Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Functional diversity of astrocytes in neural circuit regulation

This article has been updated

Key Points

  • Astrocytes display numerous inter- and intra-regional distinctions, ranging from differences in their morphology to differential dynamics of calcium signalling.

  • Astrocytes in specific neural circuits modulate neuronal activity, which affects a range of brain functions.

  • Regionally encoded astrocyte functions are required for neuronal homeostasis and survival.

  • Astrocyte heterogeneity is determined by the developmental patterning of the CNS and is refined in adulthood to produce highly specialized neuron–glia units.

  • Under pathological conditions, reactive astrocytes display several molecular and functional changes that have a differential influence on disease outcome.

  • New techniques will help to uncover the molecular and functional heterogeneity of astrocytes both in health and disease.

Abstract

Although it is well established that all brain regions contain various neuronal subtypes with different functions, astrocytes have traditionally been thought to be homogenous. However, recent evidence has shown that astrocytes in the mammalian CNS display distinct inter- and intra-regional features, as well as functional diversity. In the CNS, astrocyte processes fill the local environment in non-overlapping domains. Therefore, a potential advantage of region-specified astrocytes might be their capacity to regulate local development or optimize local neural circuit function. An overview of the regional heterogeneity of neuron–astrocyte interactions indicates novel ways in which they could regulate normal neurological function and shows how they might become dysregulated in disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Astrocytes have a range of morphologies and molecular profiles.
Figure 2: Synapse-specific neuron–astrocyte interactions.
Figure 3: Functions of regionally specialized astrocytes.
Figure 4: Establishment and refinement of astrocyte heterogeneity.

Similar content being viewed by others

Change history

  • 07 December 2016

    The name of the corresponding author, David H. Rowitch, was incorrect. This has been corrected in the online version.

References

  1. Sofroniew, M. V. & Vinters, H. V. Astrocytes: biology and pathology. Acta Neuropathol. 119, 7–35 (2010).

    Article  PubMed  Google Scholar 

  2. Allaman, I., Belanger, M. & Magistretti, P. J. Astrocyte-neuron metabolic relationships: for better and for worse. Trends Neurosci. 34, 76–87 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Hamilton, N. B. & Attwell, D. Do astrocytes really exocytose neurotransmitters? Nat. Rev. Neurosci. 11, 227–238 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Allen, N. J. Astrocyte regulation of synaptic behavior. Annu. Rev. Cell Dev. Biol. 30, 439–463 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Chung, W. S., Allen, N. J. & Eroglu, C. Astrocytes control synapse formation, function, and elimination. Cold Spring Harb. Perspect. Biol. 6, a020370 (2015).

    Article  CAS  Google Scholar 

  6. Araque, A. et al. Gliotransmitters travel in time and space. Neuron 81, 728–739 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Prochiantz, A. & Mallat, M. Astrocyte diversity. Ann. NY Acad. Sci. 540, 52–63 (1988).

    Article  CAS  PubMed  Google Scholar 

  8. Wilkin, G. P., Marriott, D. R. & Cholewinski, A. J. Astrocyte heterogeneity. Trends Neurosci. 13, 43–46 (1990).

    Article  CAS  PubMed  Google Scholar 

  9. Kimelberg, H. K. The problem of astrocyte identity. Neurochem. Int. 45, 191–202 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, Y. & Barres, B. A. Astrocyte heterogeneity: an underappreciated topic in neurobiology. Curr. Opin. Neurobiol. 20, 588–594 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Khakh, B. S. & Sofroniew, M. V. Diversity of astrocyte functions and phenotypes in neural circuits. Nat. Neurosci. 18, 942–952 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zamanian, J. L. et al. Genomic analysis of reactive astrogliosis. J. Neurosci. 32, 6391–6410 (2012). This study compared the transcriptome of reactive astrocytes in a model of ischaemia and a model of neuroinflammation, and found that astrocytes display injury-specific induction of gene expression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Molofsky, A. V. et al. Astrocyte-encoded positional cues maintain sensorimotor circuit integrity. Nature 509, 189–194 (2014). This study showed that astrocytes from the dorsal and ventral spinal cord display marked transcriptomic differences. Conditional ablation of a ventrally enriched astrocyte gene, Sema3a , which encodes an axon guidance molecule, results in a region-specific phenotype of motor neurons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bayraktar, O. A., Fuentealba, L. C., Alvarez-Buylla, A. & Rowitch, D. H. Astrocyte development and heterogeneity. Cold Spring Harb. Perspect. Biol. 7, a020362 (2015).

    Article  PubMed Central  CAS  Google Scholar 

  15. Tabata, H. Diverse subtypes of astrocytes and their development during corticogenesis. Front. Neurosci. 9, 114 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Schitine, C., Nogaroli, L., Costa, M. R. & Hedin-Pereira, C. Astrocyte heterogeneity in the brain: from development to disease. Front. Cell Neurosci. 9, 76 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Oberheim, N. A., Wang, X., Goldman, S. & Nedergaard, M. Astrocytic complexity distinguishes the human brain. Trends Neurosci. 29, 547–553 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Anderson, M. A., Ao, Y. & Sofroniew, M. V. Heterogeneity of reactive astrocytes. Neurosci. Lett. 565, 23–29 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Emsley, J. G. & Macklis, J. D. Astroglial heterogeneity closely reflects the neuronal-defined anatomy of the adult murine CNS. Neuron Glia Biol. 2, 175–186 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Oberheim, N. A. et al. Uniquely hominid features of adult human astrocytes. J. Neurosci. 29, 3276–3287 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Reisin, H. D. & Colombo, J. A. Astroglial interlaminar processes in human cerebral cortex: variations in cytoskeletal profiles. Brain Res. 937, 51–57 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Oberheim, N. A., Goldman, S. A. & Nedergaard, M. Heterogeneity of astrocytic form and function. Methods Mol. Biol. 814, 23–45 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Doyle, J. P. et al. Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell 135, 749–762 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Houades, V., Koulakoff, A., Ezan, P., Seif, I. & Giaume, C. Gap junction-mediated astrocytic networks in the mouse barrel cortex. J. Neurosci. 28, 5207–5217 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Roux, L., Benchenane, K., Rothstein, J. D., Bonvento, G. & Giaume, C. Plasticity of astroglial networks in olfactory glomeruli. Proc. Natl Acad. Sci. USA 108, 18442–18446 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Denis-Donini, S., Glowinski, J. & Prochiantz, A. Glial heterogeneity may define the three-dimensional shape of mouse mesencephalic dopaminergic neurones. Nature 307, 641–643 (1984).

    Article  CAS  PubMed  Google Scholar 

  27. Garcia-Abreu, J., Moura Neto, V., Carvalho, S. L. & Cavalcante, L. A. Regionally specific properties of midbrain glia: I. Interactions with midbrain neurons. J. Neurosci. Res. 40, 471–477 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Song, H., Stevens, C. F. & Gage, F. H. Astroglia induce neurogenesis from adult neural stem cells. Nature 417, 39–44 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Nimmerjahn, A., Mukamel, E. A. & Schnitzer, M. J. Motor behavior activates Bergmann glial networks. Neuron 62, 400–412 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Takata, N. & Hirase, H. Cortical layer 1 and layer 2/3 astrocytes exhibit distinct calcium dynamics in vivo. PLoS ONE 3, e2525 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. D'Ambrosio, R. et al. Functional specialization and topographic segregation of hippocampal astrocytes. J. Neurosci. 18, 4425–4438 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schipke, C. G., Haas, B. & Kettenmann, H. Astrocytes discriminate and selectively respond to the activity of a subpopulation of neurons within the barrel cortex. Cereb. Cortex 18, 2450–2459 (2008).

    Article  PubMed  Google Scholar 

  33. Martin, R., Bajo-Graneras, R., Moratalla, R., Perea, G. & Araque, A. Circuit-specific signaling in astrocyte-neuron networks in basal ganglia pathways. Science 349, 730–734 (2015). This important study investigated how astrocytes modulate synaptic transmission in specific basal ganglia circuits and found that striatal astrocytes differentially regulate neuronal activity in a circuit- and synapse-specific manner.

    Article  CAS  PubMed  Google Scholar 

  34. Gangarossa, G. et al. Spatial distribution of D1R- and D2R-expressing medium-sized spiny neurons differs along the rostro-caudal axis of the mouse dorsal striatum. Front. Neural Circuits 7, 124 (2013).

    PubMed  PubMed Central  Google Scholar 

  35. Wandell, B. A. & Smirnakis, S. M. Plasticity and stability of visual field maps in adult primary visual cortex. Nat. Rev. Neurosci. 10, 873–884 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schummers, J., Yu, H. & Sur, M. Tuned responses of astrocytes and their influence on hemodynamic signals in the visual cortex. Science 320, 1638–1643 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Perea, G., Yang, A., Boyden, E. S. & Sur, M. Optogenetic astrocyte activation modulates response selectivity of visual cortex neurons in vivo. Nat. Commun. 5, 3262 (2014). This study showed that photoactivation of astrocytes in the mouse primary visual cortex selectively modulates the activity of interneuron subtypes.

    Article  PubMed  CAS  Google Scholar 

  38. Buffo, A. & Rossi, F. Origin, lineage and function of cerebellar glia. Prog. Neurobiol. 109, 42–63 (2013).

    Article  PubMed  Google Scholar 

  39. Saab, A. S. et al. Bergmann glial AMPA receptors are required for fine motor coordination. Science 337, 749–753 (2012). This work showed that AMPAR signalling in Bergmann glial cells is necessary for Purkinje cell activity and fine motor coordination at the behavioural level.

    Article  CAS  PubMed  Google Scholar 

  40. Marder, E. & Bucher, D. Central pattern generators and the control of rhythmic movements. Curr. Biol. 11, R986–R996 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Ng, F. S., Tangredi, M. M. & Jackson, F. R. Glial cells physiologically modulate clock neurons and circadian behavior in a calcium-dependent manner. Curr. Biol. 21, 625–634 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gourine, A. V. et al. Astrocytes control breathing through pH-dependent release of ATP. Science 329, 571–575 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Morquette, P. et al. An astrocyte-dependent mechanism for neuronal rhythmogenesis. Nat. Neurosci. 18, 844–854 (2015). This study showed that astrocytes respond to sensory stimulation in a central pattern-generator region and are able to modulate neuronal activity by altering local extracellular Ca2+ concentration.

    Article  CAS  PubMed  Google Scholar 

  44. Kim, J. G. et al. Leptin signaling in astrocytes regulates hypothalamic neuronal circuits and feeding. Nat. Neurosci. 17, 908–910 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Yang, L., Qi, Y. & Yang, Y. Astrocytes control food intake by inhibiting AGRP neuron activity via adenosine A1 receptors. Cell Rep. 11, 798–807 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Garcia-Caceres, C. et al. Astrocytic insulin signaling couples brain glucose uptake with nutrient availability. Cell 166, 867–880 (2016). This elegant paper used loss-of-function approaches to show that insulin signalling in hypothalamic astrocytes is required for brain glucose sensing and systemic glucose metabolism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Muller, D. et al. Dlk1 promotes a fast motor neuron biophysical signature required for peak force execution. Science 343, 1264–1266 (2014).

    Article  PubMed  CAS  Google Scholar 

  48. Molofsky, A. V. et al. Astrocytes and disease: a neurodevelopmental perspective. Genes Dev. 26, 891–907 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rowitch, D. H. Glial specification in the vertebrate neural tube. Nat. Rev. Neurosci. 5, 409–419 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Rowitch, D. H. & Kriegstein, A. R. Developmental genetics of vertebrate glial-cell specification. Nature 468, 214–222 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Jessell, T. M. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat. Rev. Genet. 1, 20–29 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Muroyama, Y., Fujiwara, Y., Orkin, S. H. & Rowitch, D. H. Specification of astrocytes by bHLH protein SCL in a restricted region of the neural tube. Nature 438, 360–363 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Hochstim, C., Deneen, B., Lukaszewicz, A., Zhou, Q. & Anderson, D. J. Identification of positionally distinct astrocyte subtypes whose identities are specified by a homeodomain code. Cell 133, 510–522 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tsai, H. H. et al. Regional astrocyte allocation regulates CNS synaptogenesis and repair. Science 337, 358–362 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Krencik, R., Weick, J. P., Liu, Y., Zhang, Z. J. & Zhang, S. C. Specification of transplantable astroglial subtypes from human pluripotent stem cells. Nat. Biotechnol. 29, 528–534 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Merkle, F. T., Mirzadeh, Z. & Alvarez-Buylla, A. Mosaic organization of neural stem cells in the adult brain. Science 317, 381–384 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Merkle, F. T. et al. Adult neural stem cells in distinct microdomains generate previously unknown interneuron types. Nat. Neurosci. 17, 207–214 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Foo, L. C. et al. Development of a method for the purification and culture of rodent astrocytes. Neuron 71, 799–811 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Matyash, V. & Kettenmann, H. Heterogeneity in astrocyte morphology and physiology. Brain Res. Rev. 63, 2–10 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Perego, C. et al. The GLT-1 and GLAST glutamate transporters are expressed on morphologically distinct astrocytes and regulated by neuronal activity in primary hippocampal cocultures. J. Neurochem. 75, 1076–1084 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Koulakoff, A., Ezan, P. & Giaume, C. Neurons control the expression of connexin 30 and connexin 43 in mouse cortical astrocytes. Glia 56, 1299–1311 (2008).

    Article  PubMed  Google Scholar 

  62. Hayashi, M., Hayashi, R., Tanii, H., Hashimoto, K. & Patel, A. J. The influence of neuronal cells on the development of glutamine synthetase in astrocytes in vitro. Brain Res. 469, 37–42 (1988).

    Article  CAS  PubMed  Google Scholar 

  63. Mearow, K. M., Mill, J. F. & Freese, E. Neuron-glial interactions involved in the regulation of glutamine synthetase. Glia 3, 385–392 (1990).

    Article  CAS  PubMed  Google Scholar 

  64. Mittaud, P., Labourdette, G., Zingg, H. & Guenot-Di Scala, D. Neurons modulate oxytocin receptor expression in rat cultured astrocytes: involvement of TGF-β and membrane components. Glia 37, 169–177 (2002).

    Article  PubMed  Google Scholar 

  65. Genoud, C. et al. Plasticity of astrocytic coverage and glutamate transporter expression in adult mouse cortex. PLoS Biol. 4, e343 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Yang, Y. et al. Presynaptic regulation of astroglial excitatory neurotransmitter transporter GLT1. Neuron 61, 880–894 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Farmer, W. T. et al. Neurons diversify astrocytes in the adult brain through sonic hedgehog signaling. Science 351, 849–854 (2016).

    Article  CAS  PubMed  Google Scholar 

  68. Ben Haim, L., Carrillo-de Sauvage, M. A., Ceyzériat, K. & Escartin, C. Elusive roles for reactive astrocytes in neurodegenerative diseases. Front. Cell. Neurosci. 9, 278 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Rao, V. T. et al. MicroRNA expression patterns in human astrocytes in relation to anatomical location and age. J. Neuropathol. Exp. Neurol. 75, 156–166 (2016).

    Article  CAS  PubMed  Google Scholar 

  70. Morel, L. et al. Neuronal exosomal miRNA-dependent translational regulation of astroglial glutamate transporter GLT1. J. Biol. Chem. 288, 7105–7116 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Freeman, M. R. & Rowitch, D. H. Evolving concepts of gliogenesis: a look way back and ahead to the next 25 years. Neuron 80, 613–623 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tomassy, G. S., Dershowitz, L. B. & Arlotta, P. Diversity matters: a revised guide to myelination. Trends Cell Biol. 26, 135–147 (2016).

    Article  CAS  PubMed  Google Scholar 

  73. Marques, S. et al. Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. Science 352, 1326–1329 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Grabert, K. et al. Microglial brain region-dependent diversity and selective regional sensitivities to aging. Nat. Neurosci. 19, 504–516 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hill, S. J., Barbarese, E. & McIntosh, T. K. Regional heterogeneity in the response of astrocytes following traumatic brain injury in the adult rat. J. Neuropathol. Exp. Neurol. 55, 1221–1229 (1996).

    Article  CAS  PubMed  Google Scholar 

  76. Maragakis, N. J. & Rothstein, J. D. Mechanisms of disease: astrocytes in neurodegenerative disease. Nat. Clin. Pract. Neurol. 2, 679–689 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Faideau, M. et al. In vivo expression of polyglutamine-expanded huntingtin by mouse striatal astrocytes impairs glutamate transport: a correlation with Huntington's disease subjects. Hum. Mol. Genet. 19, 3053–3067 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Behrens, P. F., Franz, P., Woodman, B., Lindenberg, K. S. & Landwehrmeyer, G. B. Impaired glutamate transport and glutamate-glutamine cycling: downstream effects of the Huntington mutation. Brain 125, 1908–1922 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Sofroniew, M. V. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci. 32, 638–647 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Choudhury, G. R. & Ding, S. Reactive astrocytes and therapeutic potential in focal ischemic stroke. Neurobiol. Dis. 85, 234–244 (2016).

    Article  PubMed  Google Scholar 

  81. White, R. E., McTigue, D. M. & Jakeman, L. B. Regional heterogeneity in astrocyte responses following contusive spinal cord injury in mice. J. Comp. Neurol. 518, 1370–1390 (2010).

    PubMed  PubMed Central  Google Scholar 

  82. Bardehle, S. et al. Live imaging of astrocyte responses to acute injury reveals selective juxtavascular proliferation. Nat. Neurosci. 16, 580–586 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Wanner, I. B. et al. Glial scar borders are formed by newly proliferated, elongated astrocytes that interact to corral inflammatory and fibrotic cells via STAT3-dependent mechanisms after spinal cord injury. J. Neurosci. 33, 12870–12886 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tong, X. et al. Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington's disease model mice. Nat. Neurosci. 17, 694–703 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Nagele, R. G., D'Andrea, M. R., Lee, H., Venkataraman, V. & Wang, H. Y. Astrocytes accumulate Aβ42 and give rise to astrocytic amyloid plaques in Alzheimer disease brains. Brain Res. 971, 197–209 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Wyss-Coray, T. et al. Adult mouse astrocytes degrade amyloid-β in vitro and in situ. Nat. Med. 9, 453–457 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Pihlaja, R. et al. Transplanted astrocytes internalize deposited β-amyloid peptides in a transgenic mouse model of Alzheimer's disease. Glia 56, 154–163 (2008).

    Article  PubMed  Google Scholar 

  88. Takano, T., Han, X., Deane, R., Zlokovic, B. & Nedergaard, M. Two-photon imaging of astrocytic Ca2+ signaling and the microvasculature in experimental mice models of Alzheimer's disease. Ann. NY Acad. Sci. 1097, 40–50 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Kuchibhotla, K. V., Lattarulo, C. R., Hyman, B. T. & Bacskai, B. J. Synchronous hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice. Science 323, 1211–1215 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Jo, S. et al. GABA from reactive astrocytes impairs memory in mouse models of Alzheimer's disease. Nat. Med. 20, 886–896 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wu, Z., Guo, Z., Gearing, M. & Chen, G. Tonic inhibition in dentate gyrus impairs long-term potentiation and memory in an Alzhiemer's disease model. Nat. Commun. 5, 4159 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Hayakawa, K. et al. Transfer of mitochondria from astrocytes to neurons after stroke. Nature 535, 551–555 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Davis, C. H. et al. Transcellular degradation of axonal mitochondria. Proc. Natl Acad. Sci. USA 111, 9633–9638 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Anderson, M. A. et al. Astrocyte scar formation aids central nervous system axon regeneration. Nature 532, 195–200 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sofroniew, M. V. Astrogliosis. Cold Spring Harb. Perspect. Biol. 7, a020420 (2015).

    Article  PubMed Central  CAS  Google Scholar 

  96. Buffo, A., Rolando, C. & Ceruti, S. Astrocytes in the damaged brain: molecular and cellular insights into their reactive response and healing potential. Biochem. Pharmacol. 79, 77–89 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Burda, J. E. & Sofroniew, M. V. Reactive gliosis and the multicellular response to CNS damage and disease. Neuron 81, 229–248 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Garcia, A. D., Petrova, R., Eng, L. & Joyner, A. L. Sonic hedgehog regulates discrete populations of astrocytes in the adult mouse forebrain. J. Neurosci. 30, 13597–13608 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kang, W. et al. Astrocyte activation is suppressed in both normal and injured brain by FGF signaling. Proc. Natl Acad. Sci. USA 111, E2987–E2995 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Cavalcante, L. A., Garcia-Abreu, J., Moura Neto, V., Silva, L. C. & Barradas, P. C. Heterogeneity of median and lateral midbrain radial glia and astrocytes. Rev. Bras. Biol. 56, 33–52 (1996).

    PubMed  Google Scholar 

  101. Perea, G., Sur, M. & Araque, A. Neuron-glia networks: integral gear of brain function. Front. Cell Neurosci. 8, 378 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Shaham, S. Glial development and function in the nervous system of Caenorhabditis elegans. Cold Spring Harb. Perspect. Biol. 7, a020578 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Pollen, A. A. et al. Molecular identity of human outer radial glia during cortical development. Cell 163, 55–67 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kettenmann, H., Kettenmann, H. & Ransom, B. R. Neuroglia (Oxford Univ. Press, 2013).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David H. Rowitch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Inwardly rectifying potassium channel

A member of a family of K+ channels enabling the entry of K+ into the cell. These channels have many physiological functions in astrocytes and are necessary for neuronal repolarization after an action potential.

Astroglial coupling

The communication of neighbouring astrocytes through gap junctions that provide ionic and metabolic connections in the astrocyte network.

Calcium uncaging

An approach that is used to control the local intracellular concentration of Ca2+ and Ca2+-induced intracellular signalling events. Cells are loaded with high-affinity Ca2+ chelator derivatives that decrease their affinity upon photostimulation, therefore releasing bound Ca2+.

Designer receptor exclusively activated by designer drug

(DREADD). A chemogenetic tool that modulates G protein-coupled receptor signalling to control cellular activity. It uses mutated muscarinic receptors that can only be activated by an exogenous ligand, clozapine-N-oxide.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haim, L., Rowitch, D. Functional diversity of astrocytes in neural circuit regulation. Nat Rev Neurosci 18, 31–41 (2017). https://doi.org/10.1038/nrn.2016.159

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn.2016.159

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing