Scholar 

  25. Garcia-Castro, M., Marcelle, C. & Bronner-Fraser, M. Ectodermal Wnt function as a neural crest inducer. Science 297, 848–851 (2002). Demonstration that Wnt is the neural crest-inducing signal from the non-neural ectoderm.

    CAS  PubMed  Google Scholar 

  26. Wu, J., Saint-Jeannet, J. -P. & Klein, P. Wnt-frizzled signaling in neural crest formation. Trends Neurosci. 26, 40–45 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Aybar, M. & Mayor, R. Early induction of neural crest cells: lessons learned from frog, fish, and chick. Curr. Opin. Genet. Dev. 12, 452–458 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Chang, C. & Hemmati-Brivanlou, A. Neural crest induction by Xwnt7B in Xenopus. Dev. Biol. 194, 129–34 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Saint-Jeannet, J. P., He, X., Varmus, H. E. & Dawid, I. B. Regulation of dorsal fate in the neuraxis by Wnt-1 and Wnt-3a. Proc. Natl Acad. Sci. USA 94, 13713–13718 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Barth, K. et al. Bmp activity establishes a gradient of positional information throughout the entire neural plate. Development 126, 4977–4987 (1999).

    CAS  PubMed  Google Scholar 

  31. Nguyen, V. H. et al. Dorsal and intermediate neuronal cell types of the spinal cord are established by a BMP signaling pathway. Development 127, 1209–1220 (2000).

    CAS  PubMed  Google Scholar 

  32. Dorsky, R., Moon, R. & Raible, D. Control of neural crest cell fate by the Wnt signalling pathway. Nature 396, 370–373 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Mayor, R., Morgan, R. & Sargent, M. Induction of the prospective neural crest of Xenopus. Development 121, 767–777 (1995).

    CAS  PubMed  Google Scholar 

  34. Villanueva, S., Glavic, A., Ruiz, P. & Mayor, R. Posteriorization by FGF, Wnt, and retinoic acid is required for neural crest induction. Dev. Biol. 241, 289–301 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Isaacs, H., Tannahill, D. & Slack, J. Expression of a novel FGF in the Xenopus embryo. A new candidate inducing factor for mesoderm formation and anteroposterior specification. Development 114, 711–720 (1992).

    CAS  PubMed  Google Scholar 

  36. Mahmood, R., Kiefer, P., Guthrie, S., Dickson, C. & Mason, I. Multiple roles for FGF-3 during cranial neural development in the chicken. Development 121, 1399–1410 (1995).

    CAS  PubMed  Google Scholar 

  37. Shamim, H. & Mason, I. Expression of Fgf4 during early development of the chick embryo. Mech Dev 85, 189–192 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Bertrand, N., Médevielle, F. & Pituello, F. FGF signalling controls the timing of Pax6 activation in the neural tube. Development 127, 4837–4843 (2000).

    CAS  PubMed  Google Scholar 

  39. Barembaum, M., Moreno, T. A., LaBonne, C., Sechrist, J. & Bronner-Fraser, M. Noelin-1 is a secreted glycoprotein involved in generation of the neural crest. Nature Cell Biol. 2, 219–225 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Hemavathy, K., Ashraf, S. & Ip, Y. Snail/Slug family of repressors: slowly going in to the fast lane of development a cancer. Gene 257, 1–12 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. delBarrio, M. & Nieto, M. Overexpression of Snail family members highlights their ability to promote chick neural crest formation. Development 129, 1583–1593 (2002).

    CAS  Google Scholar 

  42. Aybar, M., Nieto, M. & Mayor, R. Snail precedes Slug in the genetic cascade required for the specification and migration of the Xenopus neural crest. Development 130, 483–494 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Locascio, A., Manzanares, M., Blanco, M. J. & Nieto, M. A. Modularity and reshuffling of Snail and Slug expression during vertebrate evolution. Proc. Natl Acad. Sci. USA 99, 16841–16846 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Linker, C., Bronner-Fraser, M. & Mayor, R. Relationship between gene expression domains of Xsnail, Xslug, and Xtwist and cell movement in the prospective neural crest of Xenopus. Dev. Biol. 224, 215–225 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Vallin, J. et al. Cloning and characterization of three Xenopus slug promoters reveal direct regulation by Lef/β-catenin signaling. J. Biol. Chem. 276, 30350–30358 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. LaBonne, C. & Bronner-Fraser, M. Snail-related transcriptional repressors are required in Xenopus for both the induction of the neural crest and its subsequent migration. Dev. Biol. 221, 195–205 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Nieto, M., Sargent, M., Wilkinson, D. & Cooke, J. Control of cell behavior during vertebrate development by Slug, a zinc finger gene. Science 264, 835–839 (1994). The first description of the Slug expression pattern, providing a molecular marker for premigratory neural crest.

    Article  CAS  PubMed  Google Scholar 

  48. Carl, T., Dufton, C., Hanken, J. & Klymkowsky, M. Inhibition of neural crest migration in Xenopus using antisense slug RNA. Dev. Biol. 213, 101–115 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Cano, A. et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nature Cell Biol. 2, 76–83 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Bolós, V. et al. The transcription factor slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with snail and E47 repressors. J. Cell Sci. 116, 499–511 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Batlle, E. et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nature Cell Biol. 2, 84–89 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Ikenouchi, J., Matsuda, M., Furuse, M. & Tsukita, S. Regulation of tight junctions during the epithelium-mesenchyme transition: direct repression of the gene expression of claudins/occludin by Snail. J. Cell Sci. 116, 1959–1967 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Sasai, N., Mizuseki, K. & Sasai, Y. Requirement of FoxD3-class signaling for neural crest determination in Xenopus. Development 128, 2525–2536 (2001).

    CAS  PubMed  Google Scholar 

  54. Kos, R., Reedy, M., Johnson, R. & Erickson, C. The winged-helix transcription factor FoxD3 is important for establishing the neural crest lineage and repressing melanogenesis in avian embryos. Development 128, 1467–1479 (2001).

    CAS  PubMed  Google Scholar 

  55. Dottori, M., Gross, M. K., Labosky, P. & Goulding, M. The winged-helix transcription factor Foxd3 suppresses interneuron differentiation and promotes neural crest cell fate. Development 128, 4127–4138 (2001).

    CAS  PubMed  Google Scholar 

  56. Odenthal, J. & Nusslein-Volhard, C. fork head domain genes in zebrafish. Dev. Genes Evol. 208, 245–258 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Sutton, J. et al. Genesis, a winged helix transcriptional repressor with expression restricted to embryonic stem cells. J. Biol. Chem. 271, 23126–23133 (1996).

    Article  CAS  PubMed  Google Scholar 

  58. Hanna, L. A., Foreman, R. K., Tarasenko, I. A., Kessler, D. S. & Labosky, P. A. Requirement for Foxd3 in maintaining pluripotent cells of the early mouse embryo. Genes Dev. 16, 2650–2661 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cirillo, L. A. et al. Binding of the winged-helix transcription factor HNF3 to a linker histone site on the nucleosome. EMBO J. 17, 244–254 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cirillo, L. A. et al. Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Mol. Cell 9, 279–289 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Rehberg, S. et al. Sox10 is an active nucleocytoplasmic shuttle protein, and shuttling is crucial for Sox10-mediated transactivation. Mol. Cell. Biol. 22, 5826–5834 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chiang, E. F. et al. Two sox9 genes on duplicated zebrafish chromosomes: expression of similar transcription activators in distinct sites. Dev. Biol. 231, 149–163 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Dutton, K. A. et al. Zebrafish colourless encodes sox10 and specifies non-ectomesenchymal neural crest fates. Development 128, 4113–4125 (2001).

    CAS  PubMed  Google Scholar 

  64. Yan, Y. L. et al. A zebrafish sox9 gene required for cartilage morphogenesis. Development 129, 5065–5079 (2002).

    CAS  PubMed  Google Scholar 

  65. Spokony, R., Aoki, Y., Saint-Germain, N., Magner-Fink, E. & Saint-Jeannet, J. -P. The transcription factor Sox9 is required for canial neural crest development in Xenopus. Development 129, 421–432 (2002).

    CAS  PubMed  Google Scholar 

  66. Aoki, Y. et al. Sox10 regulates the development of neural crest-derived melanocytes in Xenopus. Dev. Biol. 259, 19–33 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Honoré, S., Aybar, M. & Mayor, R. Sox10 is required for the early development of the prospective neural crest in Xenopus embryos. Dev. Biol. 260, 79–96 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Mori-Akiyama, Y., Akiyama, H., Rowitch, D. H. & de Crombrugghe, B. Sox9 is required for determination of the chondrogenic cell lineage in the cranial neural crest. Proc. Natl Acad. Sci. USA 100, 9360–9365 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cheng, Y., Cheung, M., Abu-Elmagd, M. M., Orme, A. & Scotting, P. J. Chick sox10, a transcription factor expressed in both early neural crest cells and central nervous system. Brain Res. Dev. Brain Res. 121, 233–241 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Britsch, S. et al. The transcription factor Sox10 is a key regulator of peripheral glial development. Genes Dev. 15, 66–78 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mollaaghababa, R. & Pavan, W. J. The importance of having your SOX on: role of SOX10 in the development of neural crest-derived melanocytes and glia. Oncogene 22, 3024–3034 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Kapur, R. P. Early death of neural crest cells is responsible for total enteric aganglionosis in Sox10Dom/Sox10Dom mouse embryos. Pediatr. Dev. Pathol. 2, 559–569 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Southard-Smith, E. M., Kos, L. & Pavan, W. J. Sox10 mutation disrupts neural crest development in Dom Hirschsprung mouse model. Nature Genet. 18, 60–64 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. Kim, J., Lo, L., Dormand, E. & Anderson, D. J. SOX10 maintains multipotency and inhibits neuronal differentiation of neural crest stem cells. Neuron 38, 17–31 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Nakata, K., Nagai, T., Aruga, J. & Mikoshiba, K. Xenopus Zic3, a primary regulator both in neural and neural crest development. Proc. Natl Acad. Sci. USA 94, 11980–11985 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nakata, K., Nagai, T., Aruga, J. & Mikoshiba, K. Xenopus Zic family and its role in neural and neural crest development. Mech. Dev. 75, 43–51 (1998).

    Article  CAS  PubMed  Google Scholar 

  77. Nakata, K., Koyabu, Y., Aruga, J. & Mikoshiba, K. A novel member of the Xenopus Zic family, Zic5, mediates neural crest development. Mech. Dev. 99, 83–91 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Mizuseki, K., Kishi, M., Matsui, M., Nakanishi, S. & Sasai, Y. Xenopus Zic-related-1 and Sox-2, two factors induced by chordin, have distinct activity in the initiation of neural induction. Development 125, 579–587 (1998).

    CAS  PubMed  Google Scholar 

  79. Brewster, R., Lee, J. & Altaba, A. R. i. Gli/Zic factors pattern the neural plate by defining domains of cell differentiation. Nature 393, 579–583 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. Kuo, J. et al. opl: a zinc finger protein that regulates neural determination and patterning in Xenopus. Development 125, 2867–2882 (1998).

    CAS  PubMed  Google Scholar 

  81. Grinblat, Y. & Sive, H. zic gene expression marks anteroposterior pattern in the presumptive neurectoderm of the zebrafish gastrula. Dev. Dyn. 222, 688–693 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Nagai, T. et al. The expression of the mouse Zic1, Zic2, and Zic3 gene suggests an essential role for Zic genes in body pattern formation. Dev. Biol. 182, 299–313 (1997).

    Article  CAS  PubMed  Google Scholar 

  83. Warner, S. J. et al. Expression of ZIC genes in the development of the chick inner ear and nervous system. Dev. Dyn. 226, 702–712 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Aruga, J., Tohmonda, T., Homma, S. & Mikoshiba, K. Zic1 promotes the expansion of dorsal neural progenitors in spinal cord by inhibiting neuronal differentiation. Dev. Biol. 244, 329–341 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Ebert, P. J. et al. Zic1 represses Math1 expression via interactions with the Math1 enhancer and modulation of Math1 autoregulation. Development 130, 1949–1959 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Aruga, J., Inoue, T., Hoshino, J. & Mikoshiba, K. Zic2 controls cerebellar development in cooperation with Zic1. J. Neurosci. 22, 218–225 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Nagai, T. et al. Zic2 regulates the kinetics of neurulation. Proc. Natl Acad. Sci. USA 97, 1618–1623 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Seo, H. C., Saetre, B. O., Havik, B., Ellingsen, S. & Fjose, A. The zebrafish Pax3 and Pax7 homologues are highly conserved, encode multiple isoforms and show dynamic segment-like expression in the developing brain. Mech. Dev. 70, 49–63 (1998).

    Article  CAS  PubMed  Google Scholar 

  89. Mansouri, A., Pla, P., Larue, L. & Gruss, P. Pax3 acts cell autonomously in the neural tube and somites by controlling cell surface properties. Development 128, 1995–2005 (2001).

    CAS  PubMed  Google Scholar 

  90. Bang, A. G., Papalopulu, N., Kintner, C. & Goulding, M. D. Expression of Pax-3 is initiated in the early neural plate by posteriorizing signals produced by the organizer and by posterior non-axial mesoderm. Development 124, 2075–2085 (1997).

    CAS  PubMed  Google Scholar 

  91. Ericson, J., Morton, S., Kawakami, A., Roelink, H. & Jessell, T. M. Two critical periods of Sonic Hedgehog signaling required for the specification of motor neuron identity. Cell 87, 661–673 (1996).

    Article  CAS  PubMed  Google Scholar 

  92. Mansouri, A., Stoykova, A., Torres, M. & Gruss, P. Dysgenesis of cephalic neural crest derivatives in Pax7−/− mutant mice. Development 122, 831–838 (1996).

    CAS  PubMed  Google Scholar 

  93. Bennicelli, J. L., Fredericks, W. J., Wilson, R. B., Rauscher, F. J. 3rd & Barr, F. G. Wild type PAX3 protein and the PAX3-FKHR fusion protein of alveolar rhabdomyosarcoma contain potent, structurally distinct transcriptional activation domains. Oncogene 11, 119–130 (1995).

    CAS  PubMed  Google Scholar 

  94. Epstein, D. J., Vekemans, M. & Gros, P. Splotch (Sp2H), a mutation affecting development of the mouse neural tube, shows a deletion within the paired homeodomain of Pax-3. Cell 67, 767–774 (1991).

    Article  CAS  PubMed  Google Scholar 

  95. Moase, C. E. & Trasler, D. G. Delayed neural crest cell emigration from Sp and Spd mouse neural tube explants. Teratology 42, 171–182 (1990).

    Article  CAS  PubMed  Google Scholar 

  96. Williams, R., Lendahl, U. & Lardelli, M. Complementary and combinatorial patterns of Notch gene family expression during early mouse development. Mech. Dev. 53, 357–368 (1995).

    Article  CAS  PubMed  Google Scholar 

  97. Endo, Y., Osumi, N. & Wakamatsu, Y. Bimodal functions of Notch-mediated signaling are involved in neural crest formation during avian ectoderm development. Development 129, 863–873 (2002).

    CAS  PubMed  Google Scholar 

  98. Coffman, C. R., Skoglund, P., Harris, W. A. & Kintner, C. R. Expression of an extracellular deletion of Xotch diverts cell fate in Xenopus embryos. Cell 73, 659–671 (1993).

    Article  CAS  PubMed  Google Scholar 

  99. Bierkamp, C. & Campos-Ortega, J. A. A zebrafish homologue of the Drosophila neurogenic gene Notch and its pattern of transcription during early embryogenesis. Mech. Dev. 43, 87–100 (1993).

    Article  CAS  PubMed  Google Scholar 

  100. Kopan, R. Notch: a membrane-bound transcription factor. J. Cell Sci. 115, 1095–1097 (2002).

    CAS  PubMed  Google Scholar 

  101. Cornell, R. A. & Eisen, J. S. Delta/Notch signaling promotes formation of zebrafish neural crest by repressing Neurogenin 1 function. Development 129, 2639–2648 (2002).

    CAS  PubMed  Google Scholar 

  102. Cole, M. D. & McMahon, S. B. The Myc oncoprotein: a critical evaluation of transactivation and target gene regulation. Oncogene 18, 2916–2924 (1999).

    Article  CAS  PubMed  Google Scholar 

  103. Bellmeyer, A., Krase, J., Lindgren, J. & LaBonne, C. The protooncogene c-myc is an essential regulator of neural crest formation in Xenopus. Dev. Cell 4, 827–839 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Willert, J., Epping, M., Pollack, J. R., Brown, P. O. & Nusse, R. A transcriptional response to Wnt protein in human embryonic carcinoma cells. BMC Dev. Biol. 2, 8 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  105. He, T. C. et al. Identification of c-MYC as a target of the APC pathway. Science 281, 1509–1512 (1998).

    Article  CAS  PubMed  Google Scholar 

  106. Frank, S. R., Schroeder, M., Fernandez, P., Taubert, S. & Amati, B. Binding of c-Myc to chromatin mediates mitogen-induced acetylation of histone H4 and gene activation. Genes Dev. 15, 2069–2082 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kurata, T. & Ueno, N. Xenopus Nbx, a novel NK-1 related gene essential for neural crest formation. Dev. Biol. 257, 30–40 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Maeda, R. et al. Xmeis1, a protooncogene involved in specifying neural crest cell fate in Xenopus embryos. Oncogene 20, 1329–1342 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Morgan, R. & Sargent, M. G. The role in neural patterning of translation initiation factor eIF4AII; induction of neural fold genes. Development 124, 2751–2760 (1997).

    CAS  PubMed  Google Scholar 

  110. Mitchell, P., Timmons, P., Herbert, J., Rigby, P. & Tijan, R. Transcription factor AP-2 is expressed in neural crest cell lineages during mouse embryogenesis. Genes Dev. 5, 105–119 (1991).

    Article  CAS  PubMed  Google Scholar 

  111. Luo, T., Lee, Y. H., Saint-Jeannet, J. P. & Sargent, T. D. Induction of neural crest in Xenopus by transcription factor AP2α. Proc. Natl Acad. Sci. USA 100, 532–537 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Shen, H. et al. Chicken transcription factor AP-2: cloning, expression and its role in outgrowth of facial prominances and limb buds. Dev. Biol. 188, 248–266 (1997).

    Article  CAS  PubMed  Google Scholar 

  113. Furthauer, M., Thisse, C. & Thisse, B. A role for FGF-8 in the dorsoventral patterning of the zebrafish gastrula. Development 124, 4253–4264 (1997).

    CAS  PubMed  Google Scholar 

  114. Schorle, H., Meier, P., Buchert, M., Jaenisch, R. & Mitchell, P. J. Transcription factor AP-2 essential for cranial closure and craniofacial development. Nature 381, 235–238 (1996).

    Article  CAS  PubMed  Google Scholar 

  115. Zhang, J. et al. Neural tube, skeletal and body wall defects in mice lacking transcription factor AP-2. Nature 381, 238–241 (1996).

    Article  CAS  PubMed  Google Scholar 

  116. Luo, T., Matsuo-Takasaki, M., Thomas, M. L., Weeks, D. L. & Sargent, T. D. Transcription factor AP-2 is an essential and direct regulator of epidermal development in Xenopus. Dev. Biol. 245, 136–144 (2002).

    Article  CAS  PubMed  Google Scholar 

  117. Pfisterer, P., Ehlermann, J., Hegen, M. & Schorle, H. A subtractive gene expression screen suggests a role of transcription factor AP-2α in control of proliferation and differentiation. J. Biol. Chem. 277, 6637–6644 (2002).

    Article  CAS  PubMed  Google Scholar 

  118. Batsche, E. & Cremisi, C. Opposite transcriptional activity between the wild type c-myc gene coding for c-Myc1 and c-Myc2 proteins and c-Myc1 and c-Myc2 separately. Oncogene 18, 5662–5671 (1999).

    Article  CAS  PubMed  Google Scholar 

  119. Catron, K. M., Wang, H., Hu, G., Shen, M. M. & Abate-Shen, C. Comparison of MSX-1 and MSX-2 suggests a molecular basis for functional redundancy. Mech. Dev. 55, 185–199 (1996).

    Article  CAS  PubMed  Google Scholar 

  120. Muhr, J., Jessell, T. M. & Edlund, T. Assignment of early caudal identity to neural plate cells by a signal from caudal paraxial mesoderm. Neuron 19, 487–502 (1997).

    Article  CAS  PubMed  Google Scholar 

  121. Suzuki, A., Ueno, N. & Hemmati-Brivanlou, A. Xenopus msx1 mediates epidermal induction and neural inhibition by BMP4. Development 124, 3037–3044 (1997).

    CAS  PubMed  Google Scholar 

  122. Ekker, M. et al. Relationships among msx gene structure and function in zebrafish and other vertebrates. Mol. Biol. Evol. 14, 1008–1022 (1997).

    Article  CAS  PubMed  Google Scholar 

  123. Satokata, I. & Maas, R. Msx1 deficient mice exhibit cleft palate and abnormalities of craniofacial and tooth development. Nature Genet. 6, 348–356 (1994).

    Article  CAS  PubMed  Google Scholar 

  124. Hu, G., Lee, H., Price, S. M., Shen, M. M. & Abate-Shen, C. Msx homeobox genes inhibit differentiation through upregulation of cyclin D1. Development 128, 2373–2384 (2001).

    CAS  PubMed  Google Scholar 

  125. Norton, J. D. ID helix–loop–helix proteins in cell growth, differentiation and tumorigenesis. J. Cell Sci. 113, 3897–3905 (2000).

    CAS  PubMed  Google Scholar 

  126. Martinsen, B. & Bronner-Fraser, M. Neural crest specification regulated by the helix–loop–helix repressor, Id2. Science 281, 988–991 (1998).

    Article  CAS  PubMed  Google Scholar 

  127. Hollnagel, A., Oehlmann, V., Heymer, J., Ruther, U. & Nordheim, A. Id genes are direct targets of bone morphogenetic protein induction in embryonic stem cells. J. Biol. Chem. 274, 19838–19845 (1999).

    Article  CAS  PubMed  Google Scholar 

  128. Mayanil, C. S. et al. Microarray analysis detects novel Pax3 downstream target genes. J. Biol. Chem. 276, 49299–49309 (2001).

    Article  CAS  PubMed  Google Scholar 

  129. Lasorella, A. et al. Id2 is critical for cellular proliferation and is the oncogenic effector of N-myc in human neuroblastoma. Cancer Res. 62, 301–306 (2002).

    CAS  PubMed  Google Scholar 

  130. Hopwood, N. D., Pluck, A. & Gurdon, J. B. A Xenopus mRNA related to Drosophila twist is expressed in response to induction in the mesoderm and the neural crest. Cell 59, 893–903 (1989).

    Article  CAS  PubMed  Google Scholar 

  131. Tavares, A. T., Izpisuja-Belmonte, J. C. & Rodriguez-Leon, J. Developmental expression of chick twist and its regulation during limb patterning. Int. J. Dev. Biol. 45, 707–713 (2001).

    CAS  PubMed  Google Scholar 

  132. Soo, K. et al. Twist function is required for the morphogenesis of the cephalic neural tube and the differentiation of the cranial neural crest cells in the mouse embryo. Dev. Biol. 247, 251–270 (2002).

    Article  CAS  PubMed  Google Scholar 

  133. Gitelman, I. Twist protein in mouse embryogenesis. Dev. Biol. 189, 205–214 (1997).

    Article  CAS  PubMed  Google Scholar 

  134. Howe, L. R., Watanabe, O., Leonard, J. & Brown, A. M. Twist is up-regulated in response to Wnt1 and inhibits mouse mammary cell differentiation. Cancer Res. 63, 1906–1913 (2003).

    CAS  PubMed  Google Scholar 

  135. Rubinstein, A. L., Lee, D., Luo, R., Henion, P. D. & Halpern, M. E. Genes dependent on zebrafish cyclops function identified by AFLP differential gene expression screen. Genesis 26, 86–97 (2000).

    Article  CAS  PubMed  Google Scholar 

  136. Kelsh, R. N. & Raible, D. W. Specification of zebrafish neural crest. Results Probl. Cell. Differ. 40, 216–236 (2002).

    Article  CAS  PubMed  Google Scholar 

  137. Liu, J. -P. & Jessell, T. A role for rhoB in the delamination of neural crest cells from the dorsal neural tube. Development 125, 5055–5067 (1998).

    CAS  PubMed  Google Scholar 

  138. Henderson, D. J., Ybot-Gonzalez, P. & Copp, A. J. RhoB is expressed in migrating neural crest and endocardial cushions of the developing mouse embryo. Mech. Dev. 95, 211–214 (2000).

    Article  CAS  PubMed  Google Scholar 

  139. Etienne-Manneville, S. & Hall, A. Rho GTPases in cell biology. Nature 420, 629–635 (2002).

    Article  CAS  PubMed  Google Scholar 

  140. Reeves, F. C., Burdge, G. C., Fredericks, W. J., Rauscher, F. J. & Lillycrop, K. A. Induction of antisense Pax-3 expression leads to the rapid morphological differentiation of neuronal cells and an altered response to the mitogenic growth factor bFGF. J. Cell Sci. 112, 253–261 (1999).

    CAS  PubMed  Google Scholar 

  141. Williams, T. & Tjian, R. Characterization of a dimerization motif in AP-2 and its function in heterologous DNA-binding proteins. Science 251, 1067–1071 (1991).

    Article  CAS  PubMed  Google Scholar 

  142. Braganca, J. et al. Physical and functional interactions among AP-2 transcription factors, p300/CREB-binding protein, and CITED2. J. Biol. Chem. 278, 16021–16029 (2003).

    Article  CAS  PubMed  Google Scholar 

  143. Tsuda, M., Takahashi, S., Takahashi, Y. & Asahara, H. Transcriptional co-activators CREB-binding protein and p300 regulate chondrocyte specific gene expression via association with Sox9. J. Biol. Chem. 278, 27224–27229 (2003).

    Article  CAS  PubMed  Google Scholar 

  144. Vervoorts, J. et al. Stimulation of c-MYC transcriptional activity and acetylation by recruitment of the cofactor CBP. EMBO Rep. 4, 484–490 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Oswald, F. et al. p300 acts as a transcriptional coactivator for mammalian Notch-1. Mol. Cell. Biol. 21, 7761–7774 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kurooka, H. & Honjo, T. Functional interaction between the mouse notch1 intracellular region and histone acetyltransferases PCAF and GCN5. J. Biol. Chem. 275, 17211–17220 (2000).

    Article  CAS  PubMed  Google Scholar 

  147. Takemaru, K. I. & Moon, R. T. The transcriptional coactivator CBP interacts with β-catenin to activate gene expression. J. Cell Biol. 149, 249–254 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Hecht, A., Vleminckx, K., Stemmler, M. P., van Roy, F. & Kemler, R. The p300/CBP acetyltransferases function as transcriptional coactivators of β-catenin in vertebrates. EMBO J. 19, 1839–1850 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Chan, H. M. & La Thangue, N. B. p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J. Cell Sci. 114, 2363–2373 (2001).

    CAS  PubMed  Google Scholar 

  150. Hamamori, Y. et al. Regulation of histone acetyltransferases p300 and PCAF by the bHLH protein twist and adenoviral oncoprotein E1A. Cell 96, 405–413 (1999).

    Article  CAS  PubMed  Google Scholar 

  151. Daujat, S., Neel, H. & Piette, J. Preferential expression of Mdm2 oncogene during the development of neural crest and its derivatives in mouse early embryogenesis. Mech. Dev. 103, 163–165 (2001).

    Article  CAS  PubMed  Google Scholar 

  152. Bamforth, S. D. et al. Cardiac malformations, adrenal agenesis, neural crest defects and exencephaly in mice lacking Cited2, a new Tfap2 co-activator. Nature Genet. 29, 469–474 (2001).

    Article  CAS  PubMed  Google Scholar 

  153. Nakagawa, S. & Takeichi, M. Neural crest cell-cell adhesion controlled by sequential and subpopulation-specific expression of novel cadherins. Development 121, 1321–1332 (1995).

    CAS  PubMed  Google Scholar 

  154. Semb, H. & Christofori, G. The tumor-suppressor function of E-cadherin. Am. J. Hum. Genet. 63, 1588–1593 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Luo, Y. et al. Rescuing the N-cadherin knockout by cardiac-specific expression of N- or E-cadherin. Development 128, 459–469 (2001).

    CAS  PubMed  Google Scholar 

  156. Slonim, D. K. From patterns to pathways: gene expression data analysis comes of age. Nature Genet. 32 (Suppl.), 502–508 (2002).

    Article  CAS  PubMed  Google Scholar 

  157. Gammill, L. S. & Bronner-Fraser, M. Genomic analysis of neural crest induction. Development 129, 5731–5741 (2002). The first molecular profile of a newly induced neural crest cell.

    Article  CAS  PubMed  Google Scholar 

  158. Neufeld, G. et al. The neuropilins: multifunctional semaphorin and VEGF receptors that modulate axon guidance and angiogenesis. Trends Cardiovasc. Med. 12, 13–19 (2002).

    Article  CAS  PubMed  Google Scholar 

  159. Stern, C. D. Induction and initial patterning of the nervous system — the chick embryo enters the scene. Curr. Opin. Genet. Dev. 12, 447–451 (2002).

    Article  CAS  PubMed  Google Scholar 

  160. Burt, D. & Pourquie, O. Genetics. Chicken genome — science nuggets to come soon. Science 300, 1669 (2003). This paper contains URLs for the chick genome project.

    Article  CAS  PubMed  Google Scholar 

  161. Boardman, P. E. et al. A comprehensive collection of chicken cDNAs. Curr. Biol. 12, 1965–1969 (2002).

    Article  PubMed  Google Scholar 

  162. Brown, W. R., Hubbard, S. J., Tickle, C. & Wilson, S. A. The chicken as a model for large-scale analysis of vertebrate gene function. Nature Rev. Genet. 4, 87–98 (2003).

    Article  CAS  PubMed  Google Scholar 

  163. Tran, P. H. et al. Microarray optimizations: increasing spot accuracy and automated identification of true microarray signals. Nucleic Acids Res. 30, e54 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Altmann, C. et al. Microarray-based analysis of early development in Xenopus laevis. Dev. Biol. 236, 64–75 (2001).

    Article  CAS  PubMed  Google Scholar 

  165. Lo, J. et al. 15,000 unique zebrafish EST clusters and their future use in microarray for profiling gene expression patterns during embryogenesis. Genome Res. 13, 455–466 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Ton, C., Stamatiou, D., Dzau, V. & Liew, C. Construction of a zebrafish cDNA microarray: gene expression profiling of the zebrafish during development. Biochem. Biophys. Res. Comm. 296, 1134–1142 (2002).

    Article  CAS  PubMed  Google Scholar 

  167. Kolm, P. J. & Sive, H. L. Efficient hormone-inducible protein function in Xenopus laevis. Dev. Biol. 171, 267–272 (1995).

    Article  CAS  PubMed  Google Scholar 

  168. Li, T. -R. & White, K. Tissue-specific gene expression and ecdysone-regulated genomic networks in Drosophila. Dev. Cell 5, 59–72 (2003). An elegant use of microarrays to define the signalling pathways involved in temporally regulating a developmental process.

    Article  CAS  PubMed  Google Scholar 

  169. Loftus, S. K. et al. Informatic selection of a neural crest-melanocyte cDNA set for microarray analysis. Proc. Natl Acad. Sci. USA 96, 9277–9280 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Stathopoulos, A., Van Drenth, M., Erives, A., Markstein, M. & Levine, M. Whole-genome analysis of dorsal-ventral patterning in the Drosophila embryo. Cell 111, 687–701 (2002).

    Article  CAS  PubMed  Google Scholar 

  171. Gaudet, J. & Mango, S. E. Regulation of organogenesis by the Caenorhabditis elegans FoxA protein PHA-4. Science 295, 821–825 (2002).

    Article  CAS  PubMed  Google Scholar 

  172. Davidson, E. H. et al. A provisional regulatory gene network for specification of endomesoderm in the sea urchin embryo. Dev. Biol. 246, 162–190 (2002). The most comprehensive example of a developmental gene regulatory network.

    Article  CAS  PubMed  Google Scholar 

  173. Uchikawa, M., Ishida, Y., Takemoto, T., Kamachi, Y. & Kondoh, H. Functional analysis of chicken Sox2 enhancers highlights an array of diverse regulatory elements that are conserved in mammals. Dev. Cell 4, 509–519 (2003).

    Article  CAS  PubMed  Google Scholar 

  174. Amaya, E. & Kroll, K. L. A method for generating transgenic frog embryos. Methods Mol. Biol. 97, 393–414 (1999).

    CAS  PubMed  Google Scholar 

  175. Müller, F., Blader, P. & Strähle, U. Search for enhancers: teleost models in comparative genomic and transgenic analysis of cis regulatory elements. Bioessays 24, 564–572 (2002).

    Article  CAS  PubMed  Google Scholar 

  176. Genome Sequencing Center, Washington University in St. Louis. Xenopus Genome, <http://genome.wustl.edu/projects/xenopus/>. Homepage for the Xenopus genome project.

  177. The Wellcome Trust Sanger Institute. The Danio rerio Sequencing Project, <http://www.sanger.ac.uk/Projects/D_rerio/>. Homepage for the zebrafish genome project.

  178. Ohler, U. & Niemann, H. Identification and analysis of eukaryotic promoters: recent computational approaches. Trends Genet. 17, 56–60 (2001).

    Article  CAS  PubMed  Google Scholar 

  179. Ren, B. et al. Genome-wide location and function of DNA binding proteins. Science 290, 2306–2609 (2000).

    Article  CAS  PubMed  Google Scholar 

  180. Iyer, V. R. et al. Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature 409, 533–538 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank S. Fraser, M. García-Castro, V. Lee, Y. Marahrens and L. Ziemer for critical comments on the manuscript, and the Bronner-Fraser lab for insightful discussions. L.S.G. is supported by a K22 Career Transition Award from the NIH. Work in M.B.F.'s lab is supported, in part, by grants from NIH and NASA.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

Ap2

BMPs

β-catenin

cadherin-6

CBP

Cited2

claudins

Crestin

Delta

Dlx5

E-cadherin

FGFs

Foxa

Foxd3

Id2

Mdm2

Msx1

Msx2

Msxb

Msxc

c-Myc

N-cadherin

Ngn1

Noelin

Notch1

Occludin

p300

Pax3

Pax7

Rhob

Slug

Snail

Sox9

Sox10

Twist

Wnts

Zic1

Zic2

Zic3

Zic5

Xenbase

nbx

TIGR Gallus gallus Gene Index

Chordin

Noggin

TIGR Xenopus laevis Gene Index

eif4a2

Meis1b

Zicr1

http://www.ncbi.nlm.nih.gov/LocusLink/LocRpt.cgi?l=11771

Glossary

WNT PROTEINS

A family of highly conserved secreted signalling molecules, which are related to the Drosophila wingless protein and regulate cell–cell interactions during embryogenesis. Wnt proteins bind on the cell surface to receptors of the Frizzled family.

BONE MORPHOGENETIC PROTEINS

(BMPs). Multifunctional secreted proteins of the transforming growth factor-β superfamily. In the early embryo, they participate in dorsoventral patterning.

FIBROBLAST GROWTH FACTORS

(FGFs). Multifunctional factors that are involved in embryonic development. More than 20 FGFs and 4 FGF receptors have been described. Their coordinated activity controls cell proliferation, migration, survival and differentiation. FGFs regulate growth and morphogenesis by an early action on regional patterning, and a later effect on the growth of progenitor cells of the forebrain.

ANAMNIOTES

Vertebrates, such as fish and amphibians, that do not develop inside an amnion.

ZINC FINGER

A protein module in which cysteine or cysteine–histidine residues coordinate a zinc ion. Zinc fingers are often used in DNA recognition and in protein–protein interactions.

EPITHELIAL–MESENCHYMAL TRANSITIONS

(EMT). The transformation of an epithelial cell into a mesenchymal cell with migratory and invasive properties.

ADHERENS JUNCTION

A cell–cell junction also known as zonula adherens, which is characterized by the intracellular insertion of microfilaments. If intermediate filaments are inserted in lieu of microfilaments, the resulting junction is referred to as a desmosome.

TIGHT JUNCTIONS

Belt-like regions of adhesion between adjacent epithelial or endothelial cells. Tight junctions regulate paracellular flux, and contribute to the maintenance of cell polarity by stopping molecules from diffusing within the plane of the membrane.

HIGH MOBILITY GROUP (HMG) DOMAIN

A conserved domain that is present in HMG proteins, which are non-histone proteins involved in chromatin structure and gene regulation.

MORPHOLINO

An antisense oligonucleotide that acts specifically to block the initiation of translation.

DORSAL ROOT GANGLIA

The cell bodies of neural crest-derived sensory neurons are collected together in paired ganglia that lie alongside the spinal cord. These cell bodies are surrounded by satellite glial cells, which share much in common with the Schwann cells that ensheath peripheral axons. Very few synapses have been observed in these ganglia.

E-BOX

The conserved nucleotide sequence CANNTG that is recognized and bound by basic helix–loop–helix and other proteins.

HOMEOBOX

A sequence of about 180 base pairs that encodes a DNA-binding protein sequence known as the homeodomain. The 60-amino-acid homeodomain comprises three α-helices.

DOMINANT-NEGATIVE

A mutant molecule that interferes with and inhibits the activation of normal molecules.

BASIC HELIX–LOOP–HELIX

(bHLH). A structural motif present in many transcription factors that is characterized by two α-helices separated by a loop. The helices mediate dimerization, and the adjacent basic region is required for DNA binding.

SOMITES

Paired blocks of mesoderm cells along the vertebrate body axis that form during early vertebrate development and differentiate into dermal skin, bone and muscle.

RETROELEMENTS

Segments of genetic material that transpose around the genome using an RNA intermediate.

EXPRESSED SEQUENCE TAGS

(ESTs). Short (200–500 base pairs) DNA sequences that represent the sequences expressed in an organism under a given condition. They are generated from the 3′- and 5′-ends of randomly selected cDNA clones. The purpose of EST sequencing is to scan for all the protein-coding genes, and to provide a tag for each gene on the genome.

ELECTROPORATION

The transient generation of pores in a cell membrane by exposing the cell to a high field strength electrical pulse. This allows the entry of large molecules, such as DNA constructs, into the cell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gammill, L., Bronner-Fraser, M. Neural crest specification: migrating into genomics. Nat Rev Neurosci 4, 795–805 (2003). https://doi.org/10.1038/nrn1219

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1219

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing