Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Synaptic tagging — who's it?

Key Points

  • Long-term changes in synaptic efficacy commonly require gene expression and protein translation. However, this type of plastic change can be restricted to just a few of the contacts that a given neuron receives. How can cell-wide processes such as transcription be restricted to a small subset of synapses? An idea that has been put forward to answer this question is that of the 'synaptic tag', which marks synapses that are to experience the plastic change such that only those contacts with the tag can use the products of transcription.

  • Studies in Aplysia cell cultures and rat hippocampal slices have provided good evidence for the existence of a synaptic tag. In both cases, once a neuron has been stimulated to undergo long-term, transcription-dependent synaptic plasticity, the cell can use stimuli that normally produce transient changes in synaptic strength to induce more persistent changes at a different set of synapses. This capability persists only within a discrete time window, during which the putative tag can capture the products of gene expression that are induced by strong activity elsewhere in the neuron.

  • Any candidate synaptic tag should fulfil several criteria. First, it should be spatially restricted. Second, it should be time-limited and reversible. Third, it should be able to interact with cell-wide molecular events that occur after strong stimulation. So, from a broad perspective, anything that provides a spatially restricted trace of activity is a candidate synaptic tag.

  • Persistently active kinases, adhesion molecules, the actin network and ion channels have been put forward as possible synaptic tags. Similarly, the local translation and degradation of proteins have also been considered as possible mechanisms to tag active synapses. As the evidence in support of all of these possibilities is good, it is probable that neurons do not use a single synaptic tag to mark synapses, but a wide variety of them.

  • The identity of the transcriptional products that interact with the tag remains unknown. Although a couple of candidates has been put forward, their precise identification constitutes one of the main challenges for this field.

Abstract

A synaptic tag transiently marks a synapse after activation in a way that allows the local recognition of transcriptional products to effect an enduring change in transmission efficiency. The idea of the synaptic tag as a single molecule might be misguided; instead, a process such as activation of local translation or cytoskeletal reorganization could mark a synapse. A change of this nature might be modulated directly or indirectly by transcriptional products that, for example, modulate translational activity, mRNA stability or protein degradation, or are ensconced in a cytoskeletal configuration, and thereby lead to long-term changes in synaptic strength.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synaptic tagging in cultures of sensory and motor Aplysia neurons.
Figure 2: Synaptic tagging in rodent hippocampal neurons.
Figure 3: A model of synaptic tagging in which activity-dependent effects on translation serve as the tag.

Similar content being viewed by others

References

  1. Martin, K. C. et al. Synapse-specific, long-term facilitation of Aplysia sensory to motor synapses: a function for local protein synthesis in memory storage. Cell 91, 927–938 (1997).Shows that long-lasting, transcription-dependent forms of plasticity can occur in a synapse-specific manner; together with reference 12 , this paper provides evidence for synaptic tagging in Aplysia.

    Article  CAS  Google Scholar 

  2. Frey, U. & Morris, R. G. Synaptic tagging and long-term potentiation. Nature 385, 533–536 (1997).This paper and reference 3 provide evidence for synaptic tagging in rat hippocampal neurons.

    Article  CAS  Google Scholar 

  3. Frey, U. & Morris, R. G. Weak before strong: dissociating synaptic tagging and plasticity-factor accounts of late-LTP. Neuropharmacology 37, 545–552 (1998).

    Article  CAS  Google Scholar 

  4. Shi, S. H. et al. Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science 284, 1811–1816 (1999).

    Article  CAS  Google Scholar 

  5. Tovar, K. R. & Westbrook, G. L. Mobile NMDA receptors at hippocampal synapses. Neuron 34, 255–264 (2002).

    Article  CAS  Google Scholar 

  6. Ango, F. et al. Homer-dependent cell surface expression of metabotropic glutamate receptor type 5 in neurons. Mol. Cell. Neurosci. 20, 323–329 (2002).

    Article  CAS  Google Scholar 

  7. El-Husseini, A. E. et al. Synaptic strength regulated by palmitate cycling on PSD-95. Cell 108, 849–863 (2002).

    Article  CAS  Google Scholar 

  8. Lisman, J., Schulman, H. & Cline, H. The molecular basis of CaMKII function in synaptic and behavioural memory. Nature Rev. Neurosci. 3, 175–190 (2002).

    Article  CAS  Google Scholar 

  9. Osten, P., Valsamis, L., Harris, A. & Sacktor, T. C. Protein synthesis-dependent formation of protein kinase Mζ in long-term potentiation. J. Neurosci. 16, 2444–2451 (1996).

    Article  CAS  Google Scholar 

  10. Ling, D. S. et al. Protein kinase Mζ is necessary and sufficient for LTP maintenance. Nature Neurosci. 5, 295–296 (2002).

    Article  CAS  Google Scholar 

  11. Drier, E. A. et al. Memory enhancement and formation by atypical PKM activity in Drosophila melanogaster. Nature Neurosci. 5, 316–324 (2002).

    Article  CAS  Google Scholar 

  12. Casadio, A. et al. A transient, neuron-wide form of CREB-mediated long-term facilitation can be stabilized at specific synapses by local protein synthesis. Cell 99, 221–237 (1999).

    Article  CAS  Google Scholar 

  13. Chain, D. G., Hegde, A. N., Yamamoto, N., Liu-Marsh, B. & Schwartz, J. H. Persistent activation of cAMP-dependent protein kinase by regulated proteolysis suggests a neuron-specific function of the ubiquitin system in Aplysia. J. Neurosci. 15, 7592–7603 (1995).

    Article  CAS  Google Scholar 

  14. Hegde, A. N. et al. Ubiquitin C-terminal hydrolase is an immediate–early gene essential for long-term facilitation in Aplysia. Cell 89, 115–126 (1997).

    Article  CAS  Google Scholar 

  15. Chain, D. G. et al. Mechanisms for generating the autonomous cAMP-dependent protein kinase required for long-term facilitation in Aplysia. Neuron 22, 147–156 (1999).

    Article  CAS  Google Scholar 

  16. Bailey, C. H. & Kandel, E. R. Structural changes accompanying memory storage. Annu. Rev. Physiol. 55, 397–426 (1993).

    Article  CAS  Google Scholar 

  17. Schuster, C. M., Davis, G. W., Fetter, R. D. & Goodman, C. S. Genetic dissection of structural and functional components of synaptic plasticity. II. Fasciclin II controls presynaptic structural plasticity. Neuron 17, 655–667 (1996).

    Article  CAS  Google Scholar 

  18. Davis, G. W., Schuster, C. M. & Goodman, C. S. Genetic dissection of structural and functional components of synaptic plasticity. III. CREB is necessary for presynaptic functional plasticity. Neuron 17, 669–679 (1996).

    Article  CAS  Google Scholar 

  19. Bailey, C. H., Chen, M., Keller, F. & Kandel, E. R. Serotonin-mediated endocytosis of apCAM: an early step of learning-related synaptic growth in Aplysia. Science 256, 645–649 (1992).

    Article  CAS  Google Scholar 

  20. Mayford, M., Barzilai, A., Keller, F., Schacher, S. & Kandel, E. R. Modulation of an NCAM-related adhesion molecule with long-term synaptic plasticity in Aplysia. Science 256, 638–644 (1992).

    Article  CAS  Google Scholar 

  21. Dityatev, A., Dityateva, G. & Schachner, M. Synaptic strength as a function of post versus presynaptic expression of the neural cell adhesion molecule NCAM. Neuron 26, 207–117 (2000).

    Article  CAS  Google Scholar 

  22. Tanaka, H. et al. Molecular modification of N-cadherin in response to synaptic activity. Neuron 25, 93–107 (2000).

    Article  CAS  Google Scholar 

  23. Bozdagi, O., Shan, W., Tanaka, H., Benson, D. L. & Huntley, G. W. Increasing numbers of synaptic puncta during late-phase LTP: N-cadherin is synthesized, recruited to synaptic sites, and required for potentiation. Neuron 28, 245–259 (2000).

    Article  CAS  Google Scholar 

  24. Murase, S., Mosser, E. & Schuman, E. M. Depolarization drives β-catenin into neuronal spines promoting changes in synaptic structure and function. Neuron 35, 91–105 (2002).

    Article  CAS  Google Scholar 

  25. Lu, Q. et al. δ-Catenin, an adhesive junction-associated protein which promotes cell scattering. J. Cell Biol. 144, 519–532 (1999).

    Article  CAS  Google Scholar 

  26. Izawa, I., Nishizawa, M., Ohtakara, K. & Inagaki, M. Densin-180 interacts with δ-catenin/neural plakophilin-related armadillo repeat protein at synapses. J. Biol. Chem. 277, 5345–5350 (2002).

    Article  CAS  Google Scholar 

  27. Fischer, M., Kaech, S., Wagner, U., Brinkhaus, H. & Matus, A. Glutamate receptors regulate actin-based plasticity in dendritic spines. Nature Neurosci. 3, 887–894 (2000).

    Article  CAS  Google Scholar 

  28. Star, E. N., Kwiatkowski, D. J. & Murthy, V. N. Rapid turnover of actin in dendritic spines and its regulation by activity. Nature Neurosci. 5, 239–246 (2002).

    Article  CAS  Google Scholar 

  29. Engert, F. & Bonhoeffer, T. Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 399, 66–70 (1999).

    Article  CAS  Google Scholar 

  30. Maletic-Savatic, M., Malinow, R. & Svoboda, K. Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science 283, 1923–1927 (1999).

    Article  CAS  Google Scholar 

  31. Toni, N., Buchs, P. A., Nikonenko, I., Bron, C. R. & Muller, D. LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature 402, 421–425 (1999).

    Article  CAS  Google Scholar 

  32. Hatada, Y., Wu, F., Sun, Z. Y., Schacher, S. & Goldberg, D. J. Presynaptic morphological changes associated with long-term synaptic facilitation are triggered by actin polymerization at preexisting varicosities. J. Neurosci. 20, RC82 (2000).

    Article  CAS  Google Scholar 

  33. Colicos, M. A., Collins, B. E., Sailor, M. J. & Goda, Y. Remodeling of synaptic actin induced by photoconductive stimulation. Cell 107, 605–616 (2001).

    Article  CAS  Google Scholar 

  34. Beaumont, V., Zhong, N., Froemke, R. C., Ball, R. W. & Zucker, R. S. Temporal synaptic tagging by Ih activation and actin: involvement in long-term facilitation and cAMP-induced synaptic enhancement. Neuron 33, 601–613 (2002).Provides evidence that the activation of presynaptic I h channels can serve as a synaptic tag at the crayfish neuromuscular junction. This tag does not interact with products of transcription; rather, it allows the neuron to integrate synaptic stimulation over time.

    Article  CAS  Google Scholar 

  35. Beaumont, V., Zhong, N., Fletcher, R., Froemke, R. C. & Zucker, R. S. Phosphorylation and local presynaptic protein synthesis in calcium- and calcineurin-dependent induction of crayfish long-term facilitation. Neuron 32, 489–501 (2001).

    Article  CAS  Google Scholar 

  36. Ostroff, L. E., Fiala, J. C., Allwardt, B. & Harris, K. M. Polyribosomes redistribute from dendritic shafts into spines with enlarged synapses during LTP in developing rat hippocampal slices. Neuron (in the press).Shows that strong synaptic stimulation increases the percentage of spines containing polyribosome clusters in the rat hippocampus.

  37. Krichevsky, A. M. & Kosik, K. S. Neuronal RNA granules: a link between RNA localization and stimulation-dependent translation. Neuron 32, 683–696 (2001).Provides evidence that RNA granules are storage sites for mRNAs in distal dendrites, and that depolarization releases mRNAs from the granules to polysomes, where they are actively translated.

    Article  CAS  Google Scholar 

  38. Rook, M. S., Lu, M. & Kosik, K. S. CaMKIIα 3′ untranslated region-directed mRNA translocation in living neurons: visualization by GFP linkage. J. Neurosci. 20, 6385–6393 (2000).

    Article  CAS  Google Scholar 

  39. Khan, A., Pepio, A. M. & Sossin, W. S. Serotonin activates S6 kinase in a rapamycin-sensitive manner in Aplysia synaptosomes. J. Neurosci. 21, 382–391 (2001).

    Article  CAS  Google Scholar 

  40. Scheetz, A. J., Nairn, A. C. & Constantine-Paton, M. NMDA receptor-mediated control of protein synthesis at developing synapses. Nature Neurosci. 3, 211–216 (2000).

    Article  CAS  Google Scholar 

  41. Huang, Y. S., Jung, M. Y., Sarkissian, M. & Richter, J. D. N-methyl-d-aspartate receptor signaling results in Aurora kinase-catalyzed CPEB phosphorylation and αCaMKII mRNA polyadenylation at synapses. EMBO J. 21, 2139–2148 (2002).

    Article  CAS  Google Scholar 

  42. Pinkstaff, J. K., Chappell, S. A., Mauro, V. P., Edelman, G. M. & Krushel, L. A. Internal initiation of translation of five dendritically localized neuronal mRNAs. Proc. Natl Acad. Sci. USA 98, 2770–2775 (2001).

    Article  CAS  Google Scholar 

  43. Lohof, A. M., Ip, N. Y. & Poo, M. M. Potentiation of developing neuromuscular synapses by the neurotrophins NT-3 and BDNF. Nature 363, 350–353 (1993).

    Article  CAS  Google Scholar 

  44. Levine, E. S., Dreyfus, C. F., Black, I. B. & Plummer, M. R. Brain-derived neurotrophic factor rapidly enhances synaptic transmission in hippocampal neurons via postsynaptic tyrosine kinase receptors. Proc. Natl Acad. Sci. USA 92, 8074–8077 (1995).

    Article  CAS  Google Scholar 

  45. Kang, H. & Schuman, E. M. Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus. Science 267, 1658–1662 (1995).

    Article  CAS  Google Scholar 

  46. Kovalchuk, Y., Hanse, E., Kafitz, K. W. & Konnerth, A. Postsynaptic induction of BDNF-mediated long-term potentiation. Science 295, 1729–1734 (2002).

    Article  CAS  Google Scholar 

  47. Patterson, S. L., Grover, L. M., Schwartzkroin, P. A. & Bothwell, M. Neurotrophin expression in rat hippocampal slices: a stimulus paradigm inducing LTP in CA1 evokes increases in BDNF and NT-3 mRNAs. Neuron 9, 1081–1088 (1992).

    Article  CAS  Google Scholar 

  48. Korte, M. et al. Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. Proc. Natl Acad. Sci. USA 92, 8856–8860 (1995).

    Article  CAS  Google Scholar 

  49. Tao, X., Finkbeiner, S., Arnold, D. B., Shaywitz, A. J. & Greenberg, M. E. Ca2+ influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism. Neuron 20, 709–726 (1998).

    Article  CAS  Google Scholar 

  50. Tongiorgi, E., Righi, M. & Cattaneo, A. Activity-dependent dendritic targeting of BDNF and TrkB mRNAs in hippocampal neurons. J. Neurosci. 17, 9492–9505 (1997).

    Article  CAS  Google Scholar 

  51. Steward, O., Wallace, C. S., Lyford, G. L. & Worley, P. F. Synaptic activation causes the mRNA for the IEG Arc to localize selectively near activated postsynaptic sites on dendrites. Neuron 21, 741–751 (1998).

    Article  CAS  Google Scholar 

  52. Palacios, I. M. & Johnston, D. S. Getting the message across: the intracellular localization of mRNAs in higher eukaryotes. Annu. Rev. Cell Dev. Biol. 17, 569–614 (2001).

    Article  CAS  Google Scholar 

  53. DiAntonio, A. et al. Ubiquitination-dependent mechanisms regulate synaptic growth and function. Nature 412, 449–452 (2001).

    Article  CAS  Google Scholar 

  54. Campbell, D. S. & Holt, C. E. Chemotropic responses of retinal growth cones mediated by rapid local protein synthesis and degradation. Neuron 32, 1013–1026 (2001).

    Article  CAS  Google Scholar 

  55. Callen, E. J. & Boyd, T. L. Examination of a backchaining/counterconditioning process during the extinction of conditioned fear. Behav. Res. Ther. 28, 261–271 (1990).

    Article  CAS  Google Scholar 

  56. Steward, O. & Schuman, E. M. Protein synthesis at synaptic sites on dendrites. Annu. Rev. Neurosci. 24, 299–325 (2001).

    Article  CAS  Google Scholar 

  57. Ouyang, Y., Rosenstein, A., Kreiman, G., Schuman, E. M. & Kennedy, M. B. Tetanic stimulation leads to increased accumulation of Ca2+/calmodulin-dependent protein kinase II via dendritic protein synthesis in hippocampal neurons. J. Neurosci. 19, 7823–7833 (1999).

    Article  CAS  Google Scholar 

  58. Aakalu, G., Smith, W. B., Nguyen, N., Jiang, C. & Schuman, E. M. Dynamic visualization of local protein synthesis in hippocampal neurons. Neuron 30, 489–502 (2001).

    Article  CAS  Google Scholar 

  59. Job, C. & Eberwine, J. Identification of sites for exponential translation in living dendrites. Proc. Natl Acad. Sci. USA 98, 13037–13042 (2001).

    Article  CAS  Google Scholar 

  60. Spencer, G. E. et al. Synthesis and functional integration of a neurotransmitter receptor in isolated invertebrate axons. J. Neurobiol. 44, 72–81 (2000).

    Article  CAS  Google Scholar 

  61. Ghirardi, M., Montarolo, P. G. & Kandel, E. R. A novel intermediate stage in the transition between short- and long-term facilitation in the sensory to motor neuron synapse of Aplysia. Neuron 14, 413–420 (1995).

    Article  CAS  Google Scholar 

  62. Sutton, M. A. & Carew, T. J. Parallel molecular pathways mediate expression of distinct forms of intermediate-term facilitation at tail sensory-motor synapses in Aplysia. Neuron 26, 219–231 (2000).

    Article  CAS  Google Scholar 

  63. Sutton, M. A., Ide, J., Masters, S. E. & Carew, T. J. Interaction between amount and pattern of training in the induction of intermediate- and long-term memory for sensitization in Aplysia. Learn. Mem. 9, 29–40 (2002).

    Article  Google Scholar 

  64. Sherff, C. M. & Carew, T. J. Coincident induction of long-term facilitation in Aplysia: cooperativity between cell bodies and remote synapses. Science 285, 1911–1914 (1999).Shows that coincident, subthreshold application of serotonin to somata and processes of Aplysia neurons produces LTF that is dependent on local protein synthesis in the process.

    Article  CAS  Google Scholar 

  65. Kang, H. & Schuman, E. M. A requirement for local protein synthesis in neurotrophin-induced hippocampal synaptic plasticity. Science 273, 1402–1406 (1996).

    Article  CAS  Google Scholar 

  66. Huber, K. M., Kayser, M. S. & Bear, M. F. Role for rapid dendritic protein synthesis in hippocampal mGluR-dependent long-term depression. Science 288, 1254–1257 (2000).

    Article  CAS  Google Scholar 

  67. Miller, S. et al. Disruption of dendritic translation of CaMKIIα impairs stabilization of synaptic plasticity and memory consolidation. Neuron (in the press).Describes a mouse in which the α-CaMKII mRNA is not dendritically localized, and shows a role for local protein synthesis in late-phase LTP and long-term forms of memory.

  68. Lanahan, A. & Worley, P. Immediate–early genes and synaptic function. Neurobiol. Learn. Mem. 70, 37–43 (1998). | PubMed

    Article  CAS  Google Scholar 

  69. Leil, T. A., Ossadtchi, A., Cortes, J. S., Leahy, R. M. & Smith, D. J. Finding new candidate genes for learning and memory. J. Neurosci. Res. 68, 127–137 (2002).

    Article  CAS  Google Scholar 

  70. Dubnau, J. & Tully, T. Gene discovery in Drosophila: new insights for learning and memory. Annu. Rev. Neurosci. 21, 407–444 (1998).

    Article  CAS  Google Scholar 

  71. Grosshans, H. & Slack, F. J. Micro-RNAs: small is plentiful. J. Cell Biol. 156, 17–21 (2002).

    Article  CAS  Google Scholar 

  72. Ambros, V. MicroRNAs: tiny regulators with great potential. Cell 107, 823–826 (2001).

    Article  CAS  Google Scholar 

  73. Barco, A., Alarcon, J. M. & Kandel, E. R. Expression of constitutively active CREB protein facilitates the late phase of long-term potentiation by enhancing synaptic capture. Cell 108, 689–703 (2002).Describes a mouse in which expression of a constitutively active form of the transcription factor CREB leads to a reduced threshold for producing long-lasting LTP. The subthreshold stimuli might produce tags that can capture the products of transcription that are induced by CREB activation.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank M. Barad, M. Mayford, R. Moccia, E. Schuman, W. Sossin and O. Steward for their insightful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

actin

AMPA receptors

Arc

BDNF

cadherins

CaMKII

β-catenin

δ-catenin

CREB

mGluR5

NCAM

neurotrophin 3

NMDA receptors

PKA

PKM-ζ

PSD95

TrkB

ubiquitin carboxy-terminal hydrolase

FURTHER INFORMATION

Encyclopedia of Life Sciences

learning and memory

long-term potentiation

protein phosphorylation and long-term synaptic plasticity

protein synthesis and long-term synaptic plasticity

Glossary

SCHAFFER COLLATERALS

Axons of the CA3 pyramidal cells of the hippocampus that form synapses with the apical dendrites of CA1 neurons.

HOMER

A protein of the postsynaptic density that can interact with metabotropic glutamate receptors, regulating their membrane insertion and their interaction with other postsynaptic proteins.

UBIQUITIN

A molecule that is attached to lysine residues of other proteins, often as a tag for their rapid cellular degradation by the proteasome.

PROTEASOME

A protein complex responsible for degrading intracellular proteins that have been tagged for destruction by the addition of ubiquitin.

HYPOMORPH

A mutant that expresses less than the normal amount of a given gene product.

ADHERENS JUNCTION

A cell–cell junction also known as zonula adherens, which is characterized by the intracellular insertion of microfilaments. If intermediate filaments are inserted in lieu of microfilaments, the resulting junction is referred to as a desmosome.

PHOTOCONDUCTIVE STIMULATION

A method whereby light can be used to stimulate the activity of subpopulations of synapses in vitro. Cells are cultured on a silicon chip and light is applied to single neurons. As the conductivity of silicon changes in response to light, it is possible to pair local illumination of single neurons with subthreshold electrical stimulation of the whole culture. So, the stimulus intensity will reach threshold for activation solely in the illuminated cell.

INTERNAL RIBOSOME ENTRY SITE

A sequence that is inserted between the coding regions of two proteins and allows efficient assembly of the ribosome complex in the middle of a transcript, leading to translation of the second protein.

MULTIPHOTON MICROSCOPY

A form of microscopy in which a fluorochrome that would normally be excited by a single photon is stimulated quasi-simultaneously by several photons of lower energy. Under these conditions, fluorescence increases as a function of the square of the light intensity, and decreases approximately as the square of the distance from the focus. Because of this behaviour, only fluorochrome molecules near the plane of focus are excited, greatly reducing light scattering and photodamage of the sample.

MICRORNAS

Tiny transcripts of about 22 nucleotides. The functions of these RNAs remain obscure, although they probably serve as antisense regulators of the translation of other RNAs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, K., Kosik, K. Synaptic tagging — who's it?. Nat Rev Neurosci 3, 813–820 (2002). https://doi.org/10.1038/nrn942

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn942

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing