Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mapping brain asymmetry

Key Points

  • Brain asymmetry has been observed in humans and other animals in terms of structure, function and behaviour. This lateralization is thought to reflect evolutionary, developmental, hereditary, experiential and pathological factors.

  • Language and handedness are well-known behaviours that provide clues to the structural and functional lateralization of the human brain. Language production and some aspects of syntactic processing are localized primarily to areas of the anterior left hemisphere, including Broca's area, whereas language comprehension is confined primarily to the left posterior temporal–parietal region, including Wernicke's area. Hand preference correlates strongly with structural and functional asymmetries in language-processing structures, such as the planum temporale.

  • Among the most prominent observations of anatomical brain asymmetry are the right frontal and left occipital petalia-impressions on the inner surface of the skull that reflect protrusions of the right frontal pole and left occipital pole beyond their counterparts in the opposite hemisphere. A twisting effect is also seen, known as Yakovlevian anticlockwise torque, in which structures surrounding the right Sylvian fissure are 'torqued forward' relative to those on the left.

  • The asymmetrical trajectory of the Sylvian fissure was one of the first anatomical asymmetries to be described. The height of the end-point of the Sylvian fissure is negatively correlated with the volume of the planum temporale, an extension of Wernicke's posterior receptive language area. In humans, the left planum temporale is up to ten times larger than the right. Broca's speech area is also larger in volume than its homologue in the right hemisphere. Heschl's gyrus, which corresponds to the primary auditory cortex, is larger on the left side. By contrast, the central sulcus, which houses the primary motor cortex, is reported to be deeper and larger in the right hemisphere.

  • Advances in brain-mapping methods have enabled us to detect and visualize patterns of asymmetry in whole populations. These approaches have led to a more detailed description of the anatomical organization of the brain, allowing us to identify subtle variations in asymmetry that occur during development,with age and in disease. Among the diseases that have been associated with aberrant brain asymmetries are Alzheimer's disease, in which left-hemisphere regions are affected earlier and more severely, and developmental dyslexia, in which reduced or reversed asymmetry of the planum temporale has been reported. Male–female differences in brain asymmetry have also been detected,with some evidence to suggest that the male brain is more lateralized than that of the female.

  • The degree to which functional asymmetries parallel those observed anatomically has been investigated using a variety of methods, including positron emission tomography and functional magnetic resonance imaging. These studies have provided further insights into brain asymmetry, describing features of left-hemisphere language localization and right-hemisphere dominance for certain visuospatial tasks.

  • Studies of the cellular and molecular mechanisms that underpin the formation of brain asymmetries are in their infancy. Future investigations will be led by a detailed knowledge of how the brain deviates from symmetry both in healthy individuals and in disease. Brain-mapping approaches show great promise for assessing factors that modulate the lateralization of the brain, including the ontogeny, phylogeny and genetic determinants of brain asymmetry.

Abstract

Brain asymmetry has been observed in animals and humans in terms of structure, function and behaviour. This lateralization is thought to reflect evolutionary, hereditary, developmental, experiential and pathological factors. Here, we review the diverse literature describing brain asymmetries, focusing primarily on anatomical differences between the hemispheres and the methods that have been used to detect them. Brain-mapping approaches, in particular, can identify and visualize patterns of asymmetry in whole populations, including subtle alterations that occur in disease, with age and during development. These and other tools show great promise for assessing factors that modulate cognitive specialization in the brain, including the ontogeny, phylogeny and genetic determinants of brain asymmetry.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Language areas with anatomical and functional asymmetries.
Figure 2: Petalia and Yakovlevian torque.
Figure 3: Multi-subject maps of brain asymmetry.
Figure 4: Ventricular asymmetry.
Figure 5: Asymmetrical progression of Alzheimer's disease.

Similar content being viewed by others

References

  1. Geschwind, N. & Galaburda, A. M. Cerebral lateralization. Biological mechanisms, associations and pathology. Arch. Neurol. 42, 428–459 (1985).

    CAS  PubMed  Google Scholar 

  2. Kimura, D. The asymmetry of the human brain. Sci. Am. 228, 70–78 (1973).

    CAS  PubMed  Google Scholar 

  3. Broca, P. Remarques sur le siège de la faculté du langage articulé, suivies d'une observation d'aphémie (perte de la parole). Bull. Soc. Anthropol. 6, 330–357 (1861).

    Google Scholar 

  4. Wernicke, C. Der aphasische Symptomenkomplex: eine psychologische Studie auf anatomischer Basis (Cohn und Welgert, Breslau, 1874).

  5. Dapretto, M. & Bookheimer, S. Y. Form and content: dissociating syntax and semantics in sentence comprehension. Neuron 24, 427–432 (1999).

    CAS  PubMed  Google Scholar 

  6. Binder, J. The new neuroanatomy of speech perception. Brain 123, 2371–2372 (2000).

    PubMed  Google Scholar 

  7. Price, C. J. The anatomy of language: contributions from functional neuroimaging. J. Anat. 197, 335–359 (2000).

    PubMed  PubMed Central  Google Scholar 

  8. Zatorre, R. J. On the representation of multiple languages in the brain: old problems and new directions. Brain Lang. 36, 127–147 (1989).

    CAS  PubMed  Google Scholar 

  9. Pouratian, N., Bookheimer, S. Y., Rex, D. E., Martin, N. A. & Toga, A. W. Utility of preoperative functional magnetic resonance imaging for identifying language cortices in patients with vascular malformations. J. Neurosurg. 97, 21–32 (2002).

    PubMed  Google Scholar 

  10. Geschwind, N. & Levitsky, W. Human brain: left–right asymmetries in temporal speech region. Science 161, 186–187 (1968). This seminal report observed anatomical asymmetries in perisylvian brain structures that are involved in language. It ignited the interest in anatomical asymmetry, using post-mortem and imaging methods.

    CAS  PubMed  Google Scholar 

  11. Annett, M. Left, Right, Hand and Brain: the Right Shift Theory (Lawrence Erlbaum, London, 1985).

  12. Beaton, A. A. The relation of planum temporale asymmetry and morphology of the corpus callosum to handedness, gender and dyslexia: a review of the evidence. Brain Lang. 60, 255–322 (1997).

    CAS  PubMed  Google Scholar 

  13. Zilles, K. et al. Structural asymmetries in the human forebrain and the forebrain of non-human primates and rats. Neurosci. Biobehav. Rev. 20, 593–605 (1996).

    CAS  PubMed  Google Scholar 

  14. Witelson, S. F. & Kigar, D. L. Sylvian fissure morphology and asymmetry in men and women: bilateral differences in relation to handedness in men. J. Comp Neurol. 323, 326–340 (1992).

    CAS  PubMed  Google Scholar 

  15. Coren, S. The Left-Hander Syndrome: the Causes and Consequences of Left-Handedness (Free Press, New York, 1992).

  16. Desmond, J. E. et al. Functional MRI measurement of language lateralization in Wada-tested patients. Brain 118, 1411–1419 (1995).

    PubMed  Google Scholar 

  17. Koff, E., Naeser, M. A., Pieniadz, J. M., Foundas, A. L. & Levine, H. L. Computed tomographic scan hemispheric asymmetries in right- and left-handed male and female subjects. Arch. Neurol. 43, 487–491 (1986).

    CAS  PubMed  Google Scholar 

  18. Davidson, R. J. & Hugdahl, K. (eds) Brain Asymmetry (MIT Press, Cambridge, Massachusetts, 1995).

    Google Scholar 

  19. Hellige, J. B. Hemispheric Asymmetry: What's Right and What's Left (Harvard Univ. Press, Cambridge, Massachusetts, 2001). This book provides an overview of hemispheric asymmetry. Surveying extensive data in the cognitive sciences, it explores whether hemispheric asymmetry is unique to humans, and discusses models of brain lateralization and how it might have evolved.

    Google Scholar 

  20. Annett, M. Genetic and nongenetic influences on handedness. Behav. Genet. 8, 227–249 (1978).

    CAS  PubMed  Google Scholar 

  21. McManus, I. C. & Bryden, M. P. in Handbook of Neuropsychology Vol. 6 (eds Rapin, I. & Segalowitz, S. J.) 115–144 (Elsevier Science, Amsterdam, 1992).

    Google Scholar 

  22. Grimshaw, G. M., Bryden, M. P. & Finegan, J. K. Relations between prenatal testosterone and cerebral lateralization in children. Neuropsychology 9, 68–70 (1995).

    Google Scholar 

  23. Glick, S. D., Ross, D. A. & Hough, L. B. Lateral asymmetry of neurotransmitters in human brain. Brain Res. 234, 53–63 (1982).

    CAS  PubMed  Google Scholar 

  24. Eberstaller, O. Zür Oberflachen Anatomie der Grosshirn Hemisphaeren. Wien. Med. 7, 479, 642, 644 (1884).

  25. LeMay, M. Morphological cerebral asymmetries of modern man, fossil man, and nonhuman primate. Ann. NY Acad. Sci. 280, 349–366 (1976).

    CAS  PubMed  Google Scholar 

  26. LeMay, M. & Kido, D. K. Asymmetries of the cerebral hemispheres on computed tomograms. J. Comput. Assist. Tomogr. 2, 471–476 (1978).

    CAS  Google Scholar 

  27. Kertesz, A., Black, S. E., Polk, M. & Howell, J. Cerebral asymmetries on magnetic resonance imaging. Cortex 22, 117–127 (1986).

    CAS  PubMed  Google Scholar 

  28. Cunningham, D. J. Contribution to the surface anatomy of the cerebral hemispheres. Cunningham Mem. (R. Ir. Acad.) 7, 372(1892).

    Google Scholar 

  29. Fleschig, P. Bemerkungen über die Hörsphare des menschlichen Gehirns. Neurol. Zent. Bl. 27, 2–7 (1908).

    Google Scholar 

  30. Habib, M., Robichon, F., Levrier, O., Khalil, R. & Salamon, G. Diverging asymmetries of temporo-parietal cortical areas: a reappraisal of Geschwind/Galaburda theory. Brain Lang. 48, 238–258 (1995).

    CAS  PubMed  Google Scholar 

  31. Steinmetz, H., Structure, functional and cerebral asymmetry: in vivo morphometry of the planum temporale. Neurosci. Biobehav. Rev. 20, 587–591 (1996).

    CAS  PubMed  Google Scholar 

  32. Kulynych, J., Vladar, K., Jones, D. & Weinberger, D. A 3D surface rendering in MRI morphometry: a study of the planum temporale. J. Comput. Assist. Tomogr. 17, 529–535 (1993).

    CAS  PubMed  Google Scholar 

  33. Narr, K. L. et al. 3D mapping of gyral shape and cortical surface asymmetries in schizophrenia: gender effects. Am. J. Psychiatry 158, 244–255 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Yeni-Komshian, G. H. & Benson, D. A. Anatomical study of cerebral asymmetry in humans, chimpanzees and rhesus monkeys. Science 192, 387–389 (1976).

    CAS  PubMed  Google Scholar 

  35. Falzi, G., Perrone, P. & Vignolo, L. Right–left asymmetry in anterior speech region. Arch. Neurol. 39, 239–240 (1982).

    CAS  PubMed  Google Scholar 

  36. Amunts, K. et al. Broca's region revisited: cytoarchitecture and intersubject variability. J. Comp. Neurol. 412, 319–341 (1999).

    CAS  PubMed  Google Scholar 

  37. Hochberg, F. & LeMay, M. Arteriographic correlates of handedness. Neurology 25, 218–222 (1975).

    CAS  PubMed  Google Scholar 

  38. Rademacher, J., Caviness, V. S. Jr, Steinmetz, H. & Galaburda, A. M. Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping and neurobiology. Cereb. Cortex 3, 313–329 (1993).

    CAS  PubMed  Google Scholar 

  39. Penhune, V. B., Zatorre, R. J., MacDonald, J. D. & Evans, A. C. Interhemispheric anatomical differences in human primary auditory cortex: probabilistic mapping and volume measurement from magnetic resonance scans. . Cereb. Cortex 6, 661–672 (1996).

    CAS  PubMed  Google Scholar 

  40. Galaburda, A. M. & Geschwind, N. Anatomical asymmetries in the adult and developing brain and their implications for function. Adv. Pediatr. 28, 271–292 (1981).

    CAS  PubMed  Google Scholar 

  41. Geschwind, N. & Galaburda, A. M. Cerebral Lateralization: (MIT Press, Cambridge, Massachusetts, 1987).

    Google Scholar 

  42. Sowell, E. R. et al. Mapping sulcal pattern asymmetry and local cortical surface gray matter distribution in vivo: maturation in perisylvian cortices. Cereb. Cortex 12, 17–26 (2002).

    PubMed  Google Scholar 

  43. Thompson, P. M. et al. Growth patterns in the developing brain detected by using continuum-mechanical tensor maps. Nature 404, 190–193 (2000).

    CAS  PubMed  Google Scholar 

  44. Highley, J. R., Walker, M. A., Esiri, M. M., Crow, T. J. & Harrison, P. J. Asymmetry of the uncinate fasciculus: a post-mortem study of normal subjects and patients with schizophrenia. Cereb. Cortex 12, 1218–1224 (2002).

    PubMed  Google Scholar 

  45. Davatzikos, C. & Bryan, R. N. Morphometric analysis of cortical sulci using parametric ribbons: a study of the central sulcus. J. Comput. Assist. Tomogr. 26, 298–307 (2002).

    PubMed  Google Scholar 

  46. Amunts, K. et al. Asymmetry in the human motor cortex and handedness. Neuroimage 4, 216–222 (1996).

    CAS  PubMed  Google Scholar 

  47. Yakovlev, P. I. & Rakic, P. Patterns of decussation of bulbar pyramids and distribution of pyramidal tracts on two sides of the spinal cord. Trans. Am. Neurol. Assoc. 91, 366–367 (1966).

    Google Scholar 

  48. Nudo, R. J., Jenkins, W. M., Merzenich, M. M., Prejean, T. & Grenda, R. Neurophysiological correlates of hand preference in primary motor cortex of adult squirrel monkeys. J. Neurosci. 12, 2918–2947 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Steinmetz, H., Furst, G. & Freund, H. J. Variation of perisylvian and calcarine anatomic landmarks within stereotaxic proportional coordinates. Am. J. Neuroradiol. 11, 1123–1130 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Thompson, P. M. et al. Cortical variability and asymmetry in normal aging and Alzheimer's disease. Cereb. Cortex 8, 492–509 (1998).

    CAS  PubMed  Google Scholar 

  51. Thompson, P. M., Mega, M. S., Vidal, C., Rapoport, J. L. & Toga, A. W. Detecting disease-specific patterns of brain structure using cortical pattern matching and a population-based probabilistic brain atlas. Proc. IEEE Conf. Inf. Process. Med. Imaging (IPMI) (Univ. California, Davis, 2001).

  52. Westbury, C. F., Zatorre, R. J. & Evans, A. C. Quantifying variability in the planum temporale: a probability map. Cereb. Cortex 9, 392–405 (1999).

    CAS  PubMed  Google Scholar 

  53. Paus, T. et al. Human cingulate and paracingulate sulci: pattern, variability, asymmetry, and probabilistic map. Cereb. Cortex 6, 207–214 (1996).

    CAS  PubMed  Google Scholar 

  54. Crosson, B. et al. Activity in the paracingulate and cingulate sulci during word generation: an fMRI study of functional anatomy. Cereb. Cortex 9, 307–316 (1999).

    CAS  PubMed  Google Scholar 

  55. Good, C. D. et al. A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 14, 21–36 (2001).

    CAS  PubMed  Google Scholar 

  56. Watkins, K. E. et al. Structural asymmetries in the human brain: a voxel-based statistical analysis of 142 MRI scans. Cereb. Cortex 11, 868–877 (2001).

    CAS  PubMed  Google Scholar 

  57. Hiscock, M., Inch, R., Jacek, C., Hiscock-Kalil, C. & Kalil, K. M. Is there a sex difference in human laterality? I. An exhaustive survey of auditory laterality studies from six neuropsychology journals. J. Clin. Exp. Neuropsychol. 16, 423–435 (1994).

    CAS  PubMed  Google Scholar 

  58. Mazziotta, J. C. et al. A probabilistic atlas and reference system for the human brain. Phil. Trans. R. Soc. Lond. B 356, 1293–1322 (2001). This paper describes the efforts of an international consortium to build an image database of the human brain that encodes statistical information on anatomical and functional variation. The resulting reference system stores brain maps from multiple imaging devices, and can be used to assess group differences in brain structure and function, as well as hemispheric asymmetries in these measures.

    CAS  Google Scholar 

  59. Thompson, P. M. & Toga, A. W. A framework for computational anatomy. Comput. Vis. Sci. 5, 1–12 (2002).

    Google Scholar 

  60. Shenton, M. E. et al. Application of automated MRI volumetric measurement techniques to the ventricular system in schizophrenics and normal controls. Schizophr. Res. 5, 103–113 (1991).

    CAS  PubMed  Google Scholar 

  61. Chi, G. J., Doaling, E. G. & Gilles, F. H. Left–right asymmetries of the temporal speech areas of the human fetus. Arch. Neurol. 34, 346–348 (1977).

    CAS  PubMed  Google Scholar 

  62. Previc, F. H. A general theory concerning the prenatal origins of cerebral lateralization in humans. Psychol. Rev. 98, 299–334 (1991).

    CAS  PubMed  Google Scholar 

  63. Kieler, H., Cnattingius, S., Haglund, B., Palmgren, J. & Axelsson, O. Sinistrality — a side-effect of prenatal sonography: a comparative study of young men. Epidemiology 12, 618–623 (2001).

    CAS  PubMed  Google Scholar 

  64. Schlaug, G., Jäncke, L., Huang, Y., Staiger, J. F. & Steinmetz, H. Increased corpus callosum size in musicians. Neuropsychologia 33, 1047–1055 (1995).

    CAS  PubMed  Google Scholar 

  65. Keenan, J. P., Thangaraj, V., Halpern, A. R. & Schlaug, G. Absolute pitch and planum temporale. Neuroimage 14, 1402–1408 (2001).

    CAS  PubMed  Google Scholar 

  66. Thompson, P. M. et al. Genetic influences on brain structure. Nature Neurosci. 4, 1253–1258 (2001). This paper was the first to create maps of genetic influences on human brain structure. It showed that the amount of grey matter in the frontal cortex was highly heritable and correlated with IQ. It discusses hemispheric asymmetries in these heritability patterns.

    CAS  PubMed  Google Scholar 

  67. Posthuma, D. et al. The association between brain volume and intelligence is of genetic origin. Nature Neurosci. 5, 83–84 (2002).

    CAS  PubMed  Google Scholar 

  68. Lohmann, G., von Cramon, D. Y. & Steinmetz, H. Sulcal variability of twins. Cereb. Cortex 9, 754–763 (1999).

    CAS  PubMed  Google Scholar 

  69. Thompson, P. M. et al. Detecting dynamic and genetic effects on brain structure using high-dimensional cortical pattern matching. Proc. Int. Symp. Biomed. Imaging (ISBI2002) (Washington DC, 2002).

  70. Plomin, R. & Kosslyn, S. M. Genes, brain and cognition. Nature Neurosci. 4, 1153–1154 (2001).

    CAS  PubMed  Google Scholar 

  71. Steinmetz, H., Herzog, A., Huang, Y. & Hacklander, T. Discordant brain-surface anatomy in monozygotic twins. N. Engl. J. Med. 331, 951–952 (1994).

    Google Scholar 

  72. Geschwind, D. H., Miller, B. L., DeCarli, C. & Carmelli, D. Heritability of lobar brain volumes in twins supports genetic models of cerebral laterality and handedness. Proc. Natl Acad. Sci. USA 99, 3176–3181 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Satz, P., Orsini, D. L., Saslow, E. & Henry, R. The pathological left-handedness syndrome. Brain Cogn. 4, 27–46 (1985).

    CAS  PubMed  Google Scholar 

  74. Corballis, M. C. & Morgan, M. J. On the biological basis of human laterality: I. Evidence for a maturational left–right gradient. Behav. Brain Sci. 2, 261–336 (1978).

    Google Scholar 

  75. Geschwind, N. & Behan, P. Left-handedness: association with immune disease, migraine, and developmental learning disorder. Proc. Natl Acad. Sci. USA 79, 5097–6100 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Laland, K. N., Kumm, J., Van Horn, J. D. & Feldman, M. W. A gene-culture model of human handedness. Behav. Genet. 25, 433–445 (1995).

    CAS  PubMed  Google Scholar 

  77. Shaywitz, B. A. et al. Sex differences in the functional organization of the brain for language. Nature 373, 607–609 (1995).

    CAS  PubMed  Google Scholar 

  78. Lake, D. A. & Bryden, M. P. Handedness and sex differences in hemispheric asymmetry. Brain Lang. 3, 266–282 (1976).

    CAS  PubMed  Google Scholar 

  79. Weekes, N. Y., Zaidel, D. W. & Zaidel, E. The effects of sex and sex role attribution on the right ear advantage in dichotic listening. Neuropsychology 9, 62–67 (1976).

    Google Scholar 

  80. Kimura, D. Sex and Cognition (MIT Press, Cambridge, Massachusetts, 2000). This book provides an overview of studies that assess sex differences in brain structure and function.

    Google Scholar 

  81. Jäncke, L., Schlaug, G., Huang, Y. & Steinmetz, H. Asymmetry of the planum parietale. Neuroreport 5, 1161–1163 (1994).

    PubMed  Google Scholar 

  82. Diamond, M. C., Johnson, R. E. & Ingham, C. A. Morphological changes in the young, adult and aging rate cerebral cortex, hippocampus, and diencephalon. Behav. Biol. 14, 163–174 (1975).

    CAS  PubMed  Google Scholar 

  83. Fleming, D. E., Anderson, R. H., Rhees, R. W., Kinghorn, E. & Bakaitis, J. Effects of prenatal stress on sexually dimorphic asymmetries in the cerebral cortex of the male rat. Brain Res. Bull. 16, 395–398 (1986).

    CAS  PubMed  Google Scholar 

  84. Witelson, S. F. Neural sexual mosaicism: sexual differentiation of the human temporo-parietal region for functional asymmetry. Psychoneuroendocrinology 16, 131–153 (1991).

    CAS  PubMed  Google Scholar 

  85. Diamond, M. C. Hormonal effects on the development of cerebral lateralization. Psychoneuroendocrinology 16, 121–129 (1991).

    CAS  PubMed  Google Scholar 

  86. Taylor, D. C. Different rates of cerebral maturation between sexes and between hemispheres. Lancet 2, 140–142 (1969).

    CAS  PubMed  Google Scholar 

  87. Benbow, C. P. & Stanley, J. C. Sex differences in mathematical reasoning ability: more facts. Science 222, 1029–1031 (1983).

    CAS  PubMed  Google Scholar 

  88. Oldfield, R. C. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9, 97–113 (1971).

    CAS  PubMed  Google Scholar 

  89. Gorski, R. A., Harlan, R. E., Jacobson, C. D., Shryne, J. E. & Southam, A. M. Evidence for the existence of a sexually dimorphic nucleus in the preoptic area of the rat. J. Comp. Neurol. 193, 529–539 (1980).

    CAS  PubMed  Google Scholar 

  90. Arnold, A. P. Sexual differentiation of the zebra finch song system: positive evidence, negative evidence, null hypotheses, and a paradigm shift. J. Neurobiol. 33, 572–584 (1997).

    CAS  PubMed  Google Scholar 

  91. Diaz, E., Pinto-Hamuy, T. & Fernandez, V. Interhemispheric structural asymmetry induced by a lateralized reaching task in the rat motor cortex. Eur. J. Neurosci. 6, 1235–1238 (1994).

    CAS  PubMed  Google Scholar 

  92. Barneoud, P. & Van der Loos, H. Direction of handedness linked to hereditary asymmetry of a sensory system. Proc. Natl Acad. Sci. USA 90, 3246–3250 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Hynd, G. W., Semrud-Clikeman, M., Lorys, A. R., Novey, E. S. & Eliopulos, D. Brain morphology in developmental dyslexia and attention deficit–hyperactivity disorder (ADHD): morphometric analysis of MRI. Arch. Neurol. 47, 919–926 (1990).

    CAS  PubMed  Google Scholar 

  94. Larsen, J. P., Hoien, T., Lundberg, I. & Odegaard, H. MRI evaluation of the size and symmetry of the planum temporale in adolescents with developmental dyslexia. Brain Lang. 39, 289–301 (1990).

    CAS  PubMed  Google Scholar 

  95. Galaburda, A. M. in Brain Asymmetry (eds Davidson, R. J. & Hugdahl, K.) 51–73 (MIT Press, Cambridge, Massachusetts, 1995).

    Google Scholar 

  96. Barinaga, M. Brain researchers speak a common language. Science 270, 1437–1438 (1995).

    CAS  PubMed  Google Scholar 

  97. Crow, T. J. et al. Schizophrenia as an anomaly of development of cerebral asymmetry. Arch. Gen. Psychiatry 46, 1145–1150 (1989). This paper describes a theory that suggests that the symptoms of people with schizophrenia might result, in part, from disturbances of cerebral lateralization.

    CAS  PubMed  Google Scholar 

  98. Bilder, R. M. et al. Cerebral volume asymmetries in schizophrenia and mood disorders: a quantitative magnetic resonance imaging study. Int. J. Psychophysiol. 34, 197–205 (1999).

    CAS  PubMed  Google Scholar 

  99. Lennox, B. R., Park, S. B., Jones, P. B., Morris, P. G. & Park, G. Spatial and temporal mapping of neural activity associated with auditory hallucinations. Lancet 353, 644 (1999).

    CAS  PubMed  Google Scholar 

  100. Risberg, J., Halsey, J. H., Wills, E. L. & Wilson, E. M. Hemispheric specialization in normal man studied by bilateral measurements of the regional cerebral blood flow. A study with the 133-Xe inhalation technique. Brain 98, 511–524 (1975).

    CAS  PubMed  Google Scholar 

  101. Gerendai, I. in Cerebral Dominance: the Biological Foundations (eds Geschwind, N. & Galaburda, A. M.) 167–178 (Harvard Univ. Press, Cambridge, Massachusetts, 1984).

    Google Scholar 

  102. Thompson, P. M. et al. Cortical change in Alzheimer's disease detected with a disease-specific population-based brain atlas. Cereb. Cortex 11, 1–16 (2001).

    CAS  PubMed  Google Scholar 

  103. Thompson, P. M. et al. Dynamics of gray matter loss in Alzheimer's disease. J. Neurosci. (in the press).

  104. Wahlund, L. O. et al. Cognitive functions and brain structures: a quantitative study of CSF volumes on Alzheimer patients and healthy control subjects. Magn. Reson. Imaging 11, 169–174 (1993).

    CAS  PubMed  Google Scholar 

  105. Loewenstein, D. A. et al. Predominant left hemisphere metabolic dysfunction in dementia. Arch. Neurol. 46, 146–152 (1989).

    CAS  PubMed  Google Scholar 

  106. Penfield, W. & Jasper, H. Epilepsy and the Functional Anatomy of the Human Brain (Little, Brown & Co., Boston, 1954).

    Google Scholar 

  107. Penfold, W. The electrode, the brain and the mind. Z. Neurol. 201, 297–307 (1972).

    Google Scholar 

  108. Ojemann, J. G., Ojemann, G. A. & Lettich, E. Cortical stimulation mapping of language cortex by using a verb generation task: effects of learning and comparison to mapping based on object naming. J. Neurosurg. 97, 33–38 (2002).

    PubMed  Google Scholar 

  109. Wada, J. A., Clarke, R. J. & Hamm, A. E. Control speech zones in 100 adult and 100 infant brains. Arch. Neurol. 32, 239–246 (1975). This paper describes the sodium amytal test (also known as the Wada test), which determines cerebral dominance in surgical patients by using selective anaesthesia of one brain hemisphere.

    CAS  PubMed  Google Scholar 

  110. Zatorre, R. J. Perceptual asymmetry on the dichotic fused words test and cerebral speech lateralization determined by the carotid sodium amytal test. Neuropsychologia 27, 1207–1219 (1989).

    CAS  PubMed  Google Scholar 

  111. Gordon, H. W. & Bogen, J. E. Hemispheric lateralization of singing after intracarotid sodium amylobarbitone. J. Neurol. Neurosurg. Psychiatry 37, 727–738 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Foundas, A. L., Leonard, C. M. & Heilman, K. M. Morphologic cerebral asymmetries and handedness. The pars triangularis and planum temporale. Arch. Neurol. 52, 1137–1138 (1995).

    Google Scholar 

  113. Sperry, R. Consciousness, personal identity and the divided brain. Neuropsychologia 22, 661–673 (1984).

    CAS  PubMed  Google Scholar 

  114. Bogen, J. E., Fisher, E. D. & Vogel, P. J. Cerebral commissurotomy: a second case report. J. Am. Med. Assoc. 194, 1328–1329 (1965).

    CAS  Google Scholar 

  115. Gazzaniga, M. S. et al. Collaboration between the hemispheres of a callosotomy patient. Emerging right hemisphere speech and the left hemisphere interpreter. Brain 119, 1255–1262 (1996).

    PubMed  Google Scholar 

  116. Zaidel, E. & Iacoboni, M. The Parallel Brain: the Cognitive Neuroscience of the Corpus Callosum (MIT Press, Cambridge, Massachusetts, 2002).

    Google Scholar 

  117. Deutsch, D. Dichotic listening to melodic patterns and its relation to hemispheric specialization of functions. Music Percept. 3, 127–154 (1985).

    Google Scholar 

  118. Jäncke, L., Steinmetz, H. & Volkmann, J. Dichotic listening: what does it measure? Neuropsychologia 30, 941–950 (1992).

    PubMed  Google Scholar 

  119. Kimura, D. Cerebral dominance and the perception of verbal stimuli. Can. J. Psychol. 15, 156–165 (1961).

    CAS  PubMed  Google Scholar 

  120. Friston, K. J. et al. Statistical parametric maps in functional imaging: a general linear approach. Hum. Brain Mapp. 2, 189–210 (1995).

    Google Scholar 

  121. Tzourio, N., Nkanga-Ngila, B. & Mazoyer, B. Left planum temporale surface correlates with functional dominance during story listening. Neuroreport 9, 829–833 (1998).

    CAS  PubMed  Google Scholar 

  122. Tzourio, N., Crivello, F., Mellet, E., Nkanga-Ngila, B. & Mazoyer, B. Functional anatomy of dominance for speech comprehension in left handers vs right handers. Neuroimage 8, 1–16 (1998).

    CAS  PubMed  Google Scholar 

  123. Karbe, H. et al. Planum temporale and Brodmann's area 22. Magnetic resonance imaging and high-resolution positron emission tomography demonstrate functional left–right asymmetry. Arch. Neurol. 52, 869–874 (1995).

    CAS  PubMed  Google Scholar 

  124. Shepard, R. N. & Metzler, J. Mental rotation of three-dimensional objects. Science 171, 701–703 (1971).

    CAS  PubMed  Google Scholar 

  125. Corballis, M. C. & Sergent, J. Imagery in a commissurotomized patient. Neuropsychologia 26, 13–26 (1988).

    CAS  PubMed  Google Scholar 

  126. Ditunno, P. L. & Mann, V. A. Right hemisphere specialization for mental rotation in normals and brain damaged subjects. Cortex 26, 177–188 (1990).

    CAS  PubMed  Google Scholar 

  127. Cohen, M. S. et al. Changes in cortical activity during mental rotation. A mapping study using functional MRI. Brain 119, 89–100 (1996).

    PubMed  Google Scholar 

  128. Richter, W., Ugurbil, K., Georgopoulos, A. & Kim, S. G. Time-resolved fMRI of mental rotation. Neuroreport 8, 3697–3702 (1997).

    CAS  PubMed  Google Scholar 

  129. Hugdahl, K. Lateralization of cognitive processes in the brain. Acta Psychol. 105, 211–235 (2000).

    CAS  Google Scholar 

  130. Geschwind, D. H. & Miller, B. L. Molecular approaches to cerebral laterality: development and neurodegeneration. Am. J. Med. Genet. 101, 370–381 (2001). This paper reviews molecular biological techniques to investigate the genetic and epigenetic mechanisms that underlie brain asymmetry.

    CAS  PubMed  Google Scholar 

  131. Tucker, D. M. & Williamson, P. A. Asymmetric neural control systems in human self-regulation. Psychol. Rev. 91, 185–215 (1984).

    CAS  PubMed  Google Scholar 

  132. Wagner, H. N. Jr et al. Imaging dopamine receptors in the human brain by positron emission tomography. Science 221, 1264–1266 (1983).

    CAS  PubMed  Google Scholar 

  133. Oke, A., Keller, R., Mefford, I. & Adams, R. N. Lateralization of norepinephrine in human thalamus. Science 200, 1411–1413 (1978).

    CAS  PubMed  Google Scholar 

  134. Galaburda, A. et al. Left–right asymmetries in the brain. Science 199, 852–856 (1978).

    CAS  PubMed  Google Scholar 

  135. Eidelberg, D. & Galaburda, A. M. Symmetry and asymmetry in the human posterior thalamus: I. Cytoarchitectonic analysis in normal persons. Arch. Neurol. 39, 325–332 (1982).

    CAS  PubMed  Google Scholar 

  136. Rosen, G. D. Cellular, morphometric, ontogenetic and connectional substrates of anatomical asymmetry. Neurosci. Biobehav. Rev. 20, 607–615 (1996). In this paper, the developmental processes that result in anatomical asymmetries are assessed labelling migrating cells during cortical neurogenesis.

    CAS  PubMed  Google Scholar 

  137. Scheibel, A. B. et al. Dendritic organization of the anterior speech area. Exp. Neurol. 87, 109–117 (1985).

    CAS  PubMed  Google Scholar 

  138. Stromswold, K. in The Cognitive Neurosciences (ed. Gazzaniga, M. S.) 855–870 (MIT Press, Cambridge, Massachusetts, 1995).

    Google Scholar 

  139. Glick, S. D. & Hinds, P. A. Differences in amphetamine and morphine sensitivity in lateralized and non-lateralized rats: locomotor activity and drug self-administration. Eur. J. Pharmacol. 118, 239–244 (1985).

    CAS  PubMed  Google Scholar 

  140. Nottebohm, F. Neural lateralization of vocal control in a passerine bird. I. Song. J. Exp. Zool. 177, 229–261 (1971).

    CAS  PubMed  Google Scholar 

  141. Petersen, M. R., Beecher, M. D., Zoloth, S. R., Moody, D. B. & Stebbins, W. C. Neural lateralization of species-specific vocalizations by Japanese macaques (Macaca fuscata). Science 202, 324–327 (1978).

    CAS  PubMed  Google Scholar 

  142. Witelson, S. F. The brain connection: the corpus callosum is larger in left-handers. Science 229, 665–668 (1985).

    CAS  PubMed  Google Scholar 

  143. Hardyck, C., Petrinovich, L. F. & Goldman, R. D. Left-handedness and cognitive deficit. Cortex 12, 266–279 (1976).

    CAS  PubMed  Google Scholar 

  144. Aboitiz, F. & Garcia, R. The anatomy of language revisited. Biol. Res. 30, 171–183 (1997).

    CAS  PubMed  Google Scholar 

  145. Cantalupo, C. & Hopkins, W. D. Asymmetric Broca's area in great apes. Nature 414, 505 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Lieberman, P. The Biology and Evolution of Language (Harvard Univ. Press, Cambridge, Massachusetts, 1984).

    Google Scholar 

  147. Goldin-Meadow, S. & McNeill, D. in The Descent of Mind: Psychological Perspectives on Hominid Evolution (eds Corballis, M. C. & Lea, S.) (Oxford Univ. Press, New York, 1999).

    Google Scholar 

  148. Kegl, J. & McWhortner, J. Perspectives on an emerging language. Proc. Stanford Child Lang. Res. Form (ed. Clark, E.) 15–36 (Center for the Study of Language and Information, Palo Alto, California, 1997).

  149. Emmorey, K. et al. Neural systems underlying spatial language in American sign language. Neuroimage 17, 812–824 (2002).

    PubMed  Google Scholar 

  150. Corballis, M. C. The gestural origins of language. Am. Sci. 87, 138–145 (1999).

    Google Scholar 

Download references

Acknowledgements

Grant support was provided by a P41 Resource Grant from the National Center for Research Resources. Further support for algorithm development was provided by the National Library of Medicine, the National Institute of Mental Health, and by a Human Brain Project grant to the International Consortium for Brain Mapping, funded jointly by the National Institute of Mental Health and the National Institute on Drug Abuse.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur W. Toga.

Related links

Related links

DATABASES

OMIM

Alzheimer's disease

dyslexia

schizophrenia

FURTHER INFORMATION

Encyclopedia of Life Sciences

computed tomography

magnetic resonance imaging

MIT Encyclopedia of Cognitive Sciences

hemispheric specialization

magnetic resonance imaging

positron emission tomography

International Consortium for Brain Mapping

Laboratory of Neuro Imaging (LONI)

Glossary

PLANUM TEMPORALE

An auditory processing structure that is located in the posterior temporal lobe.

BRODMANN AREA

(BA). Korbinian Brodmann (1868–1918) was an anatomist who divided the cerebral cortex into numbered subdivisions on the basis of cell arrangements, types and staining properties (for example, the dorsolateral prefrontal cortex contains subdivisions, including BA 46, BA 9 and others). Modern derivatives of his maps are commonly used as the reference system for analysis of brain-imaging findings.

ASSOCIATION CORTICES

The neocortical regions that are not involved in primary sensory or motor processing. They include frontal areas subserving executive functions and temporoparietal areas supporting visuo-spatial processing.

PETALIA

Impressions left on the inner surface of the skull by protrusions of one hemisphere relative to the other. In humans, for example, the right frontal lobe often extends beyond the left anteriorly, and the left occipital lobe beyond the right posteriorly. These asymmetries can be detected in endocasts of fossilized cranial bones.

YAKOVLEVIAN ANTICLOCKWISE TORQUE

A double asymmetry of the normal human brain in which the right frontal lobe extends across the midline, over the left, and the left occipital lobe protrudes over the right. The brain thus has the appearance of having been exposed to an anticlockwise twisting force, or torque.

HESCHL'S GYRUS

A division of the superior temporal gyrus that corresponds to the primary auditory cortex.

TENSOR MAP

A map illustrating the principal directions of some multidimensional quantity at each point in space, such as the preferred directions of anatomical variation in a population, or the principal directions of water diffusion in the brain (measured using diffusion tensor imaging).

VOXEL

A volume element: the smallest distinguishable, box-shaped part of a three-dimensional space.

PERFECT PITCH

The ability to identify any musical note without comparing it to a reference note.

PLANUM PARIETALE

An asymmetrical cortical area in the inferior parietal lobule, buried deep in the posterior ascending ramus fo the Sylvian fissure. It is anatomicaly adjacent to the planum temporale, an asummetric auditory processing structure.

WADA TEST

A test used in surgical patients to determine which brain hemisphere is dominant for language. Intracarotid injection of sodium amytal produces transient anaesthesia in the ipsilateral hemisphere as well as blockage of speech function if it is the dominant hemisphere.

DICHOTIC LISTENING

A technique for studying brain asymmetry in auditory processing. The subject is presented simultaneously with different sounds to the right and left ears, and is later tested to determine which, if any, auditory stimulus was more accurately analysed.

POLYMORPHISM

The simultaneous existence in the same population of two or more genotypes in frequencies that cannot be explained by recurrent mutations.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toga, A., Thompson, P. Mapping brain asymmetry. Nat Rev Neurosci 4, 37–48 (2003). https://doi.org/10.1038/nrn1009

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1009

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing