Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Somatostatin-expressing neurons in cortical networks

Abstract

Somatostatin-expressing GABAergic neurons constitute a major class of inhibitory neurons in the mammalian cortex and are characterized by dense wiring into the local network and high basal firing activity that persists in the absence of synaptic input. This firing provides both GABA type A receptor (GABAAR)- and GABABR-mediated inhibition that operates at fast and slow timescales. The activity of somatostatin-expressing neurons is regulated by brain state, during learning and in rewarded behaviour. Here, we review recent advances in our understanding of how this class of cells can control network activity, with specific reference to how this is constrained by their anatomical and electrophysiological properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Three-dimensional morphological reconstructions of SST interneurons in the primary somatosensory cortex of different transgenic mouse lines.
Figure 2: Regulation of SST-neuron activity during movement and sensation.

Similar content being viewed by others

References

  1. Ma, Y., Hu, H., Berrebi, A. S., Mathers, P. H. & Agmon, A. Distinct subtypes of somatostatin-containing neocortical interneurons revealed in transgenic mice. J. Neurosci. 26, 5069–5082 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Oliva, A. A. et al. Novel hippocampal interneuronal subtypes identified using transgenic mice that express green fluorescent protein in GABAergic interneurons. J. Neurosci. 20, 3354–3368 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Taniguchi, H. et al. A resource of Cre driver lines for genetic targeting of GABAergic neurons in cerebral cortex. Neuron 71, 995–1013 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lovett-Barron, M. et al. Regulation of neuronal input transformations by tunable dendritic inhibition. Nat. Neurosci. 15, 423–430 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Gonchar, Y. & Burkhalter, A. Three distinct families of GABAergic neurons in rat visual cortex. Cereb. Cortex 7, 347–358 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Kawaguchi, Y. & Kubota, Y. GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cereb. Cortex 7, 476–486 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Kubota, Y. et al. Selective coexpression of multiple chemical markers defines discrete populations of neocortical GABAergic neurons. Cereb. Cortex 21, 1803–1817 (2011).

    Article  PubMed  Google Scholar 

  8. Lee, S., Hjerling-Leffler, J., Zagha, E., Fishell, G. & Rudy, B. The largest group of superficial neocortical GABAergic interneurons expresses ionotropic serotonin receptors. J. Neurosci. 30, 16796–16808 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang, Y. et al. Anatomical, physiological and molecular properties of Martinotti cells in the somatosensory cortex of the juvenile rat. J. Physiol. 561, 65–90 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fanselow, E. E., Richardson, K. A. & Connors, B. W. Selective, state-dependent activation of somatostatin-expressing inhibitory interneurons in mouse neocortex. J. Neurophysiol. 100, 2640–2652 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Reyes, A. et al. Target-cell-specific facilitation and depression in neocortical circuits. Nat. Neurosci. 1, 279–285 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Fino, E. & Yuste, R. Dense inhibitory connectivity in neocortex. Neuron 69, 1188–1203 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pala, A. & Petersen, C. C. In vivo measurement of cell-type-specific synaptic connectivity and synaptic transmission in layer 2/3 mouse barrel cortex. Neuron 85, 68–75 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xu, H., Jeong, H. Y., Tremblay, R. & Rudy, B. Neocortical somatostatin-expressing GABAergic interneurons disinhibit the thalamorecipient layer 4. Neuron 77, 155–167 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pfeffer, C. K., Xue, M., He, M., Huang, Z. J. & Scanziani, M. Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons. Nat. Neurosci. 16, 1068–1076 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Levy, R. B. & Reyes, A. D. Spatial profile of excitatory and inhibitory synaptic connectivity in mouse primary auditory cortex. J. Neurosci. 32, 5609–5619 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kapfer, C., Glickfeld, L. L., Atallah, B. V. & Scanziani, M. Supralinear increase of recurrent inhibition during sparse activity in the somatosensory cortex. Nat. Neurosci. 10, 743–753 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Urban-Ciecko, J., Fanselow, E. E. & Barth, A. L. Neocortical somatostatin neurons reversibly silence excitatory transmission via GABAb receptors. Curr. Biol. 25, 722–731 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yasaka, T., Tiong, S. Y., Hughes, D. I., Riddell, J. S. & Todd, A. J. Populations of inhibitory and excitatory interneurons in lamina II of the adult rat spinal dorsal horn revealed by a combined electrophysiological and anatomical approach. Pain 151, 475–488 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bologna, E. & Leroux, P. Identification of multiple somatostatin receptors in the rat somatosensory cortex during development. J. Comp. Neurol. 420, 466–480 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Moore, S. D., Madamba, S. G., Joels, M. & Siggins, G. R. Somatostatin augments the M-current in hippocampal neurons. Science 239, 278–280 (1988).

    Article  CAS  PubMed  Google Scholar 

  22. Schweitzer, P., Madamba, S. G. & Siggins, G. R. Somatostatin increases a voltage-insensitive K+ conductance in rat CA1 hippocampal neurons. J. Neurophysiol. 79, 1230–1238 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Boehm, S. & Betz, H. Somatostatin inhibits excitatory transmission at rat hippocampal synapses via presynaptic receptors. J. Neurosci. 17, 4066–4075 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Butt, S. J. et al. The temporal and spatial origins of cortical interneurons predict their physiological subtype. Neuron 48, 591–604 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Xu, Q., Cobos, I., De La Cruz, E., Rubenstein, J. L. & Anderson, S. A. Origins of cortical interneuron subtypes. J. Neurosci. 24, 2612–2622 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fishell, G. & Rudy, B. Mechanisms of inhibition within the telencephalon: “where the wild things are”. Annu. Rev. Neurosci. 34, 535–567 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bendotti, C. et al. Developmental expression of somatostatin in mouse brain. II. In situ hybridization. Brain Res. Dev. Brain Res. 53, 26–39 (1990).

    Article  CAS  PubMed  Google Scholar 

  28. Forloni, G., Hohmann, C. & Coyle, J. T. Developmental expression of somatostatin in mouse brain. I. Immunocytochemical studies. Brain Res. Dev. Brain Res. 53, 6–25 (1990).

    Article  CAS  PubMed  Google Scholar 

  29. Hogan, D. & Berman, N. E. The development of somatostatin immunoreactive neurons in cat visual cortical areas. Brain Res. Dev. Brain Res. 71, 221–238 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Papadopoulos, G. C., Cavanagh, M. E., Antonopoulos, J., Michaloudi, H. & Parnavelas, J. G. Postnatal development of somatostatin-containing neurons in the visual cortex of normal and dark-reared rats. Exp. Brain Res. 92, 473–478 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Montminy, M. R. & Bilezikjian, L. M. Binding of a nuclear protein to the cyclic-AMP response element of the somatostatin gene. Nature 328, 175–178 (1987).

    Article  CAS  PubMed  Google Scholar 

  32. Markram, H. et al. Interneurons of the neocortical inhibitory system. Nat. Rev. Neurosci. 5, 793–807 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Hu, H., Cavendish, J. Z. & Agmon, A. Not all that glitters is gold: off-target recombination in the somatostatin-IRES-Cre mouse line labels a subset of fast-spiking interneurons. Front. Neural Circuits 7, 195 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jiang, X. et al. Principles of connectivity among morphologically defined cell types in adult neocortex. Science 350, aac9462 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Kvitsiani, D. et al. Distinct behavioural and network correlates of two interneuron types in prefrontal cortex. Nature 498, 363–366 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Neske, G. T., Patrick, S. L. & Connors, B. W. Contributions of diverse excitatory and inhibitory neurons to recurrent network activity in cerebral cortex. J. Neurosci. 35, 1089–1105 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Dun, N. J., Dun, S. L., Wong, R. K. & Forstermann, U. Colocalization of nitric oxide synthase and somatostatin immunoreactivity in rat dentate hilar neurons. Proc. Natl Acad. Sci. USA 91, 2955–2959 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gonchar, Y., Wang, Q. & Burkhalter, A. Multiple distinct subtypes of GABAergic neurons in mouse visual cortex identified by triple immunostaining. Front. Neuroanat. 1, 3 (2007).

    PubMed  Google Scholar 

  39. Xu, X. & Callaway, E. M. Laminar specificity of functional input to distinct types of inhibitory cortical neurons. J. Neurosci. 29, 70–85 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xu, X., Roby, K. D. & Callaway, E. M. Mouse cortical inhibitory neuron type that coexpresses somatostatin and calretinin. J. Comp. Neurol. 499, 144–160 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Goldberg, J. H., Lacefield, C. O. & Yuste, R. Global dendritic calcium spikes in mouse layer 5 low threshold spiking interneurones: implications for control of pyramidal cell bursting. J. Physiol. 558, 465–478 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Katona, L. et al. Sleep and movement differentiates actions of two types of somatostatin-expressing GABAergic interneuron in rat hippocampus. Neuron 82, 872–886 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Baude, A. et al. The metabotropic glutamate receptor (mGluR1α) is concentrated at perisynaptic membrane of neuronal subpopulations as detected by immunogold reaction. Neuron 11, 771–787 (1993).

    Article  CAS  PubMed  Google Scholar 

  44. Chittajallu, R. et al. Dual origins of functionally distinct O-LM interneurons revealed by differential 5-HT3AR expression. Nat. Neurosci. 16, 1598–1607 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Katona, I., Acsady, L. & Freund, T. F. Postsynaptic targets of somatostatin-immunoreactive interneurons in the rat hippocampus. Neuroscience 88, 37–55 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Klausberger, T. et al. Spike timing of dendrite-targeting bistratified cells during hippocampal network oscillations in vivo. Nat. Neurosci. 7, 41–47 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Gibson, J. R., Beierlein, M. & Connors, B. W. Two networks of electrically coupled inhibitory neurons in neocortex. Nature 402, 75–79 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Kawaguchi, Y. & Kubota, Y. Correlation of physiological subgroupings of nonpyramidal cells with parvalbumin- and calbindinD28k-immunoreactive neurons in layer V of rat frontal cortex. J. Neurophysiol. 70, 387–396 (1993).

    Article  CAS  PubMed  Google Scholar 

  49. Chen, N., Sugihara, H. & Sur, M. An acetylcholine-activated microcircuit drives temporal dynamics of cortical activity. Nat. Neurosci. 18, 892–902 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Xiang, Z., Huguenard, J. R. & Prince, D. A. Cholinergic switching within neocortical inhibitory networks. Science 281, 985–988 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Adesnik, H., Bruns, W., Taniguchi, H., Huang, Z. J. & Scanziani, M. A neural circuit for spatial summation in visual cortex. Nature 490, 226–231 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gentet, L. J. et al. Unique functional properties of somatostatin-expressing GABAergic neurons in mouse barrel cortex. Nat. Neurosci. 15, 607–612 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Polack, P. O., Friedman, J. & Golshani, P. Cellular mechanisms of brain state-dependent gain modulation in visual cortex. Nat. Neurosci. 16, 1331–1339 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Craig, M. T., Mayne, E. W., Bettler, B., Paulsen, O. & McBain, C. J. Distinct roles of GABAB1a- and GABAB1b-containing GABAB receptors in spontaneous and evoked termination of persistent cortical activity. J. Physiol. 591, 835–843 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Kawaguchi, Y. & Shindou, T. Noradrenergic excitation and inhibition of GABAergic cell types in rat frontal cortex. J. Neurosci. 18, 6963–6976 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lawrence, J. J., Statland, J. M., Grinspan, Z. M. & McBain, C. J. Cell type-specific dependence of muscarinic signalling in mouse hippocampal stratum oriens interneurones. J. Physiol. 570, 595–610 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Lovett-Barron, M. et al. Dendritic inhibition in the hippocampus supports fear learning. Science 343, 857–863 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Leao, R. N. et al. OLM interneurons differentially modulate CA3 and entorhinal inputs to hippocampal CA1 neurons. Nat. Neurosci. 15, 1524–1530 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lee, S., Kruglikov, I., Huang, Z. J., Fishell, G. & Rudy, B. A disinhibitory circuit mediates motor integration in the somatosensory cortex. Nat. Neurosci. 16, 1662–1670 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ma, Y., Hu, H. & Agmon, A. Short-term plasticity of unitary inhibitory-to-inhibitory synapses depends on the presynaptic interneuron subtype. J. Neurosci. 32, 983–988 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pi, H. J. et al. Cortical interneurons that specialize in disinhibitory control. Nature 503, 521–524 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fu, Y. et al. A cortical circuit for gain control by behavioral state. Cell 156, 1139–1152 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Beierlein, M., Gibson, J. R. & Connors, B. W. Two dynamically distinct inhibitory networks in layer 4 of the neocortex. J. Neurophysiol. 90, 2987–3000 (2003).

    Article  PubMed  Google Scholar 

  64. Cruikshank, S. J., Urabe, H., Nurmikko, A. V. & Connors, B. W. Pathway-specific feedforward circuits between thalamus and neocortex revealed by selective optical stimulation of axons. Neuron 65, 230–245 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Packer, A. M., McConnell, D. J., Fino, E. & Yuste, R. Axo-dendritic overlap and laminar projection can explain interneuron connectivity to pyramidal cells. Cereb. Cortex 23, 2790–2802 (2013).

    Article  PubMed  Google Scholar 

  66. Silberberg, G. & Markram, H. Disynaptic inhibition between neocortical pyramidal cells mediated by Martinotti cells. Neuron 53, 735–746 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. McBain, C. J., DiChiara, T. J. & Kauer, J. A. Activation of metabotropic glutamate receptors differentially affects two classes of hippocampal interneurons and potentiates excitatory synaptic transmission. J. Neurosci. 14, 4433–4445 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gulyas, A., Hajos, N., Katona, I. & Freund, T. Interneurons are the local targets of hippocampal inhibitory cells which project to the medial septum. Eur. J. Neurosci. 17, 1861–1872 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Jinno, S. et al. Neuronal diversity in GABAergic long-range projections from the hippocampus. J. Neurosci. 27, 8790–8804 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jinno, S. & Kosaka, T. Immunocytochemical characterization of hippocamposeptal projecting GABAergic nonprincipal neurons in the mouse brain: a retrograde labeling study. Brain Res. 945, 219–231 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Cottam, J. C., Smith, S. L. & Hausser, M. Target-specific effects of somatostatin-expressing interneurons on neocortical visual processing. J. Neurosci. 33, 19567–19578 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hu, H. & Agmon, A. Properties of precise firing synchrony between synaptically coupled cortical interneurons depend on their mode of coupling. J. Neurophysiol. 114, 624–637 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Buhl, E. et al. Physiological properties of anatomically identified axo-axonic cells in the rat hippocampus. J. Neurophysiol. 71, 1289–1307 (1994).

    Article  CAS  PubMed  Google Scholar 

  74. Freund, T. F. & Buzsaki, G. Interneurons of the hippocampus. Hippocampus 6, 347–470 (1996).

    Article  CAS  PubMed  Google Scholar 

  75. Makino, H. & Komiyama, T. Learning enhances the relative impact of top-down processing in the visual cortex. Nat. Neurosci. 18, 1116–1122 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chen, S. X., Kim, A. N., Peters, A. J. & Komiyama, T. Subtype-specific plasticity of inhibitory circuits in motor cortex during motor learning. Nat. Neurosci. 18, 1109–1115 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hill, S. L., Wang, Y., Riachi, I., Schurmann, F. & Markram, H. Statistical connectivity provides a sufficient foundation for specific functional connectivity in neocortical neural microcircuits. Proc. Natl Acad. Sci. USA 109, E2885–E2894 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Hioki, H. et al. Cell type-specific inhibitory inputs to dendritic and somatic compartments of parvalbumin-expressing neocortical interneuron. J. Neurosci. 33, 544–555 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chiu, C. Q. et al. Compartmentalization of GABAergic inhibition by dendritic spines. Science 340, 759–762 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kinnischtzke, A. K., Simons, D. J. & Fanselow, E. E. Motor cortex broadly engages excitatory and inhibitory neurons in somatosensory barrel cortex. Cereb. Cortex 24, 2237–2248 (2014).

    Article  PubMed  Google Scholar 

  81. Fanselow, E. E. & Connors, B. W. The roles of somatostatin-expressing (GIN) and fast-spiking inhibitory interneurons in up-down states of mouse neocortex. J. Neurophysiol. 104, 596–606 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Rozov, A., Burnashev, N., Sakmann, B. & Neher, E. Transmitter release modulation by intracellular Ca2+ buffers in facilitating and depressing nerve terminals of pyramidal cells in layer 2/3 of the rat neocortex indicates a target cell-specific difference in presynaptic calcium dynamics. J. Physiol. 531, 807–826 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Koester, H. J. & Johnston, D. Target cell-dependent normalization of transmitter release at neocortical synapses. Science 308, 863–866 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Amitai, Y. et al. The spatial dimensions of electrically coupled networks of interneurons in the neocortex. J. Neurosci. 22, 4142–4152 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gibson, J. R., Beierlein, M. & Connors, B. W. Functional properties of electrical synapses between inhibitory interneurons of neocortical layer 4. J. Neurophysiol. 93, 467–480 (2005).

    Article  PubMed  Google Scholar 

  86. Deans, M. R., Gibson, J. R., Sellitto, C., Connors, B. W. & Paul, D. L. Synchronous activity of inhibitory networks in neocortex requires electrical synapses containing connexin36. Neuron 31, 477–485 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Beierlein, M., Gibson, J. R. & Connors, B. W. A network of electrically coupled interneurons drives synchronized inhibition in neocortex. Nat. Neurosci. 3, 904–910 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Berger, T. K., Silberberg, G., Perin, R. & Markram, H. Brief bursts self-inhibit and correlate the pyramidal network. PLoS Biol. 8, e1000473 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Palmer, L. M. et al. The cellular basis of GABAB-mediated interhemispheric inhibition. Science 335, 989–993 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Cichon, J. & Gan, W. B. Branch-specific dendritic Ca2+ spikes cause persistent synaptic plasticity. Nature 520, 180–185 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. McKay, B. M., Oh, M. M. & Disterhoft, J. F. Learning increases intrinsic excitability of hippocampal interneurons. J. Neurosci. 33, 5499–5506 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Cybulska-Klosowicz, A. et al. Interneurons containing somatostatin are affected by learning-induced cortical plasticity. Neuroscience 254, 18–25 (2013).

    Article  CAS  PubMed  Google Scholar 

  93. Hashimoto, T. et al. Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia. J. Neurosci. 23, 6315–6326 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Morris, H. M., Hashimoto, T. & Lewis, D. A. Alterations in somatostatin mRNA expression in the dorsolateral prefrontal cortex of subjects with schizophrenia or schizoaffective disorder. Cereb. Cortex 18, 1575–1587 (2008).

    Article  PubMed  Google Scholar 

  95. Volk, D. W. et al. Deficits in transcriptional regulators of cortical parvalbumin neurons in schizophrenia. Am. J. Psychiatry 169, 1082–1091 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Peng, Z. et al. A reorganized GABAergic circuit in a model of epilepsy: evidence from optogenetic labeling and stimulation of somatostatin interneurons. J. Neurosci. 33, 14392–14405 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Halabisky, B., Parada, I., Buckmaster, P. S. & Prince, D. A. Excitatory input onto hilar somatostatin interneurons is increased in a chronic model of epilepsy. J. Neurophysiol. 104, 2214–2223 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Buckmaster, P. S. & Wen, X. Rapamycin suppresses axon sprouting by somatostatin interneurons in a mouse model of temporal lobe epilepsy. Epilepsia 52, 2057–2064 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhang, W. et al. Surviving hilar somatostatin interneurons enlarge, sprout axons, and form new synapses with granule cells in a mouse model of temporal lobe epilepsy. J. Neurosci. 29, 14247–14256 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Grosser, S., Queenan, B. N., Lalchandani, R. R. & Vicini, S. Hilar somatostatin interneurons contribute to synchronized GABA activity in an in vitro epilepsy model. PLoS ONE 9, e86250 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Tai, C., Abe, Y., Westenbroek, R. E., Scheuer, T. & Catterall, W. A. Impaired excitability of somatostatin- and parvalbumin-expressing cortical interneurons in a mouse model of Dravet syndrome. Proc. Natl Acad. Sci. USA 111, E3139–E3148 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Hunt, R. F., Girskis, K. M., Rubenstein, J. L., Alvarez-Buylla, A. & Baraban, S. C. GABA progenitors grafted into the adult epileptic brain control seizures and abnormal behavior. Nat. Neurosci. 16, 692–697 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Dobolyi, A. et al. Receptors of peptides as therapeutic targets in epilepsy research. Curr. Med. Chem. 21, 764–787 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge members of the Barth laboratory for helpful comments on the manuscript, and US National Institutes of Health (NIH) grant number NS088958 and the McKnight Foundation (A.L.B.) for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison L. Barth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (table)

Connection probability between SST cells and pyramidal cells or fast-spiking cells (PDF 147 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urban-Ciecko, J., Barth, A. Somatostatin-expressing neurons in cortical networks. Nat Rev Neurosci 17, 401–409 (2016). https://doi.org/10.1038/nrn.2016.53

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn.2016.53

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing