Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Memory use in insect visual navigation

Key Points

  • Insects use a mixture of strategies for their navigation. Some strategies involve little memory, and can be used for navigation through an unfamiliar environment. However, these early strategies may be inaccurate or slow. Later, more memory-intensive strategies can be faster or more accurate, but are possible only after multi-trial learning. Efficient multi-trial learning requires consistency of behaviour and sensory input. Early strategies aid learning by providing consistent routes and views. Once a territory becomes familiar and appropriate memories are available, later strategies that rely on these memories tend to take precedence over earlier strategies.

  • The two main families of strategies that are involved in visual navigation are view-based strategies and path integration. View-based strategies exploit prominent objects as landmarks to guide movement. An early view-based strategy is the use of landmarks as beacons. A later strategy is to use stored retinotopic snapshots of landmarks for image matching. Insects, such as ants and bees, can perform path integration using an odometer and a celestial compass to monitor the direction and distance travelled from a starting point. The early path-integration strategy is to measure the global vector between the nest and a food site. A later strategy is to use a sequence of learnt local vectors that correspond to path segments of a familiar route.

  • As an insect becomes familiar with a route, it often seems to divide the route into segments that are demarcated by landmarks. Navigation within the segment can be accurately controlled by a strategy that makes use of, for example, a single local vector, snapshot or beacon. Navigation along the total route will be accurate as long as the sequence can be followed reliably. For this, insects must recognize segments and recall appropriate actions reliably.

  • The recognition of path segments, like their learning, is aided by following consistent routes. The consistent viewing orientations simplify the recognition of landmarks. The recognition of a path segment is also aided by contextual cues, such as its consistent position in the sequence along the route, and the surrounding panoramic context.

  • The organization of memories that has been revealed so far seems to be well suited to navigating along familiar routes. Associations between memories seem to link memories along a route, and contextual cues can keep the memories of different routes separate. As yet, there is little evidence that memories are linked into a global map-like network.

Abstract

The navigational strategies that are used by foraging ants and bees to reach a goal are similar to those of birds and mammals. Species from all these groups use path integration and memories of visual landmarks to navigate through familiar terrain. Insects have far fewer neural resources than vertebrates, so data from insects might be useful in revealing the essential components of efficient navigation. Recent work on ants and bees has uncovered a major role for associative links between long-term memories. We emphasize the roles of these associations in the reliable recognition of visual landmarks and the reliable performance of learnt routes. It is unknown whether such associations also provide insects with a map-like representation of familiar terrain. We suggest, however, that landmarks act primarily as signposts that tell insects what particular action they need to perform, rather than telling them where they are.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Image matching in the wood ant, Formica rufa.
Figure 2: Food vectors in the desert ant, Cataglyphis fortis.
Figure 3: Pattern recognition and spatial context in honeybees.
Figure 4: Trajectories of honeybees trained in a two-compartment maze in a single place.
Figure 5: Honeybees learn the distance of a feeder from a landmark.
Figure 6: The different shapes of routes taken by ants when trained with discrete or with extended landmarks.

Similar content being viewed by others

References

  1. Menzel, R. & Giurfa, M. Cognitive architecture of a mini-brain: the honeybee. Trends Cogn. Sci. 5, 62–71 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Cheng, K. How honeybees find a place: lessons from a simple mind. Anim. Learn. Behav. 28, 1–15 (2000).

    Google Scholar 

  3. von Frisch, K. The Dance Language and Orientation of Bees (Oxford Univ. Press, London, 1967).The most important book ever written on insect behaviour. Its insight and wealth of detail still make it required reading today.

    Google Scholar 

  4. Menzel, R. & Backhaus, W. in Vision and Visual Dysfunction. The Perception of Colour (ed. Gouras, P.) 262–288 (Macmillan, London, 1991).

    Google Scholar 

  5. Ernst, R. & Heisenberg, M. The memory template in Drosophila pattern vision at the flight simulator. Vision Res. 39, 3920–3933 (1999).The first paper to show that an insect can learn the centre of gravity of a retinal image.

    Article  CAS  PubMed  Google Scholar 

  6. Ronacher, B. How do bees learn and recognize visual patterns? Biol. Cybern. 79, 477–485 (1998).

    Google Scholar 

  7. Srinivasan, M. V., Zhang, S. W. & Witney, K. Visual discrimination of pattern orientation by honeybees: performance and implications for cortical processing. Phil. Trans. R. Soc. Lond. B 343, 199–210 (1994).

    Google Scholar 

  8. Giurfa, M., Eichmann. B & Menzel, R. Symmetry perception in an insect. Nature 382, 458–461 (1996).

    CAS  PubMed  Google Scholar 

  9. Horridge, G. A. The honeybee (Apis mellifera) detects bilateral symmetry and discriminates its axis. J. Insect Physiol. 41, 755–764 (1996).

    Google Scholar 

  10. Lehrer, M., Srinivasan, M. V. & Horridge, G. A. Motion cues provide the bee's visual world with a third dimension. Nature 332, 356–357 (1988).A demonstration that bees can use motion parallax to differentiate between stationary objects.

    Google Scholar 

  11. Yang, E. C. & Maddess, T. Orientation-sensitive neurons in the brain of the honey bee (Apis mellifera). J. Insect Physiol. 43, 329–336 (1997).

    CAS  PubMed  Google Scholar 

  12. Wolf, R., Ernst, R. & Heisenberg, M. in Neurosciences at the Turn of the Century. Proc. 4th Meet. Ger. Neurosci. Soc. Vol. 1 (eds Elsner, N. & Kreutzberg, G. W.) 272 (Thieme, Stuttgart, New York, 2001).

    Google Scholar 

  13. Strausfeld, N. J. Atlas of an Insect Brain (Springer, New York, 1976).A beautifully illustrated neuroanatomical monograph.

    Google Scholar 

  14. Chittka, L., Kunze, J., Shipman, C. & Buchmann, S. L. The significance of landmarks for path integration in homing honeybee foragers. Naturwissenschaften 82, 341–343 (1995).

    CAS  Google Scholar 

  15. Collett, T. S. & Baron, J. Biological compasses and the coordinate frame of landmark memories in honeybees. Nature 368, 137–140 (1994).

    Google Scholar 

  16. Wehner, R. & Räber, F. Visual spatial memory in desert ants, Cataglyphis fortis (Hymenoptera, Formicidae). Experientia 35, 1569–1571 (1979).

    Google Scholar 

  17. Wehner, R., Michel, B. & Antonsen, P. Visual navigation in insects: coupling of egocentric and geocentric information. J. Exp. Biol. 199, 129–140 (1996).

    CAS  PubMed  Google Scholar 

  18. Judd, S. P. D. & Collett, T. S. Multiple stored views and landmark guidance in ants. Nature 392, 710–714 (1998).

    CAS  Google Scholar 

  19. Cartwright, B. A. & Collett, T. S. Landmark learning in bees: experiments and models. J. Comp. Physiol. 151, 521–543 (1983).A detailed exploration of image matching.

    Google Scholar 

  20. Collett, T. S. & Rees, J. A. View-based navigation in hymenoptera: multiple strategies of landmark guidance in the approach to a feeder. J. Comp. Physiol. A 181, 47–58 (1997).

    Google Scholar 

  21. Junger, W. Waterstriders (Gerris paludum F.) compensate for drift with a discontinuously working visual position servo. J. Comp. Physiol. A 169, 633–639 (1991).The waterstrider's habit of always facing upstream makes the insect's position on the surface of the stream uniquely determine the image of the surroundings on its retina. The insect's fixed orientation made it possible to show that it learns the retinal position of a landmark image and restores a displaced image to its learnt position.

    Google Scholar 

  22. Franz, M. O., Schöllkopf, B., Mallot, H. A. & Bülthoff, H. H. Where did I take that snapshot? Scene based homing by image matching. Biol. Cybern. 79, 191–202 (1998).

    Google Scholar 

  23. Lambrinos, D., Möller, R., Labhart, T., Pfeifer, R. & Wehner, R. A mobile robot employing insect strategies for navigation. Rob. Auton. Syst. 30, 39–64 (2000).

    Google Scholar 

  24. Möller, R. Insect visual homing strategies in a robot with analog processing. Biol. Cybern. 83, 231–243 (2000).

    PubMed  Google Scholar 

  25. Möller, R. Do insects use templates or parameters for landmark navigation? J. Theor. Biol. 210, 33–45 (2001).

    PubMed  Google Scholar 

  26. Cheng, K., Collett, T. S. & Wehner, R. Honeybees learn the colours of landmarks. J. Comp. Physiol. 159, 69–73 (1986).

    Google Scholar 

  27. Cheng, K. Honeybees (Apis mellifera) remember two near-target landmark constellations. Learn. Motiv. 29, 435–443 (1998).

    Google Scholar 

  28. Cheng, K., Collett, T. S., Pickhard, A. & Wehner, R. The use of visual landmarks by honeybees: bees weight landmarks according to their distance from the goal. J. Comp. Physiol. A 161, 469–475 (1987).

    Google Scholar 

  29. Tinbergen, N. Über die Orientierung des Bienenwolfes (Philanthus triangulum Fabr.). Z. vergl. Physiol. 16, 305–334 (1932).

    Google Scholar 

  30. Vollbehr, J. Zur Orientierung junger Honigbienen bei ihrem 1. Orientierungsflug. Zool. Jahrb. Physiol. 79, 33–69 (1975).

    Google Scholar 

  31. Zeil, J. Orientation flights of solitary wasps (Cerceris; Sphecidae; Hymenoptera): I. Description of flight. J. Comp. Physiol. A 172, 189–205 (1993).The first detailed video analysis of the structure of orientation flights.

    Google Scholar 

  32. Lehrer, M. Why do bees turn back and look? J. Comp. Physiol. A 172, 549–563 (1993).

    Google Scholar 

  33. Collett, T. S. & Lehrer, M. Looking and learning: a spatial pattern in the orientation flight of the wasp Vespula vulgaris. Proc. R. Soc. Lond. B 252, 129–134 (1993).

    Google Scholar 

  34. Zeil, J., Kelber, A. & Voss, R. Structure and function of learning flights in bees and wasps. J. Exp. Biol. 199, 245–252 (1996).

    CAS  PubMed  Google Scholar 

  35. Zhang, S. W., Srinivasan, M. V. & Horridge, G. A. Pattern perception in honeybees: local and global analysis. Proc. R. Soc. Lond. B 248, 55–61 (1992).

    Google Scholar 

  36. Giurfa, M., Vorobyev, M., Brandt, R., Posner, B. & Menzel, R. Discrimination of coloured stimuli by honeybees: alternative use of achromatic and chromatic signals. J. Comp. Physiol. A 180, 235–243 (1997).

    Google Scholar 

  37. Lehrer, M. & Bischof, S. Detection of model flowers by honeybees: the role of chromatic and achromatic contrast. Naturwissenschaften 82, 145–147 (1995).

    CAS  Google Scholar 

  38. Schnetter, B. in Information Processing in the Visual System of Arthropods (ed. Wehner, R.) 195–200 (Springer, Berlin, 1972).

    Google Scholar 

  39. Brackenbury, J. Targetting and optomotor space in the leaf-hopper Empoasca vitis (Gothe) (Hemiptera: Cicadellidae). J. Exp. Biol. 199, 731–740 (1996).This paper, which deserves to be better known, shows that insects can aim at the centre of gravity of a target.

    CAS  PubMed  Google Scholar 

  40. Wehner, R. & Rossel, S. The bee's celestial compass — a case study in behavioural neurobiology. Fortschr. Zool. 31, 11–53 (1985).An accessible and detailed review of the bee's sun compass.

    Google Scholar 

  41. Walker, M. M. in Orientation and Communication in Arthropods (ed. Lehrer, M.) 187–213 (Birkhauser, Basel, 1997).An up-to-date review of magnetic orientation in arthropods.

    Google Scholar 

  42. Nicholson, D. J., Judd, S. P. D., Cartwright, B. A. & Collett, T. S. Learning walks and landmark guidance in wood ants (Formica rufa). J. Exp. Biol. 202, 1831–1838 (1999).

    PubMed  Google Scholar 

  43. Frier, H. J., Edwards, E., Neal, S., Smith C. & Collett, T. S. Magnetic compasses and visual pattern learning in honey bees. J. Exp. Biol. 199, 1353–1361 (1996).

    CAS  PubMed  Google Scholar 

  44. Zeil, J. Orientation flights of solitary wasps (Cerceris; Sphecidae; Hymenoptera): II. Similarities between orientation and return flights and the use of motion parallax. J. Comp. Physiol. A 172, 207–222 (1993).

    Google Scholar 

  45. Fry, S. N. & Wehner, R. Honey bees store landmarks in an egocentric frame of reference. J. Comp. Physiol. A 187, 1009–1016 (2002).

    Google Scholar 

  46. Collett, T. S. & Kelber, A. The retrieval of visuo-spatial memories by honeybees. J. Comp. Physiol. A 163, 145–150 (1988).

    CAS  PubMed  Google Scholar 

  47. Gould, J. L. Honey bees store learned flower-landing behaviour according to time of day. Anim. Behav. 35, 1579–1581 (1987).

    Google Scholar 

  48. Menzel, R., Giurfa, M., Gerber, B. & Hellstern, F. in Brain Evolution and Cognition (eds Roth, G. & Wulliman, M. F.) 333–366 (Wiley, New York, 2001).

    Google Scholar 

  49. Esch, H. E. & Burns, J. E. Distance estimation by foraging honeybees. J. Exp. Biol. 199, 155–162 (1996).This paper and reference 50 were the first to report that insects measure the distance of a flight path in terms of the amount of translational retinal image motion (optic flow) that is experienced during flight. Bees flying to a food source on the ground experience more optic flow than do bees flying to a food source carried by a balloon that is raised high in the air. Although the distance to the raised feeder is greater, the bees indicate a shorter distance with their waggle dances.

    CAS  PubMed  Google Scholar 

  50. Srinivasan, M. V., Zhang, S. W., Lehrer. M. & Collett, T. S. Honeybee navigation en route to the goal: visual flight control and odometry. J. Exp. Biol. 199, 155–162 (1996).

    Google Scholar 

  51. Srinivasan, M. V., Zhang, S., Altwen, M. & Tautz, J. Honeybee navigation: nature and calibration of the odometer Science 287, 851–853 (2000).

    CAS  PubMed  Google Scholar 

  52. Ronacher, B., Gallizi, K., Wohlgemuth, S. & Wehner, R. Lateral optic flow does not influence distance estimation in the desert ant Cataglyphis fortis. J. Exp. Biol. 203, 1113–1121 (2000).

    CAS  PubMed  Google Scholar 

  53. Wehner, R. & Wehner, S. Insect navigation: use of maps or Ariadne's thread. Ethol. Ecol. Evol. 2, 27–48 (1990).

    Google Scholar 

  54. Collett, M. & Collett, T. S. How do insects use path integration for their navigation? Biol. Cybern. 83, 245–259 (2000).A detailed review of the use of path integration in insects.

    CAS  PubMed  Google Scholar 

  55. Piéron, H. Du rôle sens musculaire dans l'orientation des fourmis. Bull. Inst. Gen. Psychol. 4, 168–187 (1907).

    Google Scholar 

  56. Brun, R. Die Raumorientierung der Ameisen und das Orientierungsproblem in Allgemeine (Gustav Fischer, Jena, 1914).

    Google Scholar 

  57. Lindauer, M. Time-compensated sun orientation in bees. Cold Spring Harb. Symp. Quant. Biol. 25, 371–377 (1960).

    CAS  PubMed  Google Scholar 

  58. Wehner, R. & Lanfranconi, B. What do the ants know about the rotation of the sky? Nature 293, 731–733 (1981).

    Google Scholar 

  59. Dyer, F. C. & Dickinson, J. A. Development of sun compensation by honeybees: how partially experienced bees estimate the sun's course. Proc. Natl Acad. Sci. USA 91, 4471–4474 (1994).This paper shows that bees have an innate ephemeris function: they expect the sun to rise in one direction, to set in the opposite direction, and to switch abruptly between the two around midday, as in the tropics. Over the first few days of flight experience, this initial expectation is modified to match the sun's actual course.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Lindauer, M. Kompassorientierung. Ergeb. Biol. 26, 158–181 (1963).

    Google Scholar 

  61. Collett, M., Collett, T. S. & Wehner, R. Calibration of vector navigation in desert ants. Curr. Biol. 9, 1031–1034 (1999).

    CAS  PubMed  Google Scholar 

  62. Schmidt, I., Collett, T. S., Dillier, F.-X. & Wehner, R. How desert ants cope with enforced detours on their way home. J. Comp. Physiol. A 171, 285–288 (1992).

    Google Scholar 

  63. Collett, T. S., Baron, J. & Sellen, K. On the encoding of movement vectors by honeybees. Are distance and direction represented independently? J. Comp. Physiol. A 179, 395–406 (1996).

    Google Scholar 

  64. Srinivasan, M. V., Zhang, S. W. & Lehrer, M. Honeybee navigation: odometry with monocular input. Anim. Behav. 56, 1245–1259 (1998).

    CAS  PubMed  Google Scholar 

  65. Collett, T. S., Fauria K., Dale, K. & Baron, J. Places and patterns — study of context learning in honeybees. J. Comp. Physiol. A 181, 343–353 (1997).

    Google Scholar 

  66. Collett, M., Harland, D. & Collett, T. S. The use of landmarks and panoramic context in the performance of local vectors by navigating honeybees. J. Exp. Biol. 205, 807–814 (2002).

    PubMed  Google Scholar 

  67. Menzel, R., Geiger, K., Joerges, J., Müller, U. & Chittka, L. Bees travel novel homeward routes by integrating separately acquired vector memories. Anim. Behav. 55, 139–152 (1988).

    Google Scholar 

  68. Collett, T. S. & Baron, J. Learnt sensori-motor mappings in honey bees: interpolation and its possible relevance to navigation. J. Comp. Physiol. A 177, 287–298 (1995).

    Google Scholar 

  69. Giurfa, M. & Capaldi, E. A. Vectors, routes and maps: new discoveries about navigation in insects. Trends Neurosci. 22, 237–241 (1999).

    CAS  PubMed  Google Scholar 

  70. Collett, M., Collett, T. S., Bisch, S. & Wehner, R. Local and global vectors in desert ant navigation. Nature 394, 269–272 (1998).Makes explicit the distinction between local and global path-integration vectors.

    CAS  Google Scholar 

  71. Zhang, S. W., Bartsch, K. & Srinivasan M. V. Maze learning by honeybees. Neurobiol. Learn. Mem. 66, 267–282 (1996).

    CAS  PubMed  Google Scholar 

  72. Bisch-Knaden, S. & Wehner, R. Egocentric information helps desert ants to navigate around familiar obstacles. J. Exp. Biol. 204, 4177–4184 (2001).

    CAS  PubMed  Google Scholar 

  73. Franz, M. O. & Mallot, H. A. Biomimetic robot navigation. Rob. Auton. Syst. 30, 133–153 (2000).

    Google Scholar 

  74. Srinivasan, M. V., Zhang, S. W. & Bidwell, N. J. Visually mediated odometry in honeybees navigation en route to the goal: visual flight control and odometry. J. Exp. Biol. 200, 2513–2522 (1997).

    CAS  PubMed  Google Scholar 

  75. Cheng, K., Srinivasan, M. V. & Zhang, S. W. Error is proportional to distance measured by honeybees: Weber's law in the odometer. Anim. Cogn. 2, 11–16 (1999).

    Google Scholar 

  76. Srinivasan, M. V., Zhang, S. W. & Zhu, H. Honeybees link sights to smells. Nature 396, 637–638 (1998).

    CAS  Google Scholar 

  77. Zhang, S. W., Lehrer, M. & Srinivasan, M. V. Honeybee memory: navigation by associative grouping and recall of visual stimuli. Neurobiol. Learn. Mem. 72, 180–201 (1999).An intriguing paper indicating that bees group separately the memories associated with different routes.

    CAS  PubMed  Google Scholar 

  78. Chittka, L., Geiger, K. & Kunze, J. The influences of landmarks on distance estimation of honey bees. Anim. Behav. 50, 23–31 (1995).

    Google Scholar 

  79. Collett, T. S., Fry, S. N. & Wehner, R. Sequence learning by honeybees. J. Comp. Physiol. A 172, 693–706 (1993).

    Google Scholar 

  80. Santschi, F. Comment s'orientent les fourmis. Rev. Suisse Zool. 21, 347–425 (1913).

    Google Scholar 

  81. Collett, T. S., Dillmann, E., Giger, A. & Wehner, R. Visual landmarks and route following in desert ants. J. Comp. Physiol. A 170, 435–442 (1992).

    Google Scholar 

  82. Srinivasan, M. V., Lehrer, M., Kirchner, W. H. & Zhang, S. W. Range perception through apparent image speed in freely-flying honeybees. Vis. Neurosci. 6, 519–535 (1991).

    CAS  PubMed  Google Scholar 

  83. Heusser, D. & Wehner, R. The visual centring response in desert ants, Cataglyphis fortis. J. Exp. Biol. 205, 585–590 (2002).

    PubMed  Google Scholar 

  84. Harrison, J. F., Fewell, J. H., Stiller, T. M. & Breed, M. D. Effects of experience on use of orientation cues in the giant tropical ant. Anim. Behav. 37, 869–871 (1989).

    Google Scholar 

  85. Schmid-Hempel, P. Individually different foraging methods in the desert ant Cataglyphis bicolor (Hymenoptera, Formicidae). Behav. Ecol. Sociobiol. 14, 263–271 (1984).

    Google Scholar 

  86. Collett, T. S. Rapid navigational learning in insects with a short lifespan. Connect. Sci. 10, 255–270 (1998).

    Google Scholar 

  87. Graham, P. & Collett, T. S. View based navigation in insects: how wood ants (Formica rufa L.) look at and are guided by extended landmarks. J. Exp. Biol. (in the press).

  88. Collett, T. S., Collett, M. & Wehner, R. The guidance of desert ants by extended landmarks. J. Exp. Biol. 204, 1635–1639 (2001).

    CAS  PubMed  Google Scholar 

  89. Pratt, S., Brooks, S. E. & Franks, N. F. The use of edges in visual navigation by the ant Leptothorax albipennis. Ethology 107, 1125–1136 (2001).

    Google Scholar 

  90. Capaldi, E. A. & Dyer, F. C. The role of orientation flights on homing performance in honeybees. J. Exp. Biol. 202, 1655–1666 (1999).Shows that, during a single orientation flight, bees can learn enough about landmarks near the hive that they will home directly if displaced to a site from which the hive is visible.

    CAS  PubMed  Google Scholar 

  91. Menzel, R., Brandt, R., Gumbert, A., Komischke, B. & Kunze, J. Two spatial memories for honeybee navigation. Proc. R. Soc. Lond. B 267, 961–968 (2000).

    CAS  Google Scholar 

  92. Menzel, R., Greggers, U. & Riley, J. in Proc. 2001 Berl. Meet. Eur. Sect. IUSSI (eds Menzel, R. & Rademacher, E.) 158 (IUSSI, Berlin, 2001).

    Google Scholar 

  93. Gallistel, C. R. The Organization of Learning (MIT Press, Cambridge, Massachusetts, 1990).

    Google Scholar 

  94. Trullier, O., Wiener, S. I., Berthoz, A. & Meyer, J. Biologically based artificial navigation systems: review and prospects. Prog. Neurobiol. 51, 483–544 (1997).A comprehensive and readable review of models of navigation.

    CAS  PubMed  Google Scholar 

  95. Gillner, S. & Mallot, H. A. Navigation and acquisition of spatial knowledge in a virtual maze. J. Cogn. Neurosci. 10, 445–463 (1998).

    CAS  PubMed  Google Scholar 

  96. Franz, M. O. & Mallot, H. A. Biomimetic robot navigation. Rob. Auton. Syst. 30, 133–153 (2000).

    Google Scholar 

  97. Schölkopf, B. & Mallot, H. A. View-based cognitive mapping and path planning. Adapt. Behav. 3, 311–348 (1995).

    Google Scholar 

  98. Cartwright, B. A. & Collett, T. S. Landmark maps for honeybees. Biol. Cybern. 57, 85–93 (1987).

    Google Scholar 

  99. Gould, J. L. The locale map of honey bees: do insects have cognitive maps? Science 232, 861–863 (1986).

    CAS  PubMed  Google Scholar 

  100. Menzel, R. et al. Dominance of celestial cues over landmarks disproves map-like orientation in honey bees. Z. Naturforsch. [C] 45, 723–726 (1990).

    Google Scholar 

  101. Wehner, R., Bleuler, S., Nievergelt, C. & Shah, D. Bees navigate by using vectors and routes rather than maps. Naturwissenschaften 77, 479–482 (1990).

    Google Scholar 

  102. Wehner, R. & Menzel, R. Do insects have cognitive maps? Annu. Rev. Neurosci. 13, 403–414 (1990).

    CAS  PubMed  Google Scholar 

  103. Dyer, F. C. Bees acquire route-base memories but not maps in a familiar landscape. Anim. Behav. 41, 239–246 (1991).

    Google Scholar 

  104. Dyer, F. C., Berry, N. A. & Richard, A. S. Honey bee spatial memory: use of route based memories after displacement. Anim. Behav. 45, 1028–1030 (1993).

    Google Scholar 

  105. Cornetz, M. V. Album faisant suite aux trajets de fourmis et retours aux nid. Mem. Inst. Gen. Psychol. (Paris) 2, 1–67 (1910).

    Google Scholar 

  106. Baerends, G. P. Fortpflanzungsverhalten und Orientierung der Grabwespe Ammophilia campestris Jur. Tijdschr. Entomol. 84, 68–275 (1941).A Dutch classic, which deserves translation, on the orientation of digger wasps and their ability to follow routes.

    Google Scholar 

  107. Osborne, J. L. et al. A landscape-scale study of bumble bee foraging range and constancy, using harmonic radar. J. Appl. Ecol. 26, 519–533 (1999).The first study to illustrate multiple foraging trips of a single bee.

    Google Scholar 

  108. Simon, H. A. The Sciences of the Artificial (MIT Press, Cambridge, Massachusetts, 1969).

    Google Scholar 

  109. Wolf, H. & Wehner, R. Pinpointing food sources: olfactory and anemotactic orientation in desert ants, Cataglyphis fortis. J. Exp. Biol. 203, 857–868 (2000).

    CAS  PubMed  Google Scholar 

  110. Fry, S. N., Bichsel, M., Muller, P. & Robert, D. Tracking of flying insects using pan-tilt cameras. J. Neurosci. Methods 101, 59–67 (2000).

    CAS  PubMed  Google Scholar 

  111. Schilstra, C. & Hateren, J. H. Blowfly flight and optic flow. I. Thorax kinematics and flight dynamics. J. Exp. Biol. 202, 1481–1490 (1999).This paper reports a technical tour de force in which the three-dimensional rotational and translational movements of both the head and the body of a fly are monitored during free flight.

    PubMed  Google Scholar 

  112. Riley, J. R. et al. Tracking bees with harmonic radar. Nature 379, 29–30 (1996).

    CAS  Google Scholar 

  113. Janzen, D. H. Euglossine bees as long-distance pollinators of tropical plants. Science 171, 203–205 (1971).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank B. Cartwright, M. Giurfa, U. Greggers and R. Menzel for their helpful criticisms of an earlier draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas S. Collett.

Related links

Related links

FURTHER INFORMATION

Department of Neurobiology, University of Zürich

Insect Vision, Navigation and 'Cognition' Laboratory

Sussex Insect Navigation Group

The Menzel Research Group — Navigation of Honeybees

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collett, T., Collett, M. Memory use in insect visual navigation. Nat Rev Neurosci 3, 542–552 (2002). https://doi.org/10.1038/nrn872

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn872

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing