Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Roles of serine/threonine phosphatases in hippocampel synaptic plasticity

Key Points

  • Protein phosphatases have long been regarded as working in the background while kinases assume the important role of protein phosphorylation. This view has gradually changed with the realization that phosphatases are actively involved in the control of many cellular processes. In the nervous system, the involvement of protein phosphatases in synaptic plasticity has been extensively studied and constitutes the central topic of this article.

  • The three best characterized serine/threonine phosphatases in brain are protein phosphatase 1 (PP1), protein phosphatase 2A (PP2A) and calcineurin (PP2B). Each of these is present in the hippocampus, although their precise patterns of expression show some variation.

  • The activity of protein phosphatases is tightly regulated. Several regulatory mechanisms have been described, and they include the phosphorylation of regulatory subunits, the direct regulation of phosphatase activity by calcium, and their regulation by alterations in the subcellular localization of phosphatase and/or substrate. Neurons have taken advantage of this diversity by using phosphatases to trigger and maintain long-lasting changes in synaptic efficacy.

  • A cAMP-dependent protein kinase (PKA)-dependent suppression of PP1 activity seems to participate in the induction of long-term potentiation (LTP). This suppression depends on the phosphorylation of an endogenous phosphatase inhibitor. Similarly, PP2B appears to constrain LTP induction in CA1, as indicated by extensive pharmacological and genetic evidence. Moreover, a persistent downregulation of PP2A activity might be involved in the maintenance of LTP.

  • There is abundant pharmacological, genetic and biochemical evidence for the involvement of PP1/PP2A and/or PP2B activation in the induction of long-term depression (LTD). In addition, phosphatases are also involved in depotentiation — the reversal of LTP. However, the mechanisms involved in depotentiation might not necessarily be the same as those used during LTD induction; in the former, phosphatases might have to dephosphorylate specific substrates originally affected by LTP induction.

  • α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor subunits have been identified as prime targets of phosphatase action in neurons. So, dephosphorylation of AMPA receptors can modulate channel properties and their availability on the cell membrane. Similarly, phosphatases can regulate cytoskeletal elements and therefore affect synaptic remodelling. The regulation of phosphatase activity can also have longer-lasting effects on synaptic function through the dephosphorylation of transcription factors, and so the control of gene expression.

Abstract

The regulation of glutamate-mediated excitatory neurotransmission has a critical role in many aspects of behaviour. Great effort has gone into understanding the signal transduction cascades and effectors recruited in these processes, and protein phosphorylation has been identified as an important element. Although initial research in the field focused on the activity-dependent activation of kinases and the kinase dependence of various forms of synaptic plasticity, it has become increasingly clear that phosphatases have an equally dynamic and critical role in the activity-dependent alterations of synaptic transmission. Here, we review the roles of serine/threonine phosphatases in synaptic plasticity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Isoform-specific subcellular distribution of phosphatases.
Figure 2: Postsynaptic-biased model of phosphatase localization and function.
Figure 3: Bi-directional regulation of CA1 LTP by genetic manipulation of PP2B activity.
Figure 4: Hypothetical model of the direction and time course of the regulation of phosphatase activity by LTP and LTD induction.

Similar content being viewed by others

References

  1. Kasahara, J., Fukunaga, K. & Miyamoto, E. Differential effects of a calcineurin inhibitor on glutamate-induced phosphorylation of Ca2+/calmodulin-dependent protein kinases in cultured rat hippocampal neurons. J. Biol. Chem. 274, 9061–9067 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Strack, S., Barban, M. A., Wadzinski, B. E. & Colbran, R. J. Differential inactivation of postsynaptic density-associated and soluble Ca2+/calmodulin-dependent protein kinase II by protein phosphatases 1 and 2A. J. Neurochem. 68, 2119–2128 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Rusnak, F. & Mertz, P. Calcineurin: form and function. Physiol. Rev. 80, 1483–1521 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Price, N. E. & Mumby, M. C. Brain protein serine/threonine phosphatases. Curr. Opin. Neurobiol. 9, 336–342 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Janssens, V. & Goris, J. Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem. J. 353, 417–439 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Aggen, J. B., Nairn, A. C. & Chamberlin, R. Regulation of protein phosphatase-1. Chem. Biol. 7, R13–23 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Sontag, E. Protein phosphatase 2A: the Trojan Horse of cellular signaling. Cell. Signal. 13, 7–16 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Strack, S., Kini, S., Ebner, F. F., Wadzinski, B. E. & Colbran, R. J. Differential cellular and subcellular localization of protein phosphatase 1 isoforms in brain. J. Comp. Neurol. 413, 373–384 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Strack, S., Zaucha, J. A., Ebner, F. F., Colbran, R. J. & Wadzinski, B. E. Brain protein phosphatase 2A: developmental regulation and distinct cellular and subcellular localization by B subunits. J. Comp. Neurol. 392, 515–527 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Steiner, J. P. et al. High brain densities of the immunophilin FKBP colocalized with calcineurin. Nature 358, 584–587 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. Morioka, M., Nagahiro, S., Fukunaga, K., Miyamoto, E. & Ushio, Y. Calcineurin in the adult rat hippocampus: different distribution in CA1 and CA3 subfields. Neuroscience 78, 673–684 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Halpain, S., Hipolito, A. & Saffer, L. Regulation of F-actin stability in dendritic spines by glutamate receptors and calcineurin. J. Neurosci. 18, 9835–9844 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Sik, A., Hajos, N., Gulacsi, A., Mody, I. & Freund, T. F. The absence of a major Ca2+ signaling pathway in GABAergic neurons of the hippocampus. Proc. Natl Acad. Sci. USA 95, 3245–3250 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Huang, F. L. & Glinsmann, W. H. Inactivation of rabbit muscle phosphorylase phosphatase by cyclic AMP-dependent kinase. Proc. Natl Acad. Sci. USA 72, 3004–3008 (1975).

    Article  CAS  PubMed  Google Scholar 

  15. Nimmo, G. A. & Cohen, P. The regulation of glycogen metabolism: purification and characterisation of protein phosphatase inhibitor-1 from rabbit skeletal muscle. Eur. J. Biochem. 87, 341–351 (1978).

    Article  CAS  PubMed  Google Scholar 

  16. Walaas, S. I., Aswad, D. W. & Greengard, P. A dopamine- and cyclic AMP-regulated phosphoprotein enriched in dopamine-innervated brain regions. Nature 301, 69–71 (1983).

    Article  CAS  PubMed  Google Scholar 

  17. Sakagami, H., Ebina, K. & Kondo, H. Localization of phosphatase inhibitor-1 mRNA in the developing and adult rat brain in comparison with that of protein phosphatase-1 mRNAs. Brain Res. Mol. Brain Res. 25, 7–18 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Blitzer, R. D. et al. Gating of CaMKII by cAMP-regulated protein phosphatase activity during LTP. Science 280, 1940–1943 (1998).An example of how complex regulatory mechanisms govern phosphorylation and dephosphorylation in the induction of LTP.

    Article  CAS  PubMed  Google Scholar 

  19. Allen, P. B. et al. Protein phosphatase-1 regulation in the induction of long-term potentiation: heterogeneous molecular mechanisms. J. Neurosci. 20, 3537–3543 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Gustafson, E. L., Girault, J. A., Hemmings, H. C. Jr., Nairn, A. C. & Greengard, P. Immunocytochemical localization of phosphatase inhibitor-1 in rat brain. J. Comp. Neurol. 310, 170–188 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Lin, J. W. et al. Yotiao, a novel protein of neuromuscular junction and brain that interacts with specific splice variants of NMDA receptor subunit NR1. J. Neurosci. 18, 2017–2027 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Westphal, R. S. et al. Regulation of NMDA receptors by an associated phosphatase-kinase signaling complex. Science 285, 93–96 (1999).An illustration of the role of postsynaptic supramolecular complexes in the regulation of receptor function.

    Article  CAS  PubMed  Google Scholar 

  23. Allen, P. B., Ouimet, C. C. & Greengard, P. Spinophilin, a novel protein phosphatase 1 binding protein localized to dendritic spines. Proc. Natl Acad. Sci. USA 94, 9956–9961 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Smith, F. D., Oxford, G. S. & Milgram, S. L. Association of the D2 dopamine receptor third cytoplasmic loop with spinophilin, a protein phosphatase-1-interacting protein. J. Biol. Chem. 274, 19894–19900 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Richman, J. G. et al. Agonist-regulated interaction between α2-adrenergic receptors and spinophilin. J. Biol. Chem. 276, 15003–15008 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Burnett, P. E. et al. Neurabin is a synaptic protein linking p70 S6 kinase and the neuronal cytoskeleton. Proc. Natl Acad. Sci. USA 95, 8351–8356 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Feng, J. et al. Spinophilin regulates the formation and function of dendritic spines. Proc. Natl Acad. Sci. USA 97, 9287–9292 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Yan, Z. et al. Protein phosphatase 1 modulation of neostriatal AMPA channels: regulation by DARPP-32 and spinophilin. Nature Neurosci. 2, 13–17 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Nakanishi, H. et al. Neurabin: a novel neural tissue-specific actin filament-binding protein involved in neurite formation. J. Cell Biol. 139, 951–961 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McAvoy, T. et al. Regulation of neurabin I interaction with protein phosphatase 1 by phosphorylation. Biochemistry 38, 12943–12949 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. MacMillan, L. B. et al. Brain actin-associated protein phosphatase 1 holoenzymes containing spinophilin, neurabin, and selected catalytic subunit isoforms. J. Biol. Chem. 274, 35845–35854 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Beullens, M., Van Eynde, A., Stalmans, W. & Bollen, M. The isolation of novel inhibitory polypeptides of protein phosphatase 1 from bovine thymus nuclei. J. Biol. Chem. 267, 16538–16544 (1992).

    CAS  PubMed  Google Scholar 

  33. Jagiello, I. et al. NIPP-1, a nuclear inhibitory subunit of protein phosphatase-1, has RNA-binding properties. J. Biol. Chem. 272, 22067–22071 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Beullens, M., Van Eynde, A., Bollen, M. & Stalmans, W. Inactivation of nuclear inhibitory polypeptides of protein phosphatase-1 (NIPP-1) by protein kinase A. J. Biol. Chem. 268, 13172–13177 (1993).

    CAS  PubMed  Google Scholar 

  35. Klee, C. B., Ren, H. & Wang, X. Regulation of the calmodulin-stimulated protein phosphatase, calcineurin. J. Biol. Chem. 273, 13367–13370 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Bito, H., Deisseroth, K. & Tsien, R. W. CREB phosphorylation and dephosphorylation: a Ca2+- and stimulus duration-dependent switch for hippocampal gene expression. Cell 87, 1203–1214 (1996).Demonstrates that, as with LTP, complex mechanisms govern the regulation of transcription factor activation and inactivation by activity-evoked phosphorylation, and dephosphorylation.

    Article  CAS  PubMed  Google Scholar 

  37. Lai, M. M., Burnett, P. E., Wolosker, H., Blackshaw, S. & Snyder, S. H. Cain, a novel physiologic protein inhibitor of calcineurin. J. Biol. Chem. 273, 18325–18331 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Sun, L. et al. Cabin 1, a negative regulator for calcineurin signaling in T lymphocytes. Immunity 8, 703–711 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Coghlan, V. M. et al. Association of protein kinase A and protein phosphatase 2B with a common anchoring protein. Science 267, 108–111 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Snyder, S. H., Lai, M. M. & Burnett, P. E. Immunophilins in the nervous system. Neuron 21, 283–294 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Genazzani, A. A., Carafoli, E. & Guerini, D. Calcineurin controls inositol 1,4,5-trisphosphate type 1 receptor expression in neurons. Proc. Natl Acad. Sci. USA 96, 5797–5801 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Lai, M. M., Luo, H. R., Burnett, P. E., Hong, J. J. & Snyder, S. H. The calcineurin-binding protein cain is a negative regulator of synaptic vesicle endocytosis. J. Biol. Chem. 275, 34017–34020 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Colledge, M. et al. Targeting of PKA to glutamate receptors through a MAGUK-AKAP complex. Neuron 27, 107–119 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Blitzer, R. D., Wong, T., Nouranifar, R., Iyengar, R. & Landau, E. M. Postsynaptic cAMP pathway gates early LTP in hippocampal CA1 region. Neuron 15, 1403–1114 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. Winder, D. G., Mansuy, I. M., Osman, M., Moallem, T. M. & Kandel, E. R. Genetic and pharmacological evidence for a novel, intermediate phase of long-term potentiation suppressed by calcineurin. Cell 92, 25–37 (1998).References 45, 51, 56, 57 and 59 represent the first genetic studies aimed at the determination of the roles of serine/threonine phosphatases in hippocampal plasticity, learning and memory.

    Article  CAS  PubMed  Google Scholar 

  46. Abel, T. et al. Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term memory. Cell 88, 615–626 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Huang, Y. Y., Nguyen, P. V., Abel, T. & Kandel, E. R. Long-lasting forms of synaptic potentiation in the mammalian hippocampus. Learn. Mem. 3, 74–85 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Thomas, M. J., Moody, T. D., Makhinson, M. & O'Dell, T. J. Activity-dependent β-adrenergic modulation of low frequency stimulation induced LTP in the hippocampal CA1 region. Neuron 17, 475–482 (1996).

    Article  CAS  PubMed  Google Scholar 

  49. Brown, G. P. et al. Long-term potentiation induced by theta frequency stimulation is regulated by a protein phosphatase-1-operated gate. J. Neurosci. 20, 7880–7887 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Makhinson, M., Chotiner, J. K., Watson, J. B. & O'Dell, T. J. Adenylyl cyclase activation modulates activity-dependent changes in synaptic strength and Ca2+/calmodulin-dependent kinase II autophosphorylation. J. Neurosci. 19, 2500–2510 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Ikegami, S. et al. A facilitatory effect on the induction of long-term potentiation in vivo by chronic administration of antisense oligodeoxynucleotides against catalytic subunits of calcineurin. Brain Res. Mol. Brain Res. 41, 183–191 (1996).

    Article  CAS  PubMed  Google Scholar 

  52. Wang, J. H. & Kelly, P. T. The balance between postsynaptic Ca2+-dependent protein kinase and phosphatase activities controlling synaptic strength. Learn. Mem. 3, 170–181 (1996).

    Article  CAS  PubMed  Google Scholar 

  53. Lu, Y. F. et al. Calcineurin inhibitors, FK506 and cyclosporin A, suppress the NMDA receptor-mediated potentials and LTP, but not depotentiation in the rat hippocampus. Brain Res. 729, 142–146 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. Wang, J. H. & Stelzer, A. Inhibition of phosphatase 2B prevents expression of hippocampal long-term potentiation. Neuroreport 5, 2377–2380 (1994).

    Article  CAS  PubMed  Google Scholar 

  55. Bennett, P. C., Singaretnam, L. G., Zhao, W. Q., Lawen, A. & Ng, K. T. Peptidyl-prolyl-cis/trans-isomerase activity may be necessary for memory formation. FEBS Lett. 431, 386–390 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Malleret, G. et al. Inducible and reversible enhancement of learning, memory, and long-term potentiation by genetic inhibition of calcineurin. Cell 104, 675–686 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Mansuy, I. M. et al. Inducible and reversible gene expression with the rtTA system for the study of memory. Neuron 21, 257–265 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Ikegami, S. & Inokuchi, K. Antisense DNA against calcineurin facilitates memory in contextual fear conditioning by lowering the threshold for hippocampal long-term potentiation induction. Neuroscience 98, 637–646 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Mansuy, I. M., Mayford, M., Jacob, B., Kandel, E. R. & Bach, M. E. Restricted and regulated overexpression reveals calcineurin as a key component in the transition from short-term to long-term memory. Cell 92, 39–49 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Figurov, A., Boddeke, H. & Muller, D. Enhancement of AMPA-mediated synaptic transmission by the protein phosphatase inhibitor calyculin A in rat hippocampal slices. Eur. J. Neurosci. 5, 1035–1041 (1993).

    Article  CAS  PubMed  Google Scholar 

  61. Norris, C. M., Halpain, S. & Foster, T. C. Alterations in the balance of protein kinase/phosphatase activities parallel reduced synaptic strength during aging. J. Neurophysiol. 80, 1567–1570 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Wang, J. H. & Kelly, P. T. Postsynaptic calcineurin activity downregulates synaptic transmission by weakening intracellular Ca2+ signaling mechanisms in hippocampal CA1 neurons. J. Neurosci. 17, 4600–4611 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. Lu, Y. M., Mansuy, I. M., Kandel, E. R. & Roder, J. Calcineurin-mediated LTD of GABAergic inhibition underlies the increased excitability of CA1 neurons associated with LTP. Neuron 26, 197–205 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Fukunaga, K. et al. Decreased protein phosphatase 2A activity in hippocampal long-term potentiation. J. NeuroChem. 74, 807–817 (2000).References 64 and 75 are two of the few studies directly assessing protein phosphatase activity in synaptic plasticity.

    Article  CAS  PubMed  Google Scholar 

  65. Strack, S., Choi, S., Lovinger, D. M. & Colbran, R. J. Translocation of autophosphorylated calcium/calmodulin-dependent protein kinase II to the postsynaptic density. J. Biol. Chem. 272, 13467–13470 (1997).A very interesting study showing that subcellular localization, determined by phosphorylation state, dictates the type of phosphatase that can dephosphorylate proteins critical for LTP induction.

    Article  CAS  PubMed  Google Scholar 

  66. Westphal, R. S., Anderson, K. A., Means, A. R. & Wadzinski, B. E. A signaling complex of Ca2+-calmodulin-dependent protein kinase IV and protein phosphatase 2A. Science 280, 1258–1261 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Roberson, E. D. & Sweatt, J. D. Transient activation of cyclic AMP-dependent protein kinase during hippocampal long-term potentiation. J. Biol. Chem. 271, 30436–30441 (1996).

    Article  CAS  PubMed  Google Scholar 

  68. Lisman, J. A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. Proc. Natl Acad. Sci. USA 86, 9574–9578 (1989).

    Article  CAS  PubMed  Google Scholar 

  69. Lisman, J. The CaM kinase II hypothesis for the storage of synaptic memory. Trends Neurosci. 17, 406–412 (1994).

    Article  CAS  PubMed  Google Scholar 

  70. Mulkey, R. M., Herron, C. E. & Malenka, R. C. An essential role for protein phosphatases in hippocampal long-term depression. Science 261, 1051–1055 (1993).

    Article  CAS  PubMed  Google Scholar 

  71. Ramakers, G. M., Heinen, K., Gispen, W. H. & de Graan, P. N. Long term depression in the CA1 field is associated with a transient decrease in pre- and postsynaptic PKC substrate phosphorylation. J. Biol. Chem. 275, 28682–28687 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Lee, H. K., Barbarosie, M., Kameyama, K., Bear, M. F. & Huganir, R. L. Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Nature 405, 955–959 (2000).A ground-breaking study of the bimodal regulation of AMPA receptor phosphorylation and dephosphorylation, illustrating the complexities of these mechanisms in LTP, LTD and depotentiation.

    Article  CAS  PubMed  Google Scholar 

  73. Norman, E. D., Thiels, E., Barrionuevo, G. & Klann, E. Long-term depression in the hippocampus in vivo is associated with protein phosphatase-dependent alterations in extracellular signal-regulated kinase. J. NeuroChem. 74, 192–198 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Thiels, E., Kanterewicz, B. I., Knapp, L. T., Barrionuevo, G. & Klann, E. Protein phosphatase-mediated regulation of protein kinase C during long-term depression in the adult hippocampus in vivo. J. Neurosci. 20, 7199–7207 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Thiels, E., Norman, E. D., Barrionuevo, G. & Klann, E. Transient and persistent increases in protein phosphatase activity during long-term depression in the adult hippocampus in vivo. Neuroscience 86, 1023–1029 (1998).

    Article  CAS  PubMed  Google Scholar 

  76. Coussens, C. M. & Teyler, T. J. Protein kinase and phosphatase activity regulate the form of synaptic plasticity expressed. Synapse 24, 97–103 (1996).

    Article  CAS  PubMed  Google Scholar 

  77. Herron, C. E. & Malenka, R. C. Activity-dependent enhancement of synaptic transmission in hippocampal slices treated with the phosphatase inhibitor calyculin A. J. Neurosci. 14, 6013–6020 (1994).

    Article  CAS  PubMed  Google Scholar 

  78. Kameyama, K., Lee, H.-K., Bear, M. F. & Huganir, R. L. Involvement of a postsynaptic protein kinase A substrate in the expression of homosynaptic long-term depression. Neuron 21, 1163–1175 (1998).

    Article  CAS  PubMed  Google Scholar 

  79. Oliet, S. H., Malenka, R. C. & Nicoll, R. A. Two distinct forms of long-term depression coexist in CA1 hippocampal pyramidal cells. Neuron 18, 969–982 (1997).

    Article  CAS  PubMed  Google Scholar 

  80. Muller, D., Hefft, S. & Figurov, A. Heterosynaptic interactions between LTP and LTD in CA1 hippocampal slices. Neuron 14, 599–605 (1995).

    Article  CAS  PubMed  Google Scholar 

  81. Mulkey, R. M., Endo, S., Shenolikar, S. & Malenka, R. C. Involvement of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature 369, 486–488 (1994).

    Article  CAS  PubMed  Google Scholar 

  82. Kamal, A., Ramakers, G. M., Urban, I. J., De Graan, P. N. & Gispen, W. H. Chemical LTD in the CA1 field of the hippocampus from young and mature rats. Eur. J. Neurosci. 11, 3512–3516 (1999).

    Article  CAS  PubMed  Google Scholar 

  83. Zhuo, M. et al. A selective role of calcineurin Aα in synaptic depotentiation in hippocampus. Proc. Natl Acad. Sci. USA 96, 4650–4655 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Lee, H. K., Kameyama, K., Huganir, R. L. & Bear, M. F. NMDA induces long-term synaptic depression and dephosphorylation of the GluR1 subunit of AMPA receptors in hippocampus. Neuron 21, 1151–1162 (1998).

    Article  CAS  PubMed  Google Scholar 

  85. Sweatt, J. D. et al. Protected-site phosphorylation of protein kinase C in hippocampal long-term potentiation. J. NeuroChem. 71, 1075–1085 (1998).

    Article  CAS  PubMed  Google Scholar 

  86. Carroll, R. C., Beattie, E. C., von Zastrow, M. & Malenka, R. C. Role of AMPA receptor endocytosis in synaptic plasticity. Nature Rev. Neurosci. 2, 315–324 (2001).

    Article  CAS  Google Scholar 

  87. Ehlers, M. D. Reinsertion or degradation of AMPA receptors determined by activity-dependent endocytic sorting. Neuron 28, 511–525 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Beattie, E. C. et al. Regulation of AMPA receptor endocytosis by a signaling mechanism shared with LTD. Nature Neurosci. 3, 1291–1300 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Lin, J. W. et al. Distinct molecular mechanisms and divergent endocytotic pathways of AMPA receptor internalization. Nature Neurosci. 3, 1282–1290 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Lai, M. M. et al. The calcineurin-dynamin 1 complex as a calcium sensor for synaptic vesicle endocytosis. J. Biol. Chem. 274, 25963–25966 (1999).

    Article  CAS  PubMed  Google Scholar 

  91. Krucker, T., Siggins, G. R. & Halpain, S. Dynamic actin filaments are required for stable long-term potentiation (LTP) in area CA1 of the hippocampus. Proc. Natl Acad. Sci. USA 97, 6856–6861 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Kim, C. H. & Lisman, J. E. A role of actin filament in synaptic transmission and long-term potentiation. J. Neurosci. 19, 4314–4324 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Graef, I. A. et al. L-type calcium channels and GSK-3 regulate the activity of NF-ATc4 in hippocampal neurons. Nature 401, 703–708 (1999).

    Article  CAS  PubMed  Google Scholar 

  94. Banke, T. G. et al. Control of GluR1 AMPA receptor function by cAMP-dependent protein kinase. J. Neurosci. 20, 89–102 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Traynelis, S. F. & Wahl, P. Control of rat GluR6 glutamate receptor open probability by protein kinase A and calcineurin. J. Physiol. 503, 513–531 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Tong, G., Shepherd, D. & Jahr, C. E. Synaptic desensitization of NMDA receptors by calcineurin. Science 267, 1510–1512 (1995).

    Article  CAS  PubMed  Google Scholar 

  97. Jones, M. V. & Westbrook, G. L. Shaping of IPSCs by endogenous calcineurin activity. J. Neurosci. 17, 7626–7633 (1997).

    Article  CAS  PubMed  Google Scholar 

  98. Gereau, R. W. & Heinemann, S. F. Role of protein kinase C phosphorylation in rapid desensitization of metabotropic glutamate receptor 5. Neuron 20, 143–151 (1998).

    Article  CAS  PubMed  Google Scholar 

  99. Gereau, R. W. & Conn, P. J. Roles of specific metabotropic glutamate receptor subtypes in regulation of hippocampal CA1 pyramidal cell excitability. J. Neurophysiol. 74, 122–129 (1995).

    Article  CAS  PubMed  Google Scholar 

  100. Alagarsamy, S. et al. Activation of NMDA receptors reverses desensitization of mGluR5 in native and recombinant systems. Nature Neurosci. 2, 234–240 (1999).

    Article  CAS  PubMed  Google Scholar 

  101. Alagarsamy, S., Gereau, R. W., Mansuy, I., Warren, L. & Conn, P. J. NMDA-induced reversal of mGluR5 desensitization is mediated by activation of protein phosphatase 2B/calcineurin. Soc. Neurosci. Abstr. 26, 910 (2000).

    Google Scholar 

  102. Paterson, J. M. et al. Characterisation of human adenylyl cyclase IX reveals inhibition by Ca2+/calcineurin and differential mRNA polyadenylation. J. NeuroChem. 75, 1358–1367 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. Antoni, F. A. et al. Ca2+/calcineurin-inhibited adenylyl cyclase, highly abundant in forebrain regions, is important for learning and memory. J. Neurosci. 18, 9650–9661 (1998).

    Article  CAS  PubMed  Google Scholar 

  104. Paterson, J. M., Smith, S. M., Harmar, A. J. & Antoni, F. A. Control of a novel adenylyl cyclase by calcineurin. Biochem. Biophys. Res. Commun. 214, 1000–1008 (1995).

    Article  CAS  PubMed  Google Scholar 

  105. Runden, E. et al. Regional selective neuronal degeneration after protein phosphatase inhibition in hippocampal slice cultures: evidence for a MAP kinase-dependent mechanism. J. Neurosci. 18, 7296–7305 (1998).

    Article  CAS  PubMed  Google Scholar 

  106. O'Dell, T. J. & Kandel, E. R. Low-frequency stimulation erases LTP through an NMDA receptor-mediated activation of protein phosphatases. Learn. Mem. 1, 129–139 (1994).

    CAS  PubMed  Google Scholar 

  107. Davis, S., Vanhoutte, P., Pages, C., Caboche, J. & Laroche, S. The MAPK/ERK cascade targets both Elk-1 and cAMP response element-binding protein to control long-term potentiation-dependent gene expression in the dentate gyrus in vivo. J. Neurosci. 20, 4563–4572 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Qian, Z., Gilbert, M. & Kandel, E. R. Temporal and spatial regulation of the expression of BAD2, a MAP kinase phosphatase, during seizure, kindling, and long-term potentiation. Learn. Mem. 1, 180–188 (1994).

    CAS  PubMed  Google Scholar 

  109. Sgambato, V., Pages, C., Rogard, M., Besson, M.-J. & Caboche, J. Extracellular signal-regulated kinase (ERK) controls immediate early gene induction on corticostriatal stimulation. J. Neurosci. 18, 8814–8825 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Colbran, C. Weitlauf and A. Vanhoose for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASE LINKS

PP1

PP2A

PP2B

CaMKII

I-1

DARPP-32

PKA

G-substrate

NR1

Yotiao

RII

NR2B

Spinophilin

Neurabin

D2 dopamine receptor

α2-Adrenergic receptor

p70 S6 kinase

NIPP-1

CK2

Calmodulin

FKBP12

CAIN

AKAP79

PSD-95

SAP97

iGluRs

CaMKIV

CREB

PKC

GluR1

NF-AT

mGluR5

AC9

ERK2

ERK/MAPK

MEK

MKPs

Glossary

OKADAIC ACID

A polyether fatty acid isolated from the dinoflagellate Prorocentrum lima and used as a potent inhibitor of protein phosphatases, especially types 1 and 2A.

CALYCULIN A

A metabolite of the Japanese marine sponge Discodermia calyx that has strong antitumour activity. It is a potent inhibitor of protein phosphatase types 1 and 2A.

MICROCYSTINS

Cyclic heptapeptide toxins produced by cyanobacteria. They are potent inhibitors of protein phosphatases 1 and 2A.

FK506

A member of the macrolide antibiotic family isolated from Streptomyces tsukubaensis. It binds to FK506-binding proteins (FKBPs) and serves as an immunosuppressant. In a complex with FKBPs, it can block the action of calcineurin.

CYCLOSPORIN A

A cyclic decapeptide isolated from the fungi Cylindrocarpon lucidum and Tolypocladium inflatum that serves as a potent immunosuppressive. When bound to cyclophilin, it can bind and inactivate calcineurin.

IMMUNOPHILIN

A generic term for proteins that can bind immunosuppressive drugs.

PDZ DOMAIN

peptide-binding domain that is important for the organization of membrane proteins, particularly at cell–cell junctions, including synapses. They can bind to the carboxyl termini of proteins, or can form dimers with other PDZ domains. PDZ domains are named after the proteins in which these sequence motifs were originally identified (PSD95, Discs-large, zona occludens-1).

SCHAFFER COLLATERALS

Axons of the CA3 pyramidal cells of the hippocampus that form synapses with the apical dendrites of CA1 neurons.

REVERSE TETRACYCLINE-DEPENDENT TRANSACTIVATOR SYSTEM

A system that allows the precise control of gene expression in eukaryotic systems through the administration of tetracycline or its analogues, for example, doxycycline. It is based on two key elements: a mutant form of the tetracycline-dependent transactivator protein (tTA) and the target gene under the control of a tTA-responsive element. Once these key elements have been transferred into eukaryotic cells, the mutant tTA is expressed, but does not bind the tTA-responsive element. Binding of the mutant tTA to the tTA-responsive element and initiation of transcription is then induced by the addition of tetracycline.

SILENT SYNAPSE

A synapse that contains NMDA receptors but no AMPA receptors and therefore is functionally silent during low-frequency, basal synaptic transmission.

CLATHRIN

A major structural component of coated vesicles that are implicated in protein transport. Clathrin heavy and light chains form a triskelion, the main building element of clathrin coats.

DYNAMIN

A small GTPase that is involved in endocytosis. It is thought to be involved in severing the connection between the nascent vesicle and the donor membrane.

MORRIS WATER MAZE

A learning task in which an animal is placed in a pool filled with opaque water and has to learn to escape to a hidden platform that is placed at a constant position. The animal must learn to use distal cues, and the spatial relationship between them and the position of the platform. Learning in this task involves the hippocampus.

BARNES MAZE

A learning task in which the animal is placed on a large, open table that has holes in the periphery. Only one of the holes has an escape tunnel, and the animal must learn to use distal cues to identify this hole and escape in the shortest possible time. Learning in this task involves the hippocampus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winder, D., Sweatt, J. Roles of serine/threonine phosphatases in hippocampel synaptic plasticity. Nat Rev Neurosci 2, 461–474 (2001). https://doi.org/10.1038/35081514

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35081514

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing