Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

Reconstructing functional systems after lesions of cerebral cortex

Abstract

The young brain is enormously resilient to early injury. This resiliency contrasts with the severe and permanent impairments that frequently accompany equivalent damage to the mature cerebrum. For example, damage to Broca's area renders the patient unable to speak, but equivalent damage early in life does not have such devastating effects. Here we review the history of the study of early lesion-induced plasticity, and delineate the features of the developing brain that permit it to overcome the effects of early cerebral lesions. We also speculate on future avenues of investigation that should help us to comprehend how young brains are naturally rebuilt after early lesions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reconstructing motor systems.
Figure 2: Rebuilding a highly functional visual system.
Figure 3: Rebuilding a system after an early lesion.

References

  1. Milner, B. Sparing of language function after unilateral brain damage. Neurosci. Res. Prog. Bull. 2, 213–217 (1974).

    Google Scholar 

  2. Rudel, R. G., Teuber, H. L. & Twitchel, T. E. Levels of impairment of sensorimotor functions in children with early brain damage. Neuropsychologia 12, 95–108 (1974).

    CAS  PubMed  Google Scholar 

  3. Woods, B. T. The restricted effects of right-hemisphere lesions after age one; Wechsler test data. Neuropsychologia 18, 65–70 (1981).

    Google Scholar 

  4. Ogden, J. Visuospatial and other 'right-hemispheric' functions after long recovery periods in left-hemispherectomized subjects. Neuropsychologia 27, 765–776 (1989).

    CAS  PubMed  Google Scholar 

  5. Stiles, J. & Nass, R. Spatial grouping activity in young children with congenital right or left hemisphere brain injury. Brain Cogn 15, 201–222 (1991).

    CAS  PubMed  Google Scholar 

  6. Bates, E. in The Changing Nervous System: Neurobehavioral Consequences of Early Brain Disorders (eds. Broman, S. & Fletcher, J.) 214–253 (Oxford Univ. Press, Oxford, 1999).

    Google Scholar 

  7. Van den Hout, B. M. et al. Relation between visual perceptual impairment and neonatal ultrasound diagnosis in haemorrhagic-ischaemic brain lesions in 5-year-old children. Dev. Med. Child Neurol. 42, 376–386 (2000).

    CAS  PubMed  Google Scholar 

  8. Schneider, G. E. Is it really better to have a brain lesion early? A revision of the 'Kennard Principle'. Neuropsychologia 17, 557–583 (1979).

    CAS  PubMed  Google Scholar 

  9. Goldman-Rakic, P. S., Isseroff, A., Schwartz, M. L. & Bugbee, N. M. in Handbook of Child Psychology: Biology and Infancy Development, (ed. Mussen, P.) 281–344 (Wiley, New York, 1983).

    Google Scholar 

  10. Bachevalier, J. & Mishkin, M. Effects of selective neonatal temporal lobe lesions on visual recognition memory in rhesus monkeys. J. Neurosci. 14, 2128–2139 (1994).

    CAS  PubMed  Google Scholar 

  11. Cornwell, P. et al. Selective sparing after lesions of visual cortex in newborn kittens. Behav. Neurosci. 103, 1176–1190 (1989).

    CAS  PubMed  Google Scholar 

  12. Cornwell, P. & Payne, B. R. Visual discrimination by cats given lesions of visual cortex in one or two stages in infancy or in one stage in adulthood. Behav. Neurosci. 103, 1191–1199 (1989).

    CAS  PubMed  Google Scholar 

  13. Shupert, C., Cornwell, P. & Payne, B. R. Differential sparing of depth perception, orienting and optokinetic nystagmus after neonatal versus adult lesions of cortical areas 17, 18 and 19 in the cat. Behav. Neurosci. 107, 633–650 (1993).

    CAS  PubMed  Google Scholar 

  14. Payne, B. R., Lomber, S. G. & Gelston, C. D. Graded sparing of visually-guided orienting following primary visual cortex ablations within the first postnatal month. Behav. Brain Res. 117, 1–11 (2000).

    CAS  PubMed  Google Scholar 

  15. Broca, P. Remarques sur la siège de la faculté du langage articulé: suivies d'une observation d'aphémie (perte de la parole). Bulletins de la Société Anatomique 6, 330–357 (1861).

    Google Scholar 

  16. Broca, P. Localisation des fontions cérébrales. Siège du langage articulé. Bulletins de la Société d'Anthropologie 4, 200–203 (1863).

    Google Scholar 

  17. Broca, P. Sur la siege de la faculté du langage articulé dans l'hemisphere gauche du cerveau. Bulletins de la Société d'Anthropologie 6, 377–393 (1865).

    Google Scholar 

  18. Barlow, T. On a case of double hemiplegia with cerebral symmetrical lesions. Br. Med. J. 2, 103–104 (1877).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Rasmussen, T. & Milner, B. The role of early left-brain injury in determining the lateralization of cerebral speech functions. Ann. NY Acad. Sci. 299, 355–369 (1977).

    CAS  PubMed  Google Scholar 

  20. Soltmann, O. Experimentalle Studien über die Functionen des Grosshirns der Neugeborenen. Jahrb. Kinderheilkd. 9, 106–148 (1876).

    Google Scholar 

  21. Fritsch, G. & Hitzig, E. Über die elektrische Erregbarkeit des Grosshirns. Arch. Anat. Physiol. Wiss. Med. 37, 300–332 (1870)

    Google Scholar 

  22. Vulpian, A. Leçons dur la Physiologie Générale st Comparée du Système Nerveux (Balliére, Paris, 1866).

    Google Scholar 

  23. Brown, T. G. On the activities of the central nervous system of the unborn foetus of the cat with a discussion of the question whether progression (walking, etc.) is a 'learnt' complex. J. Physiol. (Lond.) 49, 208–215 (1915).

    CAS  Google Scholar 

  24. Langworthy, O. R. A physiological study of the reactions of young decerebrate animals. Am. J. Physiol. 69, 254–264 (1924).

    Google Scholar 

  25. Langworthy, O. R. Relation of onset of decerebrate rigidity to the time of myelination of tracts in the brain-stem and spinal cord of young animals. Contrib. Endocrinol. 17, 127–140 (1926).

    Google Scholar 

  26. Weed, L. H. The reaction of kittens after decortication. Am. J. Physiol. 43, 131–157 (1917).

    Google Scholar 

  27. Finger, S. & Almli, C. R. in Brain Injury and Recovery: Theoretical and Controversial Issues (eds Finger, S., LeVere, T. E., Almli, C. R. & Stein, D. G.) 117–132 (Plenum, New York, 1988).

    Google Scholar 

  28. Freud, S. & Rie, O. Klinische Studie über des halbeitige Cerebrallahmung der Kinder (Moritz Perles, Vienna, 1891).

    Google Scholar 

  29. Sachs, B. A Treatise on the Nervous Diseases of Children for Physicians and Students (William Wood & Co., New York, 1895).

    Google Scholar 

  30. Osler, W. The Cerebral Palsies of Children (H. K. Lewis, London, 1899).

    Google Scholar 

  31. Taylor, J. Paralysis and Other Diseases of the Nervous System in Childhood and Early Life (J. & A. Churchill, London, 1905).

    Google Scholar 

  32. Gowers, W. R. A Manual of the Diseases of the Nervous System (Blakiston, Son & Co., Philadelphia, 1907).

    Google Scholar 

  33. Kennard, M. A. Age and other factors in motor recovery from precentral lesions in monkeys. Am. J. Physiol. 115, 138–146 (1936).

    Google Scholar 

  34. Kennard, M. A. Reorganization of motor function in the cerebral cortex of monkeys deprived of motor and premotor areas in infancy. J. Neurophysiol. 1, 477–496 (1938).

    Google Scholar 

  35. Kennard, M. A. Relation of 'spasticity' to age in young monkeys and chimpanzees. Trans. Am. Neurol. Assoc. 65, 58–62 (1939).

    Google Scholar 

  36. Kennard, M. A. Relation of age to motor impairment in man and subhuman primates. Arch. Neurol. Psychiatry 44, 377–397(1940).

    Google Scholar 

  37. Kennard, M. A. Cortical reorganization of motor function. Arch. Neurol. 48, 227–240 (1942).

    Google Scholar 

  38. Kennard, M. A. & Fulton, J. F. Age and reorganization of the central nervous system. J. Mt Sinai Hosp. 9, 594–606 (1942).

    Google Scholar 

  39. Kennard, M. A. & McCulloch, W. S. Motor response to stimulation of cerebral cortex in the absence of areas 4 and 6 (Macaca mulatta). J. Neurophysiol. 6, 181–190 (1943).

    Google Scholar 

  40. Hubel D. H. & Wiesel, T. N. Binocular interaction in striate cortex of kittens raised with artificial squint. J. Neurophysiol. 28, 1041–1059 (1965).

    CAS  PubMed  Google Scholar 

  41. Hubel D. H. & Wiesel, T. N. The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J. Physiol. (Lond.) 206, 419–436 (1970).

    CAS  PubMed Central  Google Scholar 

  42. Dews, P. B. & Wiesel, T. N. Consequences of monocular deprivation on visual behaviour in kittens. J. Physiol. (Lond.) 206, 437–455 (1970).

    CAS  Google Scholar 

  43. Mitchell, D. E. in Vision: Coding and Efficiency (ed. Blakemore, C.) 234–246 (Cambridge Univ. Press, Cambridge, 1990).

    Google Scholar 

  44. LeVay, S., Wiesel, T. N. & Hubel, D. H. The development of ocular dominance columns in normal and visually deprived monkeys. J. Comp. Neurol. 191, 1–51 (1980).

    CAS  PubMed  Google Scholar 

  45. Hubel D. H., Wiesel, T. N. & LeVay, S. Plasticity of ocular dominance columns in monkey striate cortex. Phil. Trans. R. Soc. Lond. B 278, 377–409 (1977).

    CAS  Google Scholar 

  46. Shatz, C. J. & Stryker, M. P. Ocular dominance in layer IV of the cat's visual cortex and the effects of monocular deprivation. J. Physiol. (Lond.) 281, 267–283 (1978).

    CAS  Google Scholar 

  47. Shatz, C. J., Lindstrom, S. & Wiesel, T. N. The distribution of afferents representing the right and left eyes in the cat's visual cortex. Brain Res. 131, 103–116 (1977).

    CAS  PubMed  Google Scholar 

  48. Doty, R. W. in The History of Neuroscience in Autobiography (ed. Squire, L.) 214–244 (Academic, San Diego, 2001).

    Google Scholar 

  49. Cornwell, P., Overman, W. & Ross, C. Extent of recovery from neonatal damage to the cortical visual system. J. Comp. Physiol. Psychol. 92, 255–270 (1978).

    CAS  PubMed  Google Scholar 

  50. Spear, P. D., Kalil, R. E. & Tong, L. Functional compensation in lateral suprasylvian visual area following neonatal visual cortex removal in cats. J. Neurophysiol. 43, 851–869 (1980).

    CAS  PubMed  Google Scholar 

  51. Kalil, R. E., Tong, L. L. & Spear, P. D. Thalamic projections to the lateral suprasylvian visual area in cats with neonatal or adult visual cortex damage. J. Comp. Neurol. 314, 512–525 (1991).

    CAS  PubMed  Google Scholar 

  52. Lomber, S. G., Payne, B. R., Cornwell, P. & Pearson, H. E. Capacity of the retinogeniculate pathway to reorganize following ablation of visual cortical areas in developing and mature cats. J. Comp. Neurol. 338, 432–457 (1993).

    CAS  PubMed  Google Scholar 

  53. Lomber, S. G., MacNeil, M. A. & Payne, B. R. Amplification of thalamic projections to middle suprasylvian cortex following ablation of immature primary visual cortex in the cat. Cereb. Cortex 5, 166–191 (1995).

    CAS  PubMed  Google Scholar 

  54. MacNeil, M. A., Lomber, S. G. & Payne, B. R. Rewiring of transcortical projections to middle suprasylvian cortex following early removal of cat areas 17 and 18. Cereb. Cortex 6, 362–376 (1996).

    CAS  PubMed  Google Scholar 

  55. MacNeil, M. A., Einstein, G. E. & Payne, B. R. Transgeniculate signal transmission to middle suprasylvian extrastriate cortex in intact cats and following early removal of areas 17 and 18: a morphological study. Exp. Brain Res. 114, 11–23 (1997).

    CAS  PubMed  Google Scholar 

  56. Payne, B. R. & Lomber, S. G. Neuroplasticity in the cat's visual system: origin, termination, expansion and increased coupling in the retino–geniculo–middle suprasylvian visual pathway following early lesions of areas 17 and 18. Exp. Brain Res. 121, 334–349 (1998).

    CAS  PubMed  Google Scholar 

  57. Payne, B. R., Lomber, S. G., MacNeil, M. A. & Cornwell, P. Evidence for greater sight in blindsight following damage of primary visual cortex early in life. Neuropsychologia 34, 741–774 (1996).

    CAS  PubMed  Google Scholar 

  58. Payne, B. R., Pearson, H. E. & Cornwell, P. Transneuronal degeneration of β retinal ganglion cells in the cat. Proc. R. Soc. Lond. B 222, 15–32 (1984).

    CAS  PubMed  Google Scholar 

  59. Gudden, B. Experimentaluntersuchungen über das periphäre unde Zentrale nervensystem. Arch. Psychiatr. Nervenkr. 2, 693–723 (1869).

    Google Scholar 

  60. Ganser, S. Über die periphere und zentrale Anordnung der Sehnervenfasern and über das corpus bigeminum anterius. Arch. Psychiatr. Nervenkr. 13, 341–381 (1882).

    Google Scholar 

  61. Von Monakow, C. Experimentelle und pathologisch-anatomische Untersuchungen über die optischen Centren und Bahnen. Arch. Psychiatr. Nervenkr. 20, 714–787 (1889).

    Google Scholar 

  62. Callahan, E. C., Tong, L. & Spear, P. D. Critical period for the loss of retinal X-cells following visual cortex damage in cats. Brain Res. 323, 302–306 (1984).

    CAS  PubMed  Google Scholar 

  63. Tong, L., Kalil, R. E. & Spear, P. D. Critical periods for functional and anatomical compensation in lateral suprasylvian visual area following removal of visual cortex in cats. J. Neurophysiol. 52, 941–960 (1984).

    CAS  PubMed  Google Scholar 

  64. Mitchell, D. E. in Cat Primary Visual Cortex (eds Payne, B. R. & Peters, A.) 1–49 (Academic, San Diego, 2001).

    Google Scholar 

  65. Payne, B. R. System-wide repercussions and adaptive plasticity: the sequelae of immature visual cortex damage. Restor. Neurol. Neurosci. 15, 81–106 (2000).

    Google Scholar 

  66. Guido, W., Spear, P. D. & Tong, L. How complete is the physiological compensation in extrastriate cortex after visual cortex damage in kittens? Exp. Brain Res. 91, 455–466 (1992).

    CAS  PubMed  Google Scholar 

  67. Lomber, S. G., Payne, B. R., Cornwell, P. & Long, K. D. Perceptual and cognitive visual functions of parietal and temporal cortices of the cat. Cereb. Cortex 6, 673–695 (1996).

    CAS  PubMed  Google Scholar 

  68. Lomber, S. G. & Payne, B. R. Perinatal-lesion-induced reorganization of cerebral functions revealed by reversible cooling deactivation and attentional tasks. Cereb. Cortex 11, 194–209 (2001).

    CAS  PubMed  Google Scholar 

  69. Moore, T. M., Rodman, H. R., Repp, A. B., Gross, C. G. & Mezrich, R. S. Greater residual vision in monkeys after striate cortex damage in infancy. J. Neurophysiol. 76, 3928–3933 (1996).

    CAS  PubMed  Google Scholar 

  70. Moore, T. M., Rodman, H. R. & Gross, C. G. Direction of motion discrimination after early lesions of striate cortex (V1) of the macaque monkey. Proc. Natl Acad. Sci. USA 98, 325–330 (2001).

    CAS  PubMed  Google Scholar 

  71. Weiskrantz, L. Blindsight: a Case Study and Implications (Clarendon, Oxford, 1986).

    Google Scholar 

  72. Blythe, I. M., Kennard, C. & Ruddock, K. H. Residual vision in patients with retrogeniculate lesions of visual pathways. Brain 110, 887–905 (1987).

    PubMed  Google Scholar 

  73. Barbur, J. L., Watson, J. D. G., Frackowiak, R. S. J. & Zeki, S. Conscious visual perception without V1. Brain 116, 1293–1302 (1993).

    PubMed  Google Scholar 

  74. Barbur, J. L., Harlow, A. & Weiskrantz, L. Spatial and temporal response properties of residual vision in a case of hemianopia. Phil. Trans. R. Soc. Lond. B 343, 157–166 (1994).

    CAS  Google Scholar 

  75. Brent, P. J., Kennard, C. & Ruddock, K. H. Residual color vision in a human hemianope: spectral responses and color discrimination. Proc. R. Soc. Lond. B 256, 219–225 (1994).

    CAS  Google Scholar 

  76. Weiskrantz, L., Harlow, A. & Barbur, J. L. Factors affecting visual sensitivity in a hemianopic subject. Brain 114, 2269–2282 (1991).

    PubMed  Google Scholar 

  77. Weiskrantz, L., Barbur, J. L. & Sahraie, A. Parameters affecting conscious versus unconscious visual discrimination with damage to the visual cortex (V1). Proc. Natl Acad. Sci. USA 92, 6122–6126 (1995).

    CAS  PubMed  Google Scholar 

  78. Sahraie, A. et al. Pattern of neuronal activity associated with conscious and unconscious processing of visual signals. Proc. Natl Acad. Sci. USA 94, 9406–9411 (1997).

    CAS  PubMed  Google Scholar 

  79. Goebel, R., Muckli, L., Zanella, F. E., Singer, W. & Stoerig, P. Sustained extrastriate cortical activation without visual awareness revealed by fMRI studies on hemianopic patients. Vision Res. 41, 1459–1474 (2001).

    CAS  PubMed  Google Scholar 

  80. Hendrickson, A. E. & Dineen, J. T. Hypertrophy of neurons in dorsal lateral geniculate nucleus following striate cortex lesions in infant monkeys. Neurosci. Lett. 30, 217–222 (1982).

    CAS  PubMed  Google Scholar 

  81. Rodman, H. R., Sorenson, K. M., Shim, A. J. & Hexter, D. P. Calbindin immunoreactivity in the geniculo–extrastriate system of the macaque: implications for heterogeneity in the koniocellular pathway and recovery from cortical damage. J. Comp. Neurol. 431, 168–181 (2001).

    CAS  PubMed  Google Scholar 

  82. Rossion, B., De Gelder, B., Pourtois, G., Guerit, J. M. & Weiskrantz, L. Early extrastriate activity without primary visual cortex in humans. Neurosci. Lett. 279, 25–28 (2000).

    CAS  PubMed  Google Scholar 

  83. Weller, R. E. & Kaas, J. H. Parameters affecting the loss of ganglion cells of the retina following ablations of striate cortex in primates. Vis. Neurosci. 3, 327–349 (1989).

    CAS  PubMed  Google Scholar 

  84. Cowey, A., Stoerig, P. & Perry, V. H. Transneuronal retrograde degeneration of retinal ganglion cells after damage to striate cortex in macaque monkeys: selective loss of P β cells. Neuroscience 29, 65–80 (1989).

    CAS  PubMed  Google Scholar 

  85. Leonard, C. T. & Goldberger, M. E. Consequences of damage to the sensorimotor cortex in neonatal and adult cats. I. Sparing and recovery of function. Brain Res. 429, 1–14 (1987).

    CAS  PubMed  Google Scholar 

  86. Alisky, J. M., Swink, T. D. & Tolbert, D. L. The postnatal spatial and temporal development of corticospinal projections in cats. Exp. Brain Res. 88, 265–276 (1992).

    CAS  PubMed  Google Scholar 

  87. Leonard, C. T. & Goldberger, M. E. Consequences of damage to the sensorimotor cortex in neonatal and adult cats. II. Maintenance of exuberant projections. Brain Res. 429, 15–30 (1987).

    CAS  PubMed  Google Scholar 

  88. Murakami, F. & Higashi, S. Presence of crossed corticorubral fibers and increase of crossed projections after unilateral lesions of the cerebral cortex of the kitten: a demonstration using anterograde transport of Phaseolus vulgaris leucoagglutinin. Brain Res. 447, 98–108 (1988).

    CAS  PubMed  Google Scholar 

  89. Barth, T. M. & Stanfield, B. B. The recovery of forelimb-placing behavior in rats with neonatal unilateral cortical damage involves the remaining hemisphere. J. Neurosci. 10, 3449–3459 (1990).

    CAS  PubMed  Google Scholar 

  90. Ono, K., Yamano, T. & Shimada, M. Formation of an ipsilateral corticospinal tract after ablation of cerebral cortex. Brain Dev. 13, 348–351 (1991).

    CAS  PubMed  Google Scholar 

  91. Li, Q. & Martin, J. H. Postnatal development of differential projections from the caudal and rostral motor cortex subregions. Exp. Brain Res. 134, 187–198 (2000).

    CAS  PubMed  Google Scholar 

  92. Theriault, E. & Taton, W. G. Postnatal maturation of pericruciate motor cortical projections within the kitten spinal cord. Brain Res. Dev. Brain Res. 45, 219–237 (1989).

    CAS  PubMed  Google Scholar 

  93. Rouiller, E. M. et al. Dexterity in adult monkeys following early lesion of the motor cortical hand area: the role of cortex adjacent to the lesion. Eur. J. Neurosci. 10, 729–740 (1998).

    CAS  PubMed  Google Scholar 

  94. Liu, Y. & Rouiller, E. M. Mechanisms of recovery of dexterity following unilateral lesion of the sensorimotor cortex in adult monkeys. Exp. Brain Res. 128, 149–159 (1999).

    CAS  PubMed  Google Scholar 

  95. Holloway, V. et al. The reorganization of sensorimotor function in children after hemispherectomy. A functional MRI and somatosensory evoked potential study. Brain 123, 2432–2444 (2000).

    PubMed  Google Scholar 

  96. Benecke, R., Meyer, B.-U. & Freund, H.-J. Reorganisation of descending motor pathways in patients after hemispherectomy and severe hemispheric lesions demonstrated by magnetic resonance stimulation. Exp. Brain Res. 83, 419–426 (1991).

    CAS  PubMed  Google Scholar 

  97. Pascual-Leone, A., Chugani, H. T. & Cohen, L. G. Reorganization of human motor pathways following hemispherectomy. Ann. Neurol. 32, 261 (1992).

    Google Scholar 

  98. Farmer, S. F., Harrison, L. M., Ingram, D. A. & Stephens, J. A. Plasticity of central motor pathways in children with hemiplegic cerebral palsy. Neurology 41, 1505–1510 (1991).

    CAS  PubMed  Google Scholar 

  99. Carr, L. J., Harrison, L. M., Evans, A. L. & Stephens A. J. Patterns of central motor reorganization in hemiplegic cerebral palsy. Brain 116, 1223–1247 (1993).

    PubMed  Google Scholar 

  100. Armand, J., Olivier, E., Edgley, S. A. & Lemon, R. N. Postnatal development of corticospinal projections from motor cortex to the cervical enlargement in the macaque monkey. J. Neurosci. 17, 251–266 (1997).

    CAS  PubMed  Google Scholar 

  101. Webster, M. J., Ungerleider, L. G. & Bachevalier, J. Lesions of inferior temporal area TE in infant monkeys alter cortico–amygdalar projections. Neuroreport 2, 769–772 (1991).

    CAS  PubMed  Google Scholar 

  102. Duchowny, M. et al. Temporal lobectomy in early childhood. Epilepsia 33, 298–303 (1992).

    CAS  PubMed  Google Scholar 

  103. Akert, K., Orth, O. S., Harlow, H. F. & Schlitz, K. A. Learned behavior of rhesus monkeys following neonatal bilateral prefrontal lobectomy. Science 132, 1944–1945 (1960).

    CAS  PubMed  Google Scholar 

  104. Goldman, P. S. Functional development of the prefrontal cortex in early life and the problem of neuronal plasticity. Exp. Neurol. 32, 366–387 (1971).

    CAS  PubMed  Google Scholar 

  105. Goldman, P. S. & Galkin, T. W. Prenatal removal of frontal association cortex in the fetal rhesus monkey: anatomical and functional consequences in postnatal life. Brain Res. 152, 451–485 (1978).

    CAS  PubMed  Google Scholar 

  106. Harlow, H. F., Thompson, C. I., Blomquist, A. J. & Schlitz, K. A. Learning in rhesus monkeys after varying amounts of prefrontal lobe destruction during infancy and adolescence. Brain Res. 18, 343–353 (1970).

    CAS  PubMed  Google Scholar 

  107. Tucker, T. J. & Kling, A. Differential effects of early and late lesions in frontal granular cortex in the monkey. Brain Res. 5, 377–389 (1967).

    Google Scholar 

  108. Goldman, P. S. The role of experience in recovery of function following orbital prefrontal lesions in infant monkeys. Neuropsychologia 14, 401–412 (1976).

    CAS  PubMed  Google Scholar 

  109. Goldman, P. S. Developmental determinants of cortical plasticity. Acta Neurobiol. Exp. 32, 495–511 (1972).

    CAS  Google Scholar 

  110. Goldman, P. S. Neuronal plasticity in primate telencephalon: anomalous projections induced by prenatal removal of frontal cortex. Science 202, 768–770 (1978).

    CAS  PubMed  Google Scholar 

  111. Luskin, M. B. & Shatz, C. J. Neurogenesis of the cat's primary visual cortex. J. Comp. Neurol. 242, 611–631 (1985).

    CAS  PubMed  Google Scholar 

  112. Bayer, S. A., Altman, J., Russo, R. J., Dai, X. F. & Simmons, J. A. Cell migration in the rat embryonic neocortex. J. Comp. Neurol. 307, 499–516 (1991).

    CAS  PubMed  Google Scholar 

  113. Gross, C. G. Neurogenesis in the adult brain: death of a dogma. Nature Rev. Neurosci. 1, 67–73 (2000).

    CAS  Google Scholar 

  114. Cornwell, P., Ravizza, R. & Payne, B. Extrinsic visual and auditory cortical connections in the 4-day-old kitten. J. Comp. Neurol. 229, 97–120 (1984).

    CAS  PubMed  Google Scholar 

  115. Bruce, L. L. & Stein, B. E. Transient projections from the lateral geniculate to the posteromedial lateral suprasylvian visual cortex in kittens. J. Comp. Neurol. 278, 287–302 (1988).

    CAS  PubMed  Google Scholar 

  116. Tong, L., Kalil, R. E. & Spear, P. D. Development of the projections from the dorsal lateral geniculate nucleus to the lateral suprasylvian visual area of cortex in the cat. J. Comp. Neurol. 314, 526–533 (1991).

    CAS  PubMed  Google Scholar 

  117. Kato, T., Hirano, A., Katagiri, T. & Sasaki, H. Transient uncrossed corticospinal fibers in the newborn rat. Neuropathol. Appl. Neurobiol. 11, 171–178 (1985).

    CAS  PubMed  Google Scholar 

  118. Payne, B. R., Connors, C. & Cornwell, P. Survival and death of neurons in cortical area PMLS after removal of areas 17, 18 and 19 from cats and kittens. Cereb. Cortex 1, 469–491 (1991).

    CAS  PubMed  Google Scholar 

  119. Murphy, E. H. & Kalil, R. E. Functional organization of lateral geniculate cells following removal of visual cortex in the newborn kitten. Science 206, 713–716 (1979).

    CAS  PubMed  Google Scholar 

  120. Vargha-Khadem, F. et al. Onset of speech after left hemispherectomy in a nine-year–old boy. Brain 120, 159–182 (1997).

    PubMed  Google Scholar 

  121. Kim, D. S., Duong, T. Q. & Kim, S. G. High-resolution mapping of iso-orientation columns by fMRI. Nature Neurosci. 3, 164–169 (2000).

    CAS  PubMed  Google Scholar 

  122. Teuber, H.-L. Outcome of severe damage to the nervous system. Ciba Found. Symp. 34, 95–115 (1975).

    Google Scholar 

  123. Feeney, D. M. & Hovda D. A. Reinstatement of binocular depth perception by amphetamine and visual experience after visual cortex ablation. Brain Res. 342, 352–356 (1985).

    CAS  PubMed  Google Scholar 

  124. Hovda, D. A., Sutton, R. L. & Feeney, D. M. Amphetamine-induced recovery of visual cliff performance after bilateral visual cortex ablation in cats: measurements of depth perception thresholds. Behav. Neurosci. 103, 574–584 (1989).

    CAS  PubMed  Google Scholar 

  125. Sutton, R. L., Hovda, D. A., Chen, M. J. & Feeney, D. M. Alleviation of brain injury-induced cerebral metabolic depression by amphetamine: a cytochrome oxidase study. Neural Plast. 7, 109–125 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Cunningham, T. J., Haun, F. & Chantler, P. D. Diffusible proteins prolong survival of dorsal lateral geniculate neurons following occipital cortex lesions in newborn rats. Brain Res. 465, 133–141 (1987).

    CAS  PubMed  Google Scholar 

  127. Eagleson, K. L., Cunningham, T. J. & Haun, F. Rescue of both rapidly and slowly degenerating neurons in the dorsal lateral geniculate nucleus of adult rats by a cortically derived neuron survival factor. Exp. Neurol. 116, 156–162 (1992).

    CAS  PubMed  Google Scholar 

  128. Haun, F., Cunningham, T. J. & Rothblat, L. A. Neurotrophic and behavioral effects of occipital cortex transplants in newborn rats. Vis. Neurosci. 2, 189–198 (1989).

    CAS  PubMed  Google Scholar 

  129. Haun, F. & Cunningham T. J. Recovery of frontal cortex-mediated visual behaviors following neurotrophic rescue of axotomized neurons in medial frontal cortex. J. Neurosci. 13, 614–622 (1993).

    CAS  PubMed  Google Scholar 

  130. Ourednik, J., Ourednik, W. & Mitchell, D. E. Remodelling of lesioned kitten visual cortex after xenotransplantation of fetal mouse neopallium. J. Comp. Neurol. 395, 91–111 (1998).

    CAS  PubMed  Google Scholar 

  131. Payne, B. R. & Peters, A. in Cat Primary Visual Cortex (eds Payne, B. R. & Peters, A.) 1–130 (Academic, San Diego, in the press).

  132. Payne, B. R. & Lomber, S. G. in Virtual Lesions: Examining Cortical Function with Reversible Deactivation (eds Lomber, S. G. & Galuske, R. A. W.) (Oxford Univ. Press, Oxford, in the press).

Download references

Acknowledgements

This work was supported by funds from the National Institute of Neurological Diseases and Stroke.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bertram R. Payne.

Related links

Related links

FURTHER INFORMATION

cortical plasticity: use-dependent remodelling

MIT Encyclopedia of Cognitive Sciences

auditory plasticity

neural plasticity

Bertram Payne's lab

Rights and permissions

Reprints and permissions

About this article

Cite this article

Payne, B., Lomber, S. Reconstructing functional systems after lesions of cerebral cortex. Nat Rev Neurosci 2, 911–919 (2001). https://doi.org/10.1038/35104085

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35104085

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing