Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The neurogenetics of alternative splicing

Key Points

  • Dysregulation of splicing, an emerging cause of many neurological disorders, affects all aspects of neurobiology from neurogenesis to synaptic function.

  • The interplay between polypyrimidine tract binding protein 1 (PTBP1), serine/arginine repetitive matrix protein 4 (SRRM4), miR-124 and the REST (repressor element 1-silencing transcription factor) complex constitutes an important genetic programme underlying neuronal cell fate commitment.

  • Neuronal migration during development requires cell surface receptor isoforms, the splicing of which is controlled by neuro-oncological ventral antigen 2 (NOVA2) and RNA-binding protein fox-1 homologue 2 (RBFOX2).

  • The PTBP, SRRM4 and NOVA proteins orchestrate developmental synapse formation.

  • Many splicing regulators, including KH domain-containing, RNA-binding, signal transduction-associated (KHDRBS) proteins, NOVA2 and muscleblind-like 2 (MBNL2), modulate synaptic transmission and plasticity.

  • RBFOX1 and neuronal ELAV-like (nELAVL) regulate neuronal excitability.

  • Understanding the biological roles of neuronal splicing regulators is challenged by extensive target sets, pleiotropic phenotypes and partial redundancy of paralogous regulators.

  • Mutations in both protein regulators and core RNAs of the spliceosome can lead to neurodegenerative disorders.

Abstract

Alternative precursor-mRNA splicing is a key mechanism for regulating gene expression in mammals and is controlled by specialized RNA-binding proteins. The misregulation of splicing is implicated in multiple neurological disorders. We describe recent mouse genetic studies of alternative splicing that reveal its critical role in both neuronal development and the function of mature neurons. We discuss the challenges in understanding the extensive genetic programmes controlled by proteins that regulate splicing, both during development and in the adult brain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Splicing regulatory networks.
Figure 2: Splicing regulators in cortical development and function.
Figure 3: Splicing regulators in cerebellar development and function.
Figure 4: Alternative splicing regulation of synaptogenesis and synaptic function.
Figure 5: Regulatory outcomes of RNA-binding proteins.

Similar content being viewed by others

References

  1. Li, Q., Lee, J.-A. & Black, D. L. Neuronal regulation of alternative pre-mRNA splicing. Nat. Rev. Neurosci. 8, 819–831 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Zheng, S. & Black, D. L. Alternative pre-mRNA splicing in neurons: growing up and extending its reach. Trends Genet. 29, 442–448 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Raj, B. & Blencowe, B. J. Alternative splicing in the mammalian nervous system: recent insights into mechanisms and functional roles. Neuron 87, 14–27 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Darnell, R. B. RNA protein interaction in neurons. Annu. Rev. Neurosci. 36, 243–270 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Will, C. L. & Lührmann, R. Spliceosome structure and function. Cold Spring Harb. Perspect. Biol. 3, a003707 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Matera, A. G. & Wang, Z. A day in the life of the spliceosome. Nat. Rev. Mol. Cell. Biol. 15, 108–121 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fu, X.-D. & Ares, M. Context-dependent control of alternative splicing by RNA-binding proteins. Nat. Rev. Genet. 15, 689–701 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee, Y. & Rio, D. C. Mechanisms and regulation of alternative pre-mRNA splicing. Annu. Rev. Biochem. 84, 291–323 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Darnell, R. B. HITS-CLIP: panoramic views of protein–RNA regulation in living cells. Wiley Interdiscip. Rev. RNA 1, 266–286 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. König, J., Zarnack, K., Luscombe, N. M. & Ule, J. Protein–RNA interactions: new genomic technologies and perspectives. Nat. Rev. Genet. 13, 77–83 (2011).

    Article  CAS  Google Scholar 

  11. Ascano, M., Hafner, M., Cekan, P., Gerstberger, S. & Tuschl, T. Identification of RNA-protein interaction networks using PAR-CLIP. Wiley Interdiscip. Rev. RNA 3, 159–177 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Nussbacher, J. K., Batra, R., Lagier-Tourenne, C. & Yeo, G. W. RNA-binding proteins in neurodegeneration: Seq and you shall receive. Trends Neurosci. 38, 226–236 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Keppetipola, N., Sharma, S., Li, Q. & Black, D. L. Neuronal regulation of pre-mRNA splicing by polypyrimidine tract binding proteins, PTBP1 and PTBP2. Crit. Rev. Biochem. Mol. Biol. 47, 360–378 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Spellman, R. et al. Regulation of alternative splicing by PTB and associated factors. Biochem. Soc. Trans. 33, 457–460 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Makeyev, E. V., Zhang, J., Carrasco, M. A. & Maniatis, T. The microRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol. Cell 27, 435–448 (2007). This study demonstrates that an important splicing regulator, PTBP1, is controlled during neuronal development by the microRNA miR-124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xue, Y. et al. Direct conversion of fibroblasts to neurons by reprogramming PTB-regulated microRNA circuits. Cell 152, 82–96 (2013). This study demonstrates that PTBP1 acts as a master regulator of cell identity by driving a posttranscriptional regulatory programme that inhibits neuronal differentiation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ballas, N., Grunseich, C., Lu, D. D., Speh, J. C. & Mandel, G. REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis. Cell 121, 645–657 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Conaco, C., Otto, S., Han, J.-J. & Mandel, G. Reciprocal actions of REST and a microRNA promote neuronal identity. Proc. Natl Acad. Sci. USA 103, 2422–2427 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Linares, A. J. et al. The splicing regulator PTBP1 controls the activity of the transcription factor Pbx1 during neuronal differentiation. eLife 4, 6778 (2015).

    Article  Google Scholar 

  20. Boutz, P. L. et al. A post-transcriptional regulatory switch in polypyrimidine tract-binding proteins reprograms alternative splicing in developing neurons. Genes Dev. 21, 1636–1652 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Spellman, R., Llorian, M. & Smith, C. W. J. Crossregulation and functional redundancy between the splicing regulator PTB and its paralogs nPTB and ROD1. Mol. Cell 27, 420–434 (2007). References 15, 20 and 21 provide an early example of cross-regulation by splicing regulators.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Suckale, J. et al. PTBP1 is required for embryonic development before gastrulation. PLoS ONE 6, e16992 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shibayama, M. et al. Polypyrimidine tract-binding protein is essential for early mouse development and embryonic stem cell proliferation. FEBS J. 276, 6658–6668 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Shibasaki, T. et al. PTB deficiency causes the loss of adherens junctions in the dorsal telencephalon and leads to lethal hydrocephalus. Cereb. Cortex 23, 1824–1835 (2013).

    Article  PubMed  Google Scholar 

  25. Spassky, N. et al. Adult ependymal cells are postmitotic and are derived from radial glial cells during embryogenesis. J. Neurosci. 25, 10–18 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lin, S. & Fu, X.-D. SR proteins and related factors in alternative splicing. Adv. Exp. Med. Biol. 623, 107–122 (2007).

    Article  PubMed  Google Scholar 

  27. Chen, M. & Manley, J. L. Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches. Nat. Rev. Mol. Cell. Biol. 10, 741–754 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Das, S. & Krainer, A. R. Emerging functions of SRSF1, splicing factor and oncoprotein, in RNA metabolism and cancer. Mol. Cancer Res. 12, 1195–1204 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Calarco, J. A. et al. Regulation of vertebrate nervous system alternative splicing and development by an SR-related protein. Cell 138, 898–910 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Raj, B. et al. A global regulatory mechanism for activating an exon network required for neurogenesis. Mol. Cell 56, 90–103 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Raj, B. et al. Cross-regulation between an alternative splicing activator and a transcription repressor controls neurogenesis. Mol. Cell 43, 843–850 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Palm, K., Metsis, M. & Timmusk, T. Neuron-specific splicing of zinc finger transcription factor REST/NRSF/XBR is frequent in neuroblastomas and conserved in human, mouse and rat. Brain Res. Mol. Brain Res. 72, 30–39 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Shimojo, M., Lee, J. H. & Hersh, L. B. Role of zinc finger domains of the transcription factor neuron-restrictive silencer factor/repressor element-1 silencing transcription factor in DNA binding and nuclear localization. J. Biol. Chem. 276, 13121–13126 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Tabuchi, A. et al. REST4-mediated modulation of REST/NRSF-silencing function during BDNF gene promoter activation. Biochem. Biophys. Res. Commun. 290, 415–420 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Quesnel-Vallières, M., Irimia, M., Cordes, S. P. & Blencowe, B. J. Essential roles for the splicing regulator nSR100/SRRM4 during nervous system development. Genes Dev. 29, 746–759 (2015). References 29, 30, 31 and 35 lay out a compelling description of a splicing regulatory network controlled by a neuronal splicing factor.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Darnell, R. B. & Posner, J. B. Paraneoplastic syndromes involving the nervous system. N. Engl. J. Med. 349, 1543–1554 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Yang, Y. Y., Yin, G. L. & Darnell, R. B. The neuronal RNA-binding protein Nova-2 is implicated as the autoantigen targeted in POMA patients with dementia. Proc. Natl Acad. Sci. USA 95, 13254–13259 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jensen, K. B. et al. Nova-1 regulates neuron-specific alternative splicing and is essential for neuronal viability. Neuron 25, 359–371 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Yano, M., Hayakawa-Yano, Y., Mele, A. & Darnell, R. B. Nova2 regulates neuronal migration through an RNA switch in disabled-1 signaling. Neuron 66, 848–858 (2010). This paper beautifully demonstrates how NOVA2-dependent alternative splicing regulates the function of a receptor protein important for neuronal migration in the cortex and highlights the spatial specificity of splicing regulation through the use of knockout and transgenic mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rice, D. S. & Curran, T. Role of the reelin signaling pathway in central nervous system development. Annu. Rev. Neurosci. 24, 1005–1039 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Ayala, R., Shu, T. & Tsai, L.-H. Trekking across the brain: the journey of neuronal migration. Cell 128, 29–43 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Förster, E. et al. Emerging topics in Reelin function. Eur. J. Neurosci. 31, 1511–1518 (2010).

    PubMed  PubMed Central  Google Scholar 

  43. Rice, D. S. et al. Disabled-1 acts downstream of Reelin in a signaling pathway that controls laminar organization in the mammalian brain. Development 125, 3719–3729 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Arnaud, L., Ballif, B. A. & Cooper, J. A. Regulation of protein tyrosine kinase signaling by substrate degradation during brain development. Mol. Cell. Biol. 23, 9293–9302 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bock, H. H., Jossin, Y., May, P., Bergner, O. & Herz, J. Apolipoprotein E receptors are required for reelin-induced proteasomal degradation of the neuronal adaptor protein Disabled-1. J. Biol. Chem. 279, 33471–33479 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Feng, L., Allen, N. S., Simo, S. & Cooper, J. A. Cullin 5 regulates Dab1 protein levels and neuron positioning during cortical development. Genes Dev. 21, 2717–2730 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Simo, S., Jossin, Y. & Cooper, J. A. Cullin 5 regulates cortical layering by modulating the speed and duration of Dab1-dependent neuronal migration. J. Neurosci. 30, 5668–5676 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kuroyanagi, H. Fox-1 family of RNA-binding proteins. Cell. Mol. Life Sci. 66, 3895–3907 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dredge, B. K., Stefani, G., Engelhard, C. C. & Darnell, R. B. Nova autoregulation reveals dual functions in neuronal splicing. EMBO J. 24, 1608–1620 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ule, J. et al. An RNA map predicting Nova-dependent splicing regulation. Nature 444, 580–586 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. McKee, A. E. et al. A genome-wide in situ hybridization map of RNA-binding proteins reveals anatomically restricted expression in the developing mouse brain. BMC Dev. Biol. 5, 14 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Underwood, J. G., Boutz, P. L., Dougherty, J. D., Stoilov, P. & Black, D. L. Homologues of the Caenorhabditis elegans Fox-1 protein are neuronal splicing regulators in mammals. Mol. Cell. Biol. 25, 10005–10016 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gehman, L. T. et al. The splicing regulator Rbfox1 (A2BP1) controls neuronal excitation in the mammalian brain. Nat. Genet. 43, 706–711 (2011). This study demonstrates the role of the RBFOX1 splicing regulator in controlling neuronal excitation, and the involvement of alternative splicing in epileptogenesis. Along with reference 55, this study exemplifies how families of paralogous splicing regulators can have either redundant or separate functions depending on the brain region.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hammock, E. A. D. & Levitt, P. Developmental expression mapping of a gene implicated in multiple neurodevelopmental disorders, A2bp1 (Fox1). Dev. Neurosci. 33, 64–74 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gehman, L. T. et al. The splicing regulator Rbfox2 is required for both cerebellar development and mature motor function. Genes Dev. 26, 445–460 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hatten, M. E. & Heintz, N. Mechanisms of neural patterning and specification in the developing cerebellum. Annu. Rev. Neurosci. 18, 385–408 (1995).

    Article  CAS  PubMed  Google Scholar 

  57. Wang, V. Y. & Zoghbi, H. Y. Genetic regulation of cerebellar development. Nat. Rev. Neurosci. 2, 484–491 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Koch, S. et al. A secreted soluble form of ApoE receptor 2 acts as a dominant-negative receptor and inhibits Reelin signaling. EMBO J. 21, 5996–6004 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Trommsdorff, M. et al. Reeler/Disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97, 689–701 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Larouche, M., Beffert, U., Herz, J. & Hawkes, R. The Reelin receptors Apoer2 and Vldlr coordinate the patterning of Purkinje cell topography in the developing mouse cerebellum. PLoS ONE 3, e1653 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Beffert, U. et al. Modulation of synaptic plasticity and memory by reelin involves differential splicing of the lipoprotein receptor Apoer2. Neuron 47, 567–579 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Gao, Z. et al. Splice-mediated motif switching regulates disabled-1 phosphorylation and SH2 domain interactions. Mol. Cell. Biol. 32, 2794–2808 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Licatalosi, D. D. et al. Ptbp2 represses adult-specific splicing to regulate the generation of neuronal precursors in the embryonic brain. Genes Dev. 26, 1626–1642 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Li, Q. et al. The splicing regulator PTBP2 controls a program of embryonic splicing required for neuronal maturation. eLife 3, e01201 (2014). References 63 and 64 demonstrate that PTBP2 controls a transition from fetal to adult splicing programmes that is required for proper neuronal maturation and survival.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Cayouette, M. & Raff, M. Asymmetric segregation of Numb: a mechanism for neural specification from Drosophila to mammals. Nat. Neurosci. 5, 1265–1269 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Knoblich, J. A. Asymmetric cell division: recent developments and their implications for tumour biology. Nat. Rev. Mol. Cell. Biol. 11, 849–860 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zheng, S. et al. PSD-95 is post-transcriptionally repressed during early neural development by PTBP1 and PTBP2. Nat. Neurosci. 15, 381–S1 (2012). This study describes how an alternative splicing event can control the overall expression of a neuronal-specific gene, and how PTBP1 and PTBP2 control splicing programmes required for synapse formation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nakano, Y. et al. A mutation in the Srrm4 gene causes alternative splicing defects and deafness in the Bronx waltzer mouse. PLoS Genet. 8, e1002966 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Deol, M. S. & Gluecksohn-Waelsch, S. The role of inner hair cells in hearing. Nature 278, 250–252 (1979).

    Article  CAS  PubMed  Google Scholar 

  70. Whitlon, D. S., Gabel, C. & Zhang, X. Cochlear inner hair cells exist transiently in the fetal Bronx Waltzer (bv/bv) mouse. J. Comp. Neurol. 364, 515–522 (1996).

    Article  CAS  PubMed  Google Scholar 

  71. Sobkowicz, H. M., Inagaki, M., August, B. K. & Slapnick, S. M. Abortive synaptogenesis as a factor in the inner hair cell degeneration in the Bronx Waltzer (bv) mutant mouse. J. Neurocytol. 28, 17–38 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Cheong, M. A. & Steel, K. P. Early development and degeneration of vestibular hair cells in bronx waltzer mutant mice. Hear. Res. 164, 179–189 (2002).

    Article  PubMed  Google Scholar 

  73. Ruggiu, M. et al. Rescuing Z+ agrin splicing in Nova null mice restores synapse formation and unmasks a physiologic defect in motor neuron firing. Proc. Natl Acad. Sci. 106, 3513–3518 (2009). This reference reports a good example of using transgene rescue to understand the function of alternatively spliced isoforms and to dissect a portion of a highly pleiotropic phenotype.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nitkin, R. M. et al. Identification of agrin, a synaptic organizing protein from Torpedo electric organ. J. Cell Biol. 105, 2471–2478 (1987).

    Article  CAS  PubMed  Google Scholar 

  75. Reist, N. E., Werle, M. J. & McMahan, U. J. Agrin released by motor neurons induces the aggregation of acetylcholine receptors at neuromuscular junctions. Neuron 8, 865–868 (1992).

    Article  CAS  PubMed  Google Scholar 

  76. Gesemann, M., Denzer, A. J. & Ruegg, M. A. Acetylcholine receptor-aggregating activity of agrin isoforms and mapping of the active site. J. Cell Biol. 128, 625–636 (1995).

    Article  CAS  PubMed  Google Scholar 

  77. Sanes, J. R. & Lichtman, J. W. Development of the vertebrate neuromuscular junction. Annu. Rev. Neurosci. 22, 389–442 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Gautam, M. et al. Defective neuromuscular synaptogenesis in agrin-deficient mutant mice. Cell 85, 525–535 (1996).

    Article  CAS  PubMed  Google Scholar 

  79. Burgess, R. W., Nguyen, Q. T., Son, Y. J., Lichtman, J. W. & Sanes, J. R. Alternatively spliced isoforms of nerve- and muscle-derived agrin: their roles at the neuromuscular junction. Neuron 23, 33–44 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Di Fruscio, M., Chen, T. & Richard, S. Characterization of Sam68-like mammalian proteins SLM-1 and SLM-2: SLM-1 is a Src substrate during mitosis. Proc. Natl Acad. Sci. USA 96, 2710–2715 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lukong, K. E. & Richard, S. Sam68, the KH domain-containing superSTAR. Biochim. Biophys. Acta 1653, 73–86 (2003).

    CAS  PubMed  Google Scholar 

  82. Matter, N., Herrlich, P. & König, H. Signal-dependent regulation of splicing via phosphorylation of Sam68. Nature 420, 691–695 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Grange, J. et al. Somatodendritic localization and mRNA association of the splicing regulatory protein Sam68 in the hippocampus and cortex. J. Neurosci. Res. 75, 654–666 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Iijima, T., Iijima, Y., Witte, H. & Scheiffele, P. Neuronal cell type-specific alternative splicing is regulated by the KH domain protein SLM1. J. Cell Biol. 204, 331–342 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rossbach, O. et al. Auto- and cross-regulation of the hnRNP L proteins by alternative splicing. Mol. Cell. Biol. 29, 1442–1451 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Damianov, A. & Black, D. L. Autoregulation of Fox protein expression to produce dominant negative splicing factors. RNA 16, 405–416 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Traunmüller, L., Bornmann, C. & Scheiffele, P. Alternative splicing coupled nonsense-mediated decay generates neuronal cell type-specific expression of SLM proteins. J. Neurosci. 34, 16755–16761 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Baudouin, S. & Scheiffele, P. SnapShot: neuroligin–neurexin complexes. Cell 141, 908–908.e1 (2010).

    Article  PubMed  Google Scholar 

  89. Tabuchi, K. & Südhof, T. C. Structure and evolution of neurexin genes: insight into the mechanism of alternative splicing. Genomics 79, 849–859 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Graf, E. R., Zhang, X., Jin, S.-X., Linhoff, M. W. & Craig, A. M. Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins. Cell 119, 1013–1026 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Craig, A. M. & Kang, Y. Neurexin–neuroligin signaling in synapse development. Curr. Opin. Neurobiol. 17, 43–52 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Uemura, T. et al. Trans-synaptic interaction of GluRδ2 and neurexin through Cbln1 mediates synapse formation in the cerebellum. Cell 141, 1068–1079 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Chih, B., Gollan, L. & Scheiffele, P. Alternative splicing controls selective trans-synaptic interactions of the neuroligin-neurexin complex. Neuron 51, 171–178 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Iijima, T. et al. SAM68 regulates neuronal activity-dependent alternative splicing of neurexin-1. Cell 147, 1601–1614 (2011). This paper and the preceding references describe how a key determinant of synaptogenesis is regulated at the level of splicing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Richard, S. et al. Ablation of the Sam68 RNA binding protein protects mice from age-related bone loss. PLoS Genet. 1, e74 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Lukong, K. E. & Richard, S. Motor coordination defects in mice deficient for the Sam68 RNA-binding protein. Behav. Brain Res. 189, 357–363 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Klein, M. E., Castillo, P. E. & Jordan, B. A. Coordination between translation and degradation regulates inducibility of mGluR-LTD. Cell Rep. 10, 1459–1466 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ehrmann, I. et al. The tissue-specific RNA binding protein T-STAR controls regional splicing patterns of neurexin pre-mRNAs in the brain. PLoS Genet. 9, e1003474 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ule, J. et al. CLIP identifies Nova-regulated RNA networks in the brain. Science 302, 1212–1215 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Huang, C. S. et al. Common molecular pathways mediate long-term potentiation of synaptic excitation and slow synaptic inhibition. Cell 123, 105–118 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Kanadia, R. N. et al. A muscleblind knockout model for myotonic dystrophy. Science 302, 1978–1980 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Lin, X. et al. Failure of MBNL1-dependent post-natal splicing transitions in myotonic dystrophy. Hum. Mol. Genet. 15, 2087–2097 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Du, H. et al. Aberrant alternative splicing and extracellular matrix gene expression in mouse models of myotonic dystrophy. Nat. Struct. Mol. Biol. 17, 187–193 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Poulos, M. G., Batra, R., Charizanis, K. & Swanson, M. S. Developments in RNA splicing and disease. Cold Spring Harb. Perspect. Biol. 3, a000778 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Goodwin, M. et al. MBNL sequestration by toxic RNAs and RNA misprocessing in the myotonic dystrophy brain. Cell Rep. 12, 1159–1168 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Charizanis, K. et al. Muscleblind-like 2-mediated alternative splicing in the developing brain and dysregulation in myotonic dystrophy. Neuron 75, 437–450 (2012). This paper demonstrates that MBNL2 promotes adult splice isoforms of ion channels and the association of neuronal defects caused by the loss of MBNL2 with the neurological disorder myotonic dystrophy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Batra, R. et al. Loss of MBNL leads to disruption of developmentally regulated alternative polyadenylation in RNA-mediated disease. Mol. Cell 56, 311–322 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Shi, Y. & Manley, J. L. The end of the message: multiple protein–RNA interactions define the mRNA polyadenylation site. Genes Dev. 29, 889–897 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Good, P. J. A conserved family of elav-like genes in vertebrates. Proc. Natl Acad. Sci. USA 92, 4557–4561 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Brennan, C. M. & Steitz, J. A. HuR and mRNA stability. Cell. Mol. Life Sci. 58, 266–277 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Hinman, M. N. & Lou, H. Diverse molecular functions of Hu proteins. Cell. Mol. Life Sci. 65, 3168–3181 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Levine, T. D., Gao, F., King, P. H., Andrews, L. G. & Keene, J. D. Hel-N1: an autoimmune RNA-binding protein with specificity for 3′ uridylate-rich untranslated regions of growth factor mRNAs. Mol. Cell. Biol. 13, 3494–3504 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Ma, W. J., Cheng, S., Campbell, C., Wright, A. & Furneaux, H. Cloning and characterization of HuR, a ubiquitously expressed Elav-like protein. J. Biol. Chem. 271, 8144–8151 (1996).

    Article  CAS  PubMed  Google Scholar 

  114. Chung, S., Jiang, L., Cheng, S. & Furneaux, H. Purification and properties of HuD, a neuronal RNA-binding protein. J. Biol. Chem. 271, 11518–11524 (1996).

    Article  CAS  PubMed  Google Scholar 

  115. Myer, V. E., Fan, X. C. & Steitz, J. A. Identification of HuR as a protein implicated in AUUUA-mediated mRNA decay. EMBO J. 16, 2130–2139 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Chen, C.-Y. A., Xu, N. & Shyu, A.-B. Highly selective actions of HuR in antagonizing AU-rich element-mediated mRNA destabilization. Mol. Cell. Biol. 22, 7268–7278 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. López de Silanes, I., Zhan, M., Lal, A., Yang, X. & Gorospe, M. Identification of a target RNA motif for RNA-binding protein HuR. Proc. Natl Acad. Sci. USA 101, 2987–2992 (2004).

    Article  PubMed  CAS  Google Scholar 

  118. Ince-Dunn, G. et al. Neuronal Elav-like (Hu) proteins regulate RNA splicing and abundance to control glutamate levels and neuronal excitability. Neuron 75, 1067–1080 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Okano, H. J. & Darnell, R. B. A hierarchy of Hu RNA binding proteins in developing and adult neurons. J. Neurosci. 17, 3024–3037 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Pascale, A., Amadio, M. & Quattrone, A. Defining a neuron: neuronal ELAV proteins. Cell. Mol. Life Sci. 65, 128–140 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Szabo, A. et al. HuD, a paraneoplastic encephalomyelitis antigen, contains RNA-binding domains and is homologous to Elav and Sex-lethal. Cell 67, 325–333 (1991).

    Article  CAS  PubMed  Google Scholar 

  122. Sakai, K. et al. A hippocampal protein associated with paraneoplastic neurologic syndrome and small cell lung carcinoma. Biochem. Biophys. Res. Commun. 199, 1200–1208 (1994).

    Article  CAS  PubMed  Google Scholar 

  123. Srikantan, S. & Gorospe, M. HuR function in disease. Front. Biosci. (Landmark Ed) 17, 189–205 (2012).

    Article  CAS  Google Scholar 

  124. Akamatsu, W. et al. The RNA-binding protein HuD regulates neuronal cell identity and maturation. Proc. Natl Acad. Sci. USA 102, 4625–4630 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. DeBoer, E. M. et al. Prenatal deletion of the RNA-binding protein HuD disrupts postnatal cortical circuit maturation and behavior. J. Neurosci. 34, 3674–3686 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Bhalla, K. et al. The de novo chromosome 16 translocations of two patients with abnormal phenotypes (mental retardation and epilepsy) disrupt the A2BP1 gene. J. Hum. Genet. 49, 308–311 (2004).

    Article  PubMed  Google Scholar 

  127. Lal, D. et al. RBFOX1 and RBFOX3 mutations in rolandic epilepsy. PLoS ONE 8, e73323 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Lal, D. et al. Extending the phenotypic spectrum of RBFOX1 deletions: sporadic focal epilepsy. Epilepsia 56, e129–e133 (2015).

    Article  CAS  PubMed  Google Scholar 

  129. Voineagu, I. et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 474, 380–384 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Bill, B. R., Lowe, J. K., Dybuncio, C. T. & Fogel, B. L. Orchestration of neurodevelopmental programs by RBFOX1: implications for autism spectrum disorder. Int. Rev. Neurobiol. 113, 251–267 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Weyn-Vanhentenryck, S. M. et al. HITS-CLIP and integrative modeling define the Rbfox splicing-regulatory network linked to brain development and autism. Cell Rep. 6, 1139–1152 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Lovci, M. T. et al. Rbfox proteins regulate alternative mRNA splicing through evolutionarily conserved RNA bridges. Nat. Struct. Mol. Biol. 20, 1434–1442 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Mulley, J. C., Scheffer, I. E., Petrou, S. & Berkovic, S. F. Channelopathies as a genetic cause of epilepsy. Curr. Opin. Neurol. 16, 171–176 (2003).

    Article  CAS  PubMed  Google Scholar 

  134. Chapman, A. G., Woodburn, V. L., Woodruff, G. N. & Meldrum, B. S. Anticonvulsant effect of reduced NMDA receptor expression in audiogenic DBA/2 mice. Epilepsy Res. 26, 25–35 (1996).

    Article  CAS  PubMed  Google Scholar 

  135. Zapata, A. et al. Effects of NMDA-R1 antisense oligodeoxynucleotide administration: behavioral and radioligand binding studies. Brain Res. 745, 114–120 (1997).

    Article  CAS  PubMed  Google Scholar 

  136. Papale, L. A. et al. Heterozygous mutations of the voltage-gated sodium channel SCN8A are associated with spike-wave discharges and absence epilepsy in mice. Hum. Mol. Genet. 18, 1633–1641 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Corradini, I., Verderio, C., Sala, M., Wilson, M. C. & Matteoli, M. SNAP-25 in neuropsychiatric disorders. Ann. NY Acad. Sci. 1152, 93–99 (2009).

    Article  CAS  PubMed  Google Scholar 

  138. Sørensen, J. B. et al. Differential control of the releasable vesicle pools by SNAP-25 splice variants and SNAP-23. Cell 114, 75–86 (2003).

    Article  PubMed  Google Scholar 

  139. Bark, C. et al. Developmentally regulated switch in alternatively spliced SNAP-25 isoforms alters facilitation of synaptic transmission. J. Neurosci. 24, 8796–8805 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Johansson, J. U. et al. An ancient duplication of exon 5 in the Snap25 gene is required for complex neuronal development/function. PLoS Genet. 4, e1000278 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Raman, I. M., Sprunger, L. K., Meisler, M. H. & Bean, B. P. Altered subthreshold sodium currents and disrupted firing patterns in Purkinje neurons of Scn8a mutant mice. Neuron 19, 881–891 (1997).

    Article  CAS  PubMed  Google Scholar 

  142. Meisler, M. H., Kearney, J., Escayg, A., MacDonald, B. T. & Sprunger, L. K. Sodium channels and neurological disease: insights from Scn8a mutations in the mouse. Neuroscientist 7, 136–145 (2001).

    Article  CAS  PubMed  Google Scholar 

  143. Levin, S. I. et al. Impaired motor function in mice with cell-specific knockout of sodium channel Scn8a (NaV1.6) in cerebellar purkinje neurons and granule cells. J. Neurophysiol. 96, 785–793 (2006).

    Article  CAS  PubMed  Google Scholar 

  144. Raman, I. M. & Bean, B. P. Resurgent sodium current and action potential formation in dissociated cerebellar Purkinje neurons. J. Neurosci. 17, 4517–4526 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Grieco, T. M., Malhotra, J. D., Chen, C., Isom, L. L. & Raman, I. M. Open-channel block by the cytoplasmic tail of sodium channel β4 as a mechanism for resurgent sodium current. Neuron 45, 233–244 (2005).

    Article  CAS  PubMed  Google Scholar 

  146. Plummer, N. W., McBurney, M. W. & Meisler, M. H. Alternative splicing of the sodium channel SCN8A predicts a truncated two-domain protein in fetal brain and non-neuronal cells. J. Biol. Chem. 272, 24008–24015 (1997).

    Article  CAS  PubMed  Google Scholar 

  147. O'Brien, J. E. et al. Rbfox proteins regulate alternative splicing of neuronal sodium channel SCN8A. Mol. Cell. Neurosci. 49, 120–126 (2012).

    Article  CAS  PubMed  Google Scholar 

  148. Kohrman, D. C., Harris, J. B. & Meisler, M. H. Mutation detection in the med and medJ alleles of the sodium channel Scn8a. Unusual splicing due to a minor class AT-AC intron. J. Biol. Chem. 271, 17576–17581 (1996).

    Article  CAS  PubMed  Google Scholar 

  149. Sidman, R. L., Cowen, J. S. & Eicher, E. M. Inherited muscle and nerve diseases in mice: a tabulation with commentary. Ann. NY Acad. Sci. 317, 497–505 (1979).

    Article  CAS  PubMed  Google Scholar 

  150. Caldwell, J. H., Schaller, K. L., Lasher, R. S., Peles, E. & Levinson, S. R. Sodium channel Nav1.6 is localized at nodes of ranvier, dendrites, and synapses. Proc. Natl Acad. Sci. USA 97, 5616–5620 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Kearney, J. A. et al. Molecular and pathological effects of a modifier gene on deficiency of the sodium channel Scn8a (Nav1.6). Hum. Mol. Genet. 11, 2765–2775 (2002).

    Article  CAS  PubMed  Google Scholar 

  152. Sprunger, L. K., Escayg, A., Tallaksen-Greene, S., Albin, R. L. & Meisler, M. H. Dystonia associated with mutation of the neuronal sodium channel Scn8a and identification of the modifier locus Scnm1 on mouse chromosome 3. Hum. Mol. Genet. 8, 471–479 (1999).

    Article  CAS  PubMed  Google Scholar 

  153. Howell, V. M. et al. A targeted deleterious allele of the splicing factor SCNM1 in the mouse. Genetics 180, 1419–1427 (2008). References 151–153 demonstrate how a small change in the amount of a particular transcript isoform can dramatically affect neuronal function, and highlight the action of splicing regulators as phenotypic modifiers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Buchner, D. A., Trudeau, M. & Meisler, M. H. SCNM1, a putative RNA splicing factor that modifies disease severity in mice. Science 301, 967–969 (2003).

    Article  CAS  PubMed  Google Scholar 

  155. Da Cruz, S. & Cleveland, D. W. Understanding the role of TDP-43 and FUS/TLS in ALS and beyond. Curr. Opin. Neurobiol. 21, 904–919 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Ling, S.-C., Polymenidou, M. & Cleveland, D. W. Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 79, 416–438 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Kim, H. J. et al. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495, 467–473 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Johnson, J. O. et al. Mutations in the Matrin 3 gene cause familial amyotrophic lateral sclerosis. Nat. Neurosci. 17, 664–666 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Mackenzie, I. R., Rademakers, R. & Neumann, M. TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. Lancet Neurol. 9, 995–1007 (2010).

    Article  CAS  PubMed  Google Scholar 

  160. Polymenidou, M. et al. Misregulated RNA processing in amyotrophic lateral sclerosis. Brain Res. 1462, 3–15 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Buratti, E. & Baralle, F. E. TDP-43: gumming up neurons through protein–protein and protein–RNA interactions. Trends Biochem. Sci. 37, 237–247 (2012).

    Article  CAS  PubMed  Google Scholar 

  162. Lagier-Tourenne, C., Polymenidou, M. & Cleveland, D. W. TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum. Mol. Genet. 19, R46–R64 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Kraemer, B. C. et al. Loss of murine TDP-43 disrupts motor function and plays an essential role in embryogenesis. Acta Neuropathol. 119, 409–419 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Sephton, C. F. et al. TDP-43 is a developmentally regulated protein essential for early embryonic development. J. Biol. Chem. 285, 6826–6834 (2010).

    Article  CAS  PubMed  Google Scholar 

  165. Wu, L.-S. et al. TDP-43, a neuro-pathosignature factor, is essential for early mouse embryogenesis. Genesis 48, 56–62 (2010).

    CAS  PubMed  Google Scholar 

  166. Lee, E. B., Lee, V. M.-Y. & Trojanowski, J. Q. Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration. Nat. Rev. Neurosci. 13, 38–50 (2012).

    Article  CAS  Google Scholar 

  167. Johnson, B. S., McCaffery, J. M., Lindquist, S. & Gitler, A. D. A yeast TDP-43 proteinopathy model: exploring the molecular determinants of TDP-43 aggregation and cellular toxicity. Proc. Natl Acad. Sci. 105, 6439–6444 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Johnson, B. S. et al. TDP-43 is intrinsically aggregation-prone, and amyotrophic lateral sclerosis-linked mutations accelerate aggregation and increase toxicity. J. Biol. Chem. 284, 20329–20339 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Zhang, Y.-J. et al. Aberrant cleavage of TDP-43 enhances aggregation and cellular toxicity. Proc. Natl Acad. Sci. 106, 7607–7612 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Polymenidou, M. et al. Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat. Neurosci. 14, 459–468 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Yang, C. et al. Partial loss of TDP-43 function causes phenotypes of amyotrophic lateral sclerosis. Proc. Natl Acad. Sci. 111, E1121–E1129 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Vanden Broeck, L., Callaerts, P. & Dermaut, B. TDP-43-mediated neurodegeneration: towards a loss-of-function hypothesis? Trends Mol. Med. 20, 66–71 (2014).

    Article  CAS  PubMed  Google Scholar 

  173. Budini, M., Romano, V., Quadri, Z., Buratti, E. & Baralle, F. E. TDP-43 loss of cellular function through aggregation requires additional structural determinants beyond its C-terminal Q/N prion-like domain. Hum. Mol. Genet. 24, 9–20 (2015).

    Article  CAS  PubMed  Google Scholar 

  174. Tollervey, J. R. et al. Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat. Neurosci. 14, 452–458 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Arnold, E. S. et al. ALS-linked TDP-43 mutations produce aberrant RNA splicing and adult-onset motor neuron disease without aggregation or loss of nuclear TDP-43. Proc. Natl Acad. Sci. 110, E736–E745 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Iko, Y. et al. Domain architectures and characterization of an RNA-binding protein, TLS. J. Biol. Chem. 279, 44834–44840 (2004).

    Article  CAS  PubMed  Google Scholar 

  177. Zinszner, H., Sok, J., Immanuel, D., Yin, Y. & Ron, D. TLS (FUS) binds RNA in vivo and engages in nucleo-cytoplasmic shuttling. J. Cell. Sci. 110, 1741–1750 (1997).

    Article  CAS  PubMed  Google Scholar 

  178. Rogelj, B. et al. Widespread binding of FUS along nascent RNA regulates alternative splicing in the brain. Sci. Rep. 2, 603 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Hicks, G. G. et al. Fus deficiency in mice results in defective B-lymphocyte development and activation, high levels of chromosomal instability and perinatal death. Nat. Genet. 24, 175–179 (2000).

    Article  CAS  PubMed  Google Scholar 

  180. Huang, C. et al. FUS transgenic rats develop the phenotypes of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. PLoS Genet. 7, e1002011 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Fujioka, Y. et al. FUS-regulated region- and cell-type-specific transcriptome is associated with cell selectivity in ALS/FTLD. Sci. Rep. 3, 2388 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Jia, Y., Mu, J. C. & Ackerman, S. L. Mutation of a U2 snRNA gene causes global disruption of alternative splicing and neurodegeneration. Cell 148, 296–308 (2012). This paper demonstrates that mutation of a small RNA component of the spliceosome core can lead to a highly specific neurodegenerative phenotype.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Wahl, M. C., Will, C. L. & Lührmann, R. The spliceosome: design principles of a dynamic RNP machine. Cell 136, 701–718 (2009).

    Article  CAS  PubMed  Google Scholar 

  184. Black, D. L. et al. Mechanisms of alternative pre-messenger RNA splicing. Annu. Rev. Biochem. 72, 291–336 (2003).

    Article  CAS  PubMed  Google Scholar 

  185. Yoshida, K. et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 478, 64–69 (2011).

    Article  CAS  PubMed  Google Scholar 

  186. Lindsley, R. C. & Ebert, B. L. Molecular pathophysiology of myelodysplastic syndromes. Annu. Rev. Pathol. 8, 21–47 (2013).

    Article  CAS  PubMed  Google Scholar 

  187. Yoshida, K. & Ogawa, S. Splicing factor mutations and cancer. Wiley Interdiscip. Rev. RNA 5, 445–459 (2014).

    Article  CAS  PubMed  Google Scholar 

  188. Blencowe, B. J., Ahmad, S. & Lee, L. J. Current-generation high-throughput sequencing: deepening insights into mammalian transcriptomes. Genes Dev. 23, 1379–1386 (2009).

    Article  CAS  PubMed  Google Scholar 

  189. Irimia, M. & Blencowe, B. J. Alternative splicing: decoding an expansive regulatory layer. Curr. Opin. Cell Biol. 24, 323–332 (2012).

    Article  CAS  PubMed  Google Scholar 

  190. Barbosa-Morais, N. L. et al. The evolutionary landscape of alternative splicing in vertebrate species. Science 338, 1587–1593 (2012).

    Article  CAS  PubMed  Google Scholar 

  191. Merkin, J., Russell, C., Chen, P. & Burge, C. B. Evolutionary dynamics of gene and isoform regulation in mammalian tissues. Science 338, 1593–1599 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Zhang, W. et al. Region-specific alternative splicing in the nervous system: implications for regulation by the RNA-binding protein NAPOR. RNA 8, 671–685 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Ladd, A. N. CUG-BP, Elav-like family (CELF)-mediated alternative splicing regulation in the brain during health and disease. Mol. Cell. Neurosci. 56, 456–464 (2013).

    Article  CAS  PubMed  Google Scholar 

  194. Norris, A. D. et al. A pair of RNA-binding proteins controls networks of splicing events contributing to specialization of neural cell types. Mol. Cell 54, 946–959 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Calarco, J. A., Zhen, M. & Blencowe, B. J. Networking in a global world: establishing functional connections between neural splicing regulators and their target transcripts. RNA 17, 775–791 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Jangi, M. & Sharp, P. A. Building robust transcriptomes with master splicing factors. Cell 159, 487–498 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Lee, J.-A. et al. Cytoplasmic Rbfox1 regulates the expression of synaptic and autism-related genes. Neuron 89, 113–128 (2016).

    Article  CAS  PubMed  Google Scholar 

  198. Poduri, A., Evrony, G. D., Cai, X. & Walsh, C. A. Somatic mutation, genomic variation, and neurological disease. Science 341, 1237758–1237758 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Kriegstein, A. R. & Noctor, S. C. Patterns of neuronal migration in the embryonic cortex. Trends Neurosci, 27, 392–399 (2004).

    Article  CAS  PubMed  Google Scholar 

  200. Parker, R. & Song, H. The enzymes and control of eukaryotic mRNA turnover. Nat. Struct. Mol. Biol. 11, 121–127 (2004).

    Article  CAS  PubMed  Google Scholar 

  201. Meyer, S., Temme, C. & Wahle, E. Messenger RNA turnover in eukaryotes: pathways and enzymes. Crit. Rev. Biochem. Mol. Biol. 39, 197–216 (2004).

    Article  CAS  PubMed  Google Scholar 

  202. Popp, M. W.-L. & Maquat, L. E. Organizing principles of mammalian nonsense-mediated mRNA decay. Annu. Rev. Genet. 47, 139–165 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Yap, K. & Makeyev, E. V. Regulation of gene expression in mammalian nervous system through alternative pre-mRNA splicing coupled with RNA quality control mechanisms. Mol. Cell. Neurosci. 56, 420–428 (2013).

    Article  CAS  PubMed  Google Scholar 

  204. van Kouwenhove, M., Kedde, M. & Agami, R. MicroRNA regulation by RNA-binding proteins and its implications for cancer. Nat. Rev. Cancer 11, 644–656 (2011).

    Article  CAS  PubMed  Google Scholar 

  205. Ray, D. et al. A compendium of RNA-binding motifs for decoding gene regulation. Nature 499, 172–177 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Barrett, L. W., Fletcher, S. & Wilton, S. D. Regulation of eukaryotic gene expression by the untranslated gene regions and other non-coding elements. Cell. Mol. Life Sci. 69, 3613–3634 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Racca, C. et al. The neuronal splicing factor Nova co-localizes with target RNAs in the dendrite. Front. Neural Circuits 4, 5 (2010).

    PubMed  PubMed Central  Google Scholar 

  208. Klein, M. E., Younts, T. J., Castillo, P. E. & Jordan, B. A. RNA-binding protein Sam68 controls synapse number and local β-actin mRNA metabolism in dendrites. Proc. Natl Acad. Sci. 110, 3125–3130 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank researchers in the laboratory of D.B., the laboratory of S.Z. and other colleagues for many helpful discussions. Their work is supported by the US National Institutes of Health grants R01 GM49662 to D.B., K99 MH096807 to S.Z. and F31 NS093923 to C.V.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Douglas L. Black or Sika Zheng.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (table)

Properties of Proteins and RNAs discussed in this review (PDF 503 kb)

PowerPoint slides

Glossary

Spliceosome

A large macromolecular assembly of small nuclear ribonucleoproteins and proteins that catalyses the excision of introns from precursor mRNAs.

Pleiotropy

A condition where one gene can influence multiple phenotypic traits.

Paralogues

Related genes within a genome that often arise from gene duplication during evolution.

Polypyrimidine tract

A sequence element located between the branch point and the 3′ splice site that is bound by U2AF during normal spliceosome assembly; it is also a binding site for the polypyrimidine tract binding protein that can be found elsewhere in the precursor mRNA.

3′ splice site

The sequence at the 3′ end of the intron that is recognized by the U2AF protein component of the spliceosome. Also called an acceptor site.

YCAY elements

Sequences consisting of a cytosine (C) and an adenine (A) flanked by two pyrimidines (Y).

5′ splice site

The sequence at the 5′ end of the intron that is recognized by the U1 small nuclear ribonucleoprotein component of the spliceosome. Also called a donor site.

Branch point

An intronic sequence element upstream from the polypyrimidine tract of the 3′ splice site where a branched nucleotide at a specific adenosine will be formed by the first transesterification step of splicing. The branch point is recognized by the U2 small nuclear ribonucleoprotein.

Major class introns

Also called GT/AG introns, which are excised by the major spliceosome containing the U1 and U2 small nuclear ribonucleoproteins.

CLIP–seq

(Crosslinking immunoprecipitation followed by high-throughput sequencing). A method used to identify the binding sites of RNA-binding proteins across the transcriptome.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vuong, C., Black, D. & Zheng, S. The neurogenetics of alternative splicing. Nat Rev Neurosci 17, 265–281 (2016). https://doi.org/10.1038/nrn.2016.27

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn.2016.27

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing