Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neurobiology of rodent self-grooming and its value for translational neuroscience

An Erratum to this article was published on 25 January 2016

This article has been updated

Key Points

  • Self-grooming is an evolutionarily conserved complex innate behaviour that has a role in hygiene maintenance and other physiological functions. Self-grooming is the most frequently occurring awake behaviour in laboratory rodents.

  • Self-grooming is an important phenotype to study in translational neuroscience, as it may allow the modelling of human diseases that have symptoms similar to, and/or share pathogenetic mechanisms with, aberrant grooming in rodents.

  • Analysing animal self-grooming also has a broader value in the study of neurobiology underlying complex repetitive behaviours, which may be disrupted in certain neurological diseases.

  • In this Review, we discuss the neurobiology of grooming, including its underlying circuitry, genetic mechanisms and pharmacological modulation.

  • We also highlight studies of rodent self-grooming behaviour in models of neuropsychiatric disorders that suggest that it is valuable asset for clinical and translational neuroscience research, including the identification of neural circuits that control complex patterned behaviours.

  • These findings suggest that the study of rodent self-grooming has multiple implications for translational neuroscience, which may extend beyond understanding the self-grooming behaviour itself.

Abstract

Self-grooming is a complex innate behaviour with an evolutionarily conserved sequencing pattern and is one of the most frequently performed behavioural activities in rodents. In this Review, we discuss the neurobiology of rodent self-grooming, and we highlight studies of rodent models of neuropsychiatric disorders — including models of autism spectrum disorder and obsessive compulsive disorder — that have assessed self-grooming phenotypes. We suggest that rodent self-grooming may be a useful measure of repetitive behaviour in such models, and therefore of value to translational psychiatry. Assessment of rodent self-grooming may also be useful for understanding the neural circuits that are involved in complex sequential patterns of action.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rodent self-grooming behaviour.
Figure 2: Brain regions involved in the regulation of rodent self-grooming.
Figure 3: Expected self-grooming behaviour in rodent models of neuropsychiatric and neurodegenerative disorders.

Similar content being viewed by others

Change history

  • 04 January 2015

    This article has been corrected on both HTML and PDF versions.

References

  1. Spruijt, B. M., Welbergen, P., Brakkee, J. & Gispen, W. H. An ethological analysis of excessive grooming in young and aged rats. Ann. NY Acad. Sci. 525, 89–100 (1988).

    Article  CAS  PubMed  Google Scholar 

  2. Spruijt, B. M., van Hooff, J. A. & Gispen, W. H. Ethology and neurobiology of grooming behavior. Physiol. Rev. 72, 825–852 (1992). This article provides an excellent introduction to the neurobiology of grooming behaviour.

    Article  CAS  PubMed  Google Scholar 

  3. Fentress, J. C. Interrupted ongoing behaviour in two species of vole (Microtus agrestis and Clethrionomys britannicus). II. Extended analysis of motivational variables underlying fleeing and grooming behaviour. Anim. Behav. 16, 154–167 (1968).

    Article  CAS  PubMed  Google Scholar 

  4. Fentress, J. C. Interrupted ongoing behaviour in two species of vole (Microtus agrestis and Clethrionomys britannicus). I. Response as a function of preceding activity and the context of an apparently “irrelevant” motor pattern. Anim. Behav. 16, 135–153 (1968).

    Article  CAS  PubMed  Google Scholar 

  5. Leonard, S. T., Alizadeh-Naderi, R., Stokes, K. & Ferkin, M. H. The role of prolactin and testosterone in mediating seasonal differences in the self-grooming behavior of male meadow voles, Microtus pennsylvanicus. Physiol. Behav. 85, 461–468 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Kalueff, A., LaPorte, J. L. & Bergner, C. Neurobiology of Grooming Behavior (Cambridge Univ. Press, 2010). This book provides a comprehensive overview of animal self-grooming and its relevance to human behaviours.

    Book  Google Scholar 

  7. Kalueff, A. V., Aldridge, J. W., LaPorte, J. L., Murphy, D. L. & Tuohimaa, P. Analyzing grooming microstructure in neurobehavioral experiments. Nat. Protoc. 2, 2538–2544 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Berridge, K. C. & Aldridge, J. W. Super-stereotypy II: enhancement of a complex movement sequence by intraventricular dopamine D1 agonists. Synapse 37, 205–215 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Berridge, K. C., Fentress, J. C. & Parr, H. Natural syntax rules control action sequence of rats. Behav. Brain Res. 23, 59–68 (1987). An important description of natural sequence 'syntax' in rodent grooming.

    Article  CAS  PubMed  Google Scholar 

  10. Golani, I. & Fentress, J. C. Early ontogeny of face grooming in mice. Dev. Psychobiol. 18, 529–544 (1985).

    Article  CAS  PubMed  Google Scholar 

  11. Spruijt, B. M. & Gispen, W. H. Behavioral sequences as an easily quantifiable parameter in experimental studies. Physiol. Behav. 32, 707–710 (1985).

    Article  Google Scholar 

  12. Prokop, P., Fancovicova, J. & Fedor, P. Parasites enhance self-grooming behaviour and information retention in humans. Behav. Processes 107, 42–46 (2014).

    Article  PubMed  Google Scholar 

  13. Cohen-Mansfield, J. & Jensen, B. Dressing and grooming: preferences of community-dwelling older adults. J. Gerontol. Nurs. 33, 31–39 (2007).

    PubMed  Google Scholar 

  14. Roth, A. et al. Potential translational targets revealed by linking mouse grooming behavioral phenotypes to gene expression using public databases. Prog. Neuropsychopharmacol. Biol. Psychiatry 40, 312–325 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Ahmari, S. E. et al. Repeated cortico-striatal stimulation generates persistent OCD-like behavior. Science 340, 1234–1239 (2013). An important study that demonstrated that chronic optogenetic stimulation of the cortico-striatal pathway induces repetitive OCD-like grooming behaviour in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schmeisser, M. J. et al. Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2. Nature 486, 256–260 (2012). A critical, authoritative evaluation of the behaviour of mice with mutations in Shank genes, which suggests that these genes have a role in psychiatric diseases.

    Article  CAS  PubMed  Google Scholar 

  17. Chen, S. K. et al. Hematopoietic origin of pathological grooming in Hoxb8 mutant mice. Cell 141, 775–785 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shmelkov, S. V. et al. Slitrk5 deficiency impairs corticostriatal circuitry and leads to obsessive-compulsive-like behaviors in mice. Nat. Med. 16, 598–602 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Amodeo, D. A., Yi, J., Sweeney, J. A. & Ragozzino, M. E. Oxotremorine treatment reduces repetitive behaviors in BTBR T+ tf/J mice. Front. Synaptic Neurosci. 6, 17 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Moy, S. S. et al. Repetitive behavior profile and supersensitivity to amphetamine in the C58/J mouse model of autism. Behav. Brain Res. 259, 200–214 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Sungur, A. O., Vorckel, K. J., Schwarting, R. K. & Wohr, M. Repetitive behaviors in the Shank1 knockout mouse model for autism spectrum disorder: developmental aspects and effects of social context. J. Neurosci. Methods 234, 92–100 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Greco, B. et al. Autism-related behavioral abnormalities in synapsin knockout mice. Behav. Brain Res. 251, 65–74 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xu, P. et al. Double deletion of melanocortin 4 receptors and SAPAP3 corrects compulsive behavior and obesity in mice. Proc. Natl Acad. Sci. USA 110, 10759–10764 (2013).

    Article  PubMed  Google Scholar 

  24. Graybiel, A. M. & Saka, E. A genetic basis for obsessive grooming. Neuron 33, 1–2 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Greer, J. M. & Capecchi, M. R. Hoxb8 is required for normal grooming behavior in mice. Neuron 33, 23–34 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Fentress, J. C. Expressive contexts, fine structure, and central mediation of rodent grooming. Ann. NY Acad. Sci. 525, 18–26 (1988).

    Article  CAS  PubMed  Google Scholar 

  27. Kalueff, A. V. & Tuohimaa, P. Contrasting grooming phenotypes in C57Bl/6 and 129S1/SvImJ mice. Brain Res. 1028, 75–82 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Kalueff, A. V. & Tuohimaa, P. Grooming analysis algorithm for neurobehavioural stress research. Brain Res. Protoc. 13, 151–158 (2004).

    Article  Google Scholar 

  29. Berridge, K. C., Aldridge, J. W., Houchard, K. R. & Zhuang, X. Sequential super-stereotypy of an instinctive fixed action pattern in hyper-dopaminergic mutant mice: a model of obsessive compulsive disorder and Tourette's. BMC Biol. 3, 4 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kalueff, A. V. & Tuohimaa, P. The grooming analysis algorithm discriminates between different levels of anxiety in rats: potential utility for neurobehavioural stress research. J. Neurosci. Methods 143, 169–177 (2005).

    Article  PubMed  Google Scholar 

  31. Kalueff, A. V., Lou, Y. R., Laaksi, I. & Tuohimaa, P. Increased grooming behavior in mice lacking vitamin D receptors. Physiol. Behav. 82, 405–409 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Kalueff, A. V. & Tuohimaa, P. Mouse grooming microstructure is a reliable anxiety marker bidirectionally sensitive to GABAergic drugs. Eur. J. Pharmacol. 508, 147–153 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Reynolds, S., Urruela, M. & Devine, D. P. Effects of environmental enrichment on repetitive behaviors in the BTBR T+tf/J mouse model of autism. Autism Res. 6, 337–343 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Cromwell, H. C. & Berridge, K. C. Implementation of action sequences by a neostriatal site: a lesion mapping study of grooming syntax. J. Neurosci. 16, 3444–3458 (1996). This study provided a thorough dissection of the neural circuitry underlying rodent grooming using striatal lesions.

    Article  CAS  PubMed  Google Scholar 

  35. Berridge, K. C. Progressive degradation of serial grooming chains by descending decerebration. Behav. Brain Res. 33, 241–253 (1989). This study used progressive decerebration in rodents to show that rodent grooming is controlled by brain regions in a hierarchical manner.

    Article  CAS  PubMed  Google Scholar 

  36. Berntson, G. G., Jang, J. F. & Ronca, A. E. Brainstem systems and grooming behaviors. Ann. NY Acad. Sci. 525, 350–362 (1988).

    Article  CAS  PubMed  Google Scholar 

  37. Jin, X., Tecuapetla, F. & Costa, R. M. Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences. Nat. Neurosci. 17, 423–430 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Friend, D. M. & Kravitz, A. V. Working together: basal ganglia pathways in action selection. Trends Neurosci. 37, 301–303 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Burguiere, E., Monteiro, P., Feng, G. & Graybiel, A. M. Optogenetic stimulation of lateral orbitofronto-striatal pathway suppresses compulsive behaviors. Science 340, 1243–1246 (2013). An important study showing that pathological OCD-like grooming in Sapap3 -mutant mice can be corrected by optogenetic stimulation of orbitostriatal pathways, including the lateral orbitofrontal cortex and its terminals in the striatum.

    Article  CAS  PubMed  Google Scholar 

  40. Welch, J. M. et al. Cortico-striatal synaptic defects and OCD-like behaviours in Sapap3-mutant mice. Nature 448, 894–900 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Aldridge, J. W., Berridge, K. C. & Rosen, A. R. Basal ganglia neural mechanisms of natural movement sequences. Can. J. Physiol. Pharmacol. 82, 732–739 (2004). A detailed summary of the role of the basal ganglia in the sequencing of complex behaviours such as self-grooming.

    Article  CAS  PubMed  Google Scholar 

  42. Graybiel, A. M. Habits, rituals, and the evaluative brain. Annu. Rev. Neurosci. 31, 359–387 (2008). This article discusses an important conceptual argument linking habits and rituals to normal and pathological behaviours, with a useful expert discussion of their respective underlying circuits.

    Article  CAS  PubMed  Google Scholar 

  43. Graybiel, A. M. & Grafton, S. T. The striatum: where skills and habits meet. Cold Spring Harb. Perspect. Biol. 7, a021691 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Berridge, K. C. & Whishaw, I. Q. Cortex, striatum and cerebellum: control of serial order in a grooming sequence. Exp. Brain Res. 90, 275–290 (1992). A comprehensive summary of the role of cortical, striatal and cerebellar structures in controlling the sequencing and motor activity underlying rodent grooming.

    Article  CAS  PubMed  Google Scholar 

  45. Watson, P. J. Behavior maintained by electrical stimulation of the rat cerebellum. Physiol. Behav. 21, 749–755 (1978).

    Article  CAS  PubMed  Google Scholar 

  46. Strazielle, C. & Lalonde, R. Grooming in Lurcher mutant mice. Physiol. Behav. 64, 57–61 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Hong, W., Kim, D. W. & Anderson, D. J. Antagonistic control of social versus repetitive self-grooming behaviors by separable amygdala neuronal subsets. Cell 158, 1348–1361 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Homberg, J. R. et al. Enhanced motivation to self-administer cocaine is predicted by self-grooming behaviour and relates to dopamine release in the rat medial prefrontal cortex and amygdala. Eur. J. Neurosci. 15, 1542–1550 (2002).

    Article  PubMed  Google Scholar 

  49. Alo, R., Avolio, E., Mele, M., Di Vito, A. & Canonaco, M. Central amygdalar nucleus treated with orexin neuropeptides evoke differing feeding and grooming responses in the hamster. J. Neurol. Sci. 351, 46–51 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Obeso, J. A. & Lanciego, J. L. Past, present, and future of the pathophysiological model of the basal ganglia. Front. Neuroanat. 5, 39 (2011). A comprehensive review of basal ganglia circuitry and functions in the brain, with a particular focus on complex patterned behaviours.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Friedman, A. et al. A corticostriatal path targeting striosomes controls decision-making under conflict. Cell 161, 1320–1333 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Roeling, T. A., Veening, J. G., Peters, J. P., Vermelis, M. E. & Nieuwenhuys, R. Efferent connections of the hypothalamic “grooming area” in the rat. Neuroscience 56, 199–225 (1993).

    Article  CAS  PubMed  Google Scholar 

  53. Heimer, L., Van Hoesen, G. W., Trimble, M. & Zahm, D. S. Anatomy of Neuropsychiatry: The New Anatomy of the Basal Forebrain and Its Implications for Neuropsychiatric Illness (Academic Press, 2007).

    Google Scholar 

  54. Swanson, L. W. Quest for the basic plan of nervous system circuitry. Brain Res. Rev. 55, 356–372 (2007).

    Article  PubMed  Google Scholar 

  55. Roseberry, A. G., Stuhrman, K. & Dunigan, A. I. Regulation of the mesocorticolimbic and mesostriatal dopamine systems by alpha-melanocyte stimulating hormone and agouti-related protein. Neurosci. Biobehav Rev. 56, 15–25 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Dunn, A. J. Studies on the neurochemical mechanisms and significance of ACTH-induced grooming. Ann. NY Acad. Sci. 525, 150–168 (1988).

    Article  CAS  PubMed  Google Scholar 

  57. Dunn, A. J., Green, E. J. & Isaacson, R. L. Intracerebral adrenocorticotropic hormone mediates novelty-induced grooming in the rat. Science 203, 281–283 (1979).

    Article  CAS  PubMed  Google Scholar 

  58. Dunn, A. J., Berridge, C. W., Lai, Y. I. & Yachabach, T. L. CRF-induced excessive grooming behavior in rats and mice. Peptides 8, 841–844 (1987).

    Article  CAS  PubMed  Google Scholar 

  59. Miyamoto, M. & Nagawa, Y. Mesolimbic involvement in the locomotor stimulant action of thyrotropin-releasing hormone (TRH) in rats. Eur. J. Pharmacol. 44, 143–152 (1977).

    Article  CAS  PubMed  Google Scholar 

  60. Gargiulo, P. A. Thyrotropin releasing hormone injected into the nucleus accumbens septi selectively increases face grooming in rats. Braz. J. Med. Biol. Res. 29, 805–810 (1996).

    CAS  PubMed  Google Scholar 

  61. Sanchez, M. S., Barontini, M., Armando, I. & Celis, M. E. Correlation of increased grooming behavior and motor activity with alterations in nigrostriatal and mesolimbic catecholamines after alpha-melanotropin and neuropeptide glutamine-isoleucine injection in the rat ventral tegmental area. Cell. Mol. Neurobiol. 21, 523–533 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Kruk, M. R. et al. The hypothalamus: cross-roads of endocrine and behavioural regulation in grooming and aggression. Neurosci. Biobehav. Rev. 23, 163–177 (1998). A detailed review of the 'dual' role of the hypothalamus in the neural and endocrine regulation of grooming behaviours.

    Article  CAS  PubMed  Google Scholar 

  63. Berridge, K. C. & Aldridge, J. W. Super-stereotypy I: enhancement of a complex movement sequence by systemic dopamine D1 agonists. Synapse 37, 194–204 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Taylor, J. L., Rajbhandari, A. K., Berridge, K. C. & Aldridge, J. W. Dopamine receptor modulation of repetitive grooming actions in the rat: potential relevance for Tourette syndrome. Brain Res. 1322, 92–101 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Frederick, A. L. et al. Evidence against dopamine D1/D2 receptor heteromers. Mol. Psychiatry 20, 1373–1385 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Graybiel, A. M. & Ragsdale, C. W. Jr. Histochemically distinct compartments in the striatum of human, monkeys, and cat demonstrated by acetylthiocholinesterase staining. Proc. Natl Acad. Sci. USA 75, 5723–5726 (1978).

    Article  CAS  PubMed  Google Scholar 

  67. Crittenden, J. R. & Graybiel, A. M. Basal ganglia disorders associated with imbalances in the striatal striosome and matrix compartments. Front. Neuroanat. 5, 59 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Burguiere, E., Monteiro, P., Mallet, L., Feng, G. & Graybiel, A. M. Striatal circuits, habits, and implications for obsessive-compulsive disorder. Curr. Opin. Neurobiol. 30, 59–65 (2015). An excellent summary of striatal mechanisms in the formation of normal and pathological habits, with a particular reference to the pathogenesis of OCD.

    Article  CAS  PubMed  Google Scholar 

  69. Canales, J. J. & Graybiel, A. M. Patterns of gene expression and behavior induced by chronic dopamine treatments. Ann. Neurol. 47, S53–S59 (2000).

    CAS  PubMed  Google Scholar 

  70. Saka, E., Goodrich, C., Harlan, P., Madras, B. K. & Graybiel, A. M. Repetitive behaviors in monkeys are linked to specific striatal activation patterns. J. Neurosci. 24, 7557–7565 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Goodman, W. K., Grice, D. E., Lapidus, K. A. & Coffey, B. J. Obsessive-compulsive disorder. Psychiatr. Clin. North Am. 37, 257–267 (2014).

    Article  PubMed  Google Scholar 

  72. Audet, M. C., Goulet, S. & Dore, F. Y. Repeated subchronic exposure to phencyclidine elicits excessive atypical grooming in rats. Behav. Brain Res. 167, 103–110 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Williams, H. J., Zamzow, C. R., Robertson, H. & Dursun, S. M. Effects of clozapine plus lamotrigine on phencyclidine-induced hyperactivity. Prog. Neuropsychopharmacol. Biol. Psychiatry 30, 239–243 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Abekawa, T., Honda, M., Ito, K. & Koyama, T. Effects of NRA0045, a novel potent antagonist at dopamine D4, 5-HT2A, and α1 adrenaline receptors, and NRA0160, a selective D4 receptor antagonist, on phencyclidine-induced behavior and glutamate release in rats. Psychopharmacology (Berl.) 169, 247–256 (2003).

    Article  CAS  Google Scholar 

  75. Iwamoto, E. T. An assessment of the spontaneous activity of rats administered morphine, phencyclidine, or nicotine using automated and observational methods. Psychopharmacology (Berl.) 84, 374–382 (1984).

    Article  CAS  Google Scholar 

  76. Nin, M. S. et al. Anxiolytic effect of clonazepam in female rats: grooming microstructure and elevated plus maze tests. Eur. J. Pharmacol. 684, 95–101 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Barros, H. M., Tannhauser, S. L., Tannhauser, M. A. & Tannhauser, M. The effects of GABAergic drugs on grooming behaviour in the open field. Pharmacol. Toxicol. 74, 339–344 (1994).

    Article  CAS  PubMed  Google Scholar 

  78. Dunn, A. J., Guild, A. L., Kramarcy, N. R. & Ware, M. D. Benzodiazepines decrease grooming in response to novelty but not ACTH or β-endorphin. Pharmacol. Biochem. Behav. 15, 605–608 (1981).

    Article  CAS  PubMed  Google Scholar 

  79. Kalueff, A. & Nutt, D. J. Role of GABA in memory and anxiety. Depress. Anxiety 4, 100–110 (1996).

    Article  PubMed  Google Scholar 

  80. Leonard, H. L. et al. Clonazepam as an augmenting agent in the treatment of childhood-onset obsessive-compulsive disorder. J. Am. Acad. Child Adolesc. Psychiatry 33, 792–794 (1994).

    Article  CAS  PubMed  Google Scholar 

  81. Xu, H. Y. et al. Inactivation of the bed nucleus of the stria terminalis suppresses the innate fear responses of rats induced by the odor of cat urine. Neuroscience 221, 21–27 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Denmark, A. et al. The effects of chronic social defeat stress on mouse self-grooming behavior and its patterning. Behav. Brain Res. 208, 553–559 (2010).

    Article  PubMed  Google Scholar 

  83. Nin, M. S. et al. The effect of intra-nucleus accumbens administration of allopregnanolone on δ and γ2 GABAA receptor subunit mRNA expression in the hippocampus and on depressive-like and grooming behaviors in rats. Pharmacol. Biochem. Behav. 103, 359–366 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. De Barioglio, S. R., Lezcano, N. & Celis, M. E. Alpha MSH-induced excessive grooming behavior involves a GABAergic mechanism. Peptides 12, 203–205 (1991).

    Article  CAS  PubMed  Google Scholar 

  85. Aida, T. et al. Astroglial glutamate transporter deficiency increases synaptic excitability and leads to pathological repetitive behaviors in mice. Neuropsychopharmacology 40, 1569–1579 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rapoport, J. L. The Boy Who Couldn't Stop Washing: The Experience and Treatment of Obsessive-Compulsive Disorder (Penguin Publishing Group, 1989). An excellent description of aberrant grooming behaviours in individuals with OCD.

    Google Scholar 

  87. Insel, T. R. The NIMH Research Domain Criteria (RDoC) Project: precision medicine for psychiatry. Am. J. Psychiatry 171, 395–397 (2014).

    Article  PubMed  Google Scholar 

  88. Casey, B. J. et al. DSM-5 and RDoC: progress in psychiatry research? Nat. Rev. Neurosci. 14, 810–814 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yang, M. et al. Reduced excitatory neurotransmission and mild autism-relevant phenotypes in adolescent Shank3 null mutant mice. J. Neurosci. 32, 6525–6541 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Silverman, J. L., Tolu, S. S., Barkan, C. L. & Crawley, J. N. Repetitive self-grooming behavior in the BTBR mouse model of autism is blocked by the mGluR5 antagonist MPEP. Neuropsychopharmacology 35, 976–989 (2010). This study assessed social and repetitive behaviours that are relevant to autism in the BTBR mouse model and their pharmacological modulation.

    Article  CAS  PubMed  Google Scholar 

  91. Kas, M. J. et al. Assessing behavioural and cognitive domains of autism spectrum disorders in rodents: current status and future perspectives. Psychopharmacology (Berl.) 231, 1125–1146 (2014).

    Article  CAS  Google Scholar 

  92. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders 5th edn (American Psychiatric Association, 2013).

  93. Silverman, J. L. & Crawley, J. N. The promising trajectory of autism therapeutics discovery. Drug Discov. Today 19, 838–844 (2014).

    Article  PubMed  Google Scholar 

  94. Pearson, B. L. et al. Motor and cognitive stereotypies in the BTBR T+tf/J mouse model of autism. Genes Brain Behav. 10, 228–235 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Brodkin, J. et al. Validation and implementation of a novel high-throughput behavioral phenotyping instrument for mice. J. Neurosci. Methods 224, 48–57 (2014).

    Article  PubMed  Google Scholar 

  96. Yang, M., Perry, K., Weber, M. D., Katz, A. M. & Crawley, J. N. Social peers rescue autism-relevant sociability deficits in adolescent mice. Autism Res. 4, 17–27 (2011).

    Article  PubMed  Google Scholar 

  97. Deutsch, S. I., Urbano, M. R., Neumann, S. A., Burket, J. A. & Katz, E. Cholinergic abnormalities in autism: is there a rationale for selective nicotinic agonist interventions? Clin. Neuropharmacol. 33, 114–120 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Perry, E. K. et al. Cholinergic activity in autism: abnormalities in the cerebral cortex and basal forebrain. Am. J. Psychiatry 158, 1058–1066 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Van Schalkwyk, G. I. et al. Reduction of aggressive episodes after repeated transdermal nicotine administration in a hospitalized adolescent with autism spectrum disorder. J. Autism Dev. Disord. 45, 3061–3066 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Karvat, G. & Kimchi, T. Acetylcholine elevation relieves cognitive rigidity and social deficiency in a mouse model of autism. Neuropsychopharmacology 39, 831–840 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Silverman, J. L. et al. Negative allosteric modulation of the mGluR5 receptor reduces repetitive behaviors and rescues social deficits in mouse models of autism. Sci. Transl Med. 4, 131ra51 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Burket, J. A., Benson, A. D., Tang, A. H. & Deutsch, S. I. D-Cycloserine improves sociability in the BTBR T+ Itpr3tf/J mouse model of autism spectrum disorders with altered Ras/Raf/ERK1/2 signaling. Brain Res. Bull. 96, 62–70 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Urbano, M. et al. A trial of D-cycloserine to treat stereotypies in older adolescents and young adults with autism spectrum disorder. Clin. Neuropharmacol. 37, 69–72 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Posey, D. J. et al. A pilot study of D-cycloserine in subjects with autistic disorder. Am. J. Psychiatry 161, 2115–2117 (2004).

    Article  PubMed  Google Scholar 

  105. Insel, T. R. & Freund, M. Shedding light on brain circuits. Biol. Psychiatry 71, 1028–1029 (2012).

    Article  PubMed  Google Scholar 

  106. Kas, M. J., Modi, M. E., Saxe, M. D. & Smith, D. G. Advancing the discovery of medications for autism spectrum disorder using new technologies to reveal social brain circuitry in rodents. Psychopharmacolology (Berl.) 231, 1147–1165 (2014).

    Article  CAS  Google Scholar 

  107. Ellegood, J. et al. Clustering autism: using neuroanatomical differences in 26 mouse models to gain insight into the heterogeneity. Mol. Psychiatry 20, 118–125 (2015).

    Article  CAS  PubMed  Google Scholar 

  108. Portmann, T. et al. Behavioral abnormalities and circuit defects in the basal ganglia of a mouse model of 16p11.2 deletion syndrome. Cell Rep. 7, 1077–1092 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Bruining, H. et al. Behavioral signatures related to genetic disorders in autism. Mol. Autism 5, 11 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Guilmatre, A., Huguet, G., Delorme, R. & Bourgeron, T. The emerging role of SHANK genes in neuropsychiatric disorders. Dev. Neurobiol. 74, 113–122 (2014). A rigorous analysis of the association between mutations in SHANK genes and brain disorders with a particular focus on the genetics of repetitive behaviours.

    Article  CAS  PubMed  Google Scholar 

  111. Schmeisser, M. J. Translational neurobiology in Shank mutant mice — model systems for neuropsychiatric disorders. Ann. Anat. 200, 115–117 (2015).

    Article  PubMed  Google Scholar 

  112. Won, H. et al. Autistic-like social behaviour in Shank2-mutant mice improved by restoring NMDA receptor function. Nature 486, 261–265 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. Peca, J. et al. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature 472, 437–442 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wang, X. et al. Synaptic dysfunction and abnormal behaviors in mice lacking major isoforms of Shank3. Hum. Mol. Genet. 20, 3093–3108 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wurzman, R., Forcelli, P. A., Griffey, C. J. & Kromer, L. F. Repetitive grooming and sensorimotor abnormalities in an ephrin-A knockout model for autism spectrum disorders. Behav. Brain Res. 278, 115–128 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Nguyen, M. et al. Decoding the contribution of dopaminergic genes and pathways to autism spectrum disorder (ASD). Neurochem. Int. 66, 15–26 (2014).

    Article  CAS  PubMed  Google Scholar 

  117. Stewart, A. M., Nguyen, M., Wong, K., Poudel, M. K. & Kalueff, A. V. Developing zebrafish models of autism spectrum disorder (ASD). Prog. Neuropsychopharmacol. Biol. Psychiatry 50, 27–36 (2014).

    Article  CAS  PubMed  Google Scholar 

  118. Zhang, K., Hill, K., Labak, S., Blatt, G. J. & Soghomonian, J. J. Loss of glutamic acid decarboxylase (Gad67) in Gpr88-expressing neurons induces learning and social behavior deficits in mice. Neuroscience 275, 238–247 (2014).

    Article  CAS  PubMed  Google Scholar 

  119. Blumenthal, I. et al. Transcriptional consequences of 16p11.2 deletion and duplication in mouse cortex and multiplex autism families. Am. J. Hum. Genet. 94, 870–883 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Maillard, A. M. et al. The 16p11.2 locus modulates brain structures common to autism, schizophrenia and obesity. Mol. Psychiatry 20, 140–147 (2015).

    Article  CAS  PubMed  Google Scholar 

  121. Moreno-De-Luca, A. et al. The role of parental cognitive, behavioral, and motor profiles in clinical variability in individuals with chromosome 16p11.2 deletions. JAMA Psychiatry 72, 119–126 (2015).

    Article  PubMed  Google Scholar 

  122. Bienvenu, O. J. et al. Sapap3 and pathological grooming in humans: results from the OCD collaborative genetics study. Am. J. Med. Genet. B Neuropsychiatr. Genet. 150B, 710–720 (2009).

    Article  CAS  PubMed  Google Scholar 

  123. Graybiel, A. M. & Rauch, S. L. Toward a neurobiology of obsessive-compulsive disorder. Neuron 28, 343–347 (2000).

    Article  CAS  PubMed  Google Scholar 

  124. Bokor, G. & Anderson, P. D. Obsessive-compulsive disorder. J. Pharm. Pract. 27, 116–130 (2014).

    Article  PubMed  Google Scholar 

  125. Murphy, D. L., Timpano, K. R., Wheaton, M. G., Greenberg, B. D. & Miguel, E. C. Obsessive-compulsive disorder and its related disorders: a reappraisal of obsessive-compulsive spectrum concepts. Dialogues Clin. Neurosci. 12, 131–148 (2010).

    PubMed  PubMed Central  Google Scholar 

  126. Kalueff, A. V., Minasyan, A., Keisala, T., Shah, Z. H. & Tuohimaa, P. Hair barbering in mice: implications for neurobehavioural research. Behav. Processes 71, 8–15 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Garner, J. P. et al. Reverse-translational biomarker validation of abnormal repetitive behaviors in mice: an illustration of the 4P's modeling approach. Behav. Brain Res. 219, 189–196 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Garner, J. P., Weisker, S. M., Dufour, B. & Mench, J. A. Barbering (fur and whisker trimming) by laboratory mice as a model of human trichotillomania and obsessive-compulsive spectrum disorders. Comp. Med. 54, 216–224 (2004).

    CAS  PubMed  Google Scholar 

  129. Feusner, J. D., Hembacher, E. & Phillips, K. A. The mouse who couldn't stop washing: pathologic grooming in animals and humans. CNS Spectr. 14, 503–513 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Murphy, D. L. & Lesch, K. P. Targeting the murine serotonin transporter: insights into human neurobiology. Nat. Rev. Neurosci. 9, 85–96 (2008).

    Article  CAS  PubMed  Google Scholar 

  131. Kyzar, E. J. et al. Alterations in grooming activity and syntax in heterozygous SERT and BDNF knockout mice: the utility of behavior-recognition tools to characterize mutant mouse phenotypes. Brain Res. Bull. 89, 168–176 (2012).

    Article  CAS  PubMed  Google Scholar 

  132. Kalueff, A. V., Olivier, J. D., Nonkes, L. J. & Homberg, J. R. Conserved role for the serotonin transporter gene in rat and mouse neurobehavioral endophenotypes. Neurosci. Biobehav. Rev. 34, 373–386 (2010).

    Article  CAS  PubMed  Google Scholar 

  133. Moya, P. R. et al. Common and rare alleles of the serotonin transporter gene, SLC6A4, associated with Tourette's disorder. Mov. Disord. 28, 1263–1270 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Murphy, D. L. et al. How the serotonin story is being rewritten by new gene-based discoveries principally related to SLC6A4, the serotonin transporter gene, which functions to influence all cellular serotonin systems. Neuropharmacology 55, 932–960 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Wendland, J. R. et al. A novel, putative gain-of-function haplotype at SLC6A4 associates with obsessive-compulsive disorder. Hum. Mol. Genet. 17, 717–723 (2008).

    Article  CAS  PubMed  Google Scholar 

  136. Voyiaziakis, E. et al. Association of SLC6A4 variants with obsessive-compulsive disorder in a large multicenter US family study. Mol. Psychiatry 16, 108–120 (2011).

    Article  CAS  PubMed  Google Scholar 

  137. Zuchner, S. et al. Multiple rare SAPAP3 missense variants in trichotillomania and OCD. Mol. Psychiatry 14, 6–9 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Boardman, L. et al. Investigating SAPAP3 variants in the etiology of obsessive-compulsive disorder and trichotillomania in the South African white population. Compr. Psychiatry 52, 181–187 (2011).

    Article  PubMed  Google Scholar 

  139. Wan, Y. et al. Circuit-selective striatal synaptic dysfunction in the Sapap3 knockout mouse model of obsessive-compulsive disorder. Biol. Psychiatry 75, 623–630 (2014). This study identified the striatal mechanisms responsible for the behavioural phenotype in the Sapap3−/− mouse.

    Article  CAS  PubMed  Google Scholar 

  140. Monteiro, P. & Feng, G. Learning from animal models of obsessive-compulsive disorder. Biol. Psychiatry 79, 7–16 (2016).

    Article  PubMed  Google Scholar 

  141. Ahmari, S. E. & Dougherty, D. D. Dissecting OCD circuits: from animal models to targeted treatments. Depress. Anxiety 32, 550–562 (2015). This recent review provides an excellent summary of circuits involved in OCD pathogenesis in preclinical and translational models.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Yu, D. et al. Cross-disorder genome-wide analyses suggest a complex genetic relationship between Tourette's syndrome and OCD. Am. J. Psychiatry 172, 82–93 (2015).

    Article  PubMed  Google Scholar 

  143. Felling, R. J. & Singer, H. S. Neurobiology of tourette syndrome: current status and need for further investigation. J. Neurosci. 31, 12387–12395 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Crane, J. et al. Family-based genetic association study of DLGAP3 in Tourette Syndrome. Am. J. Med. Genet. B Neuropsychiatr. Genet. 156B, 108–114 (2011).

    Article  PubMed  Google Scholar 

  145. McGrath, L. M. et al. Copy number variation in obsessive-compulsive disorder and tourette syndrome: a cross-disorder study. J. Am. Acad. Child Adolesc. Psychiatry 53, 910–919 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Davis, L. K. et al. Partitioning the heritability of Tourette syndrome and obsessive compulsive disorder reveals differences in genetic architecture. PLoS Genet. 9, e1003864 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Denys, D. et al. Dopaminergic activity in Tourette syndrome and obsessive-compulsive disorder. Eur. Neuropsychopharmacol. 23, 1423–1431 (2013).

    Article  CAS  PubMed  Google Scholar 

  148. Cromwell, H. C., Berridge, K. C., Drago, J. & Levine, M. S. Action sequencing is impaired in D1A-deficient mutant mice. Eur. J. Neurosci. 10, 2426–2432 (1998).

    Article  CAS  PubMed  Google Scholar 

  149. Nordstrom, E. J. & Burton, F. H. A transgenic model of comorbid Tourette's syndrome and obsessive-compulsive disorder circuitry. Mol. Psychiatry 7, 617–625 (2002).

    Article  CAS  PubMed  Google Scholar 

  150. Xu, M., Li, L., Ohtsu, H. & Pittenger, C. Histidine decarboxylase knockout mice, a genetic model of Tourette syndrome, show repetitive grooming after induced fear. Neurosci. Lett. 595, 50–53 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Roffler-Tarlov, S., Martin, B., Graybiel, A. M. & Kauer, J. S. Cell death in the midbrain of the murine mutation weaver. J. Neurosci. 16, 1819–1826 (1996).

    Article  CAS  PubMed  Google Scholar 

  152. Graybiel, A. M., Ohta, K. & Roffler-Tarlov, S. Patterns of cell and fiber vulnerability in the mesostriatal system of the mutant mouse weaver. I. Gradients and compartments. J. Neurosci. 10, 720–733 (1990).

    Article  CAS  PubMed  Google Scholar 

  153. Roffler-Tarlov, S. & Graybiel, A. M. Expression of the weaver gene in dopamine-containing neural systems is dose-dependent and affects both striatal and nonstriatal regions. J. Neurosci. 6, 3319–3330 (1986).

    Article  CAS  PubMed  Google Scholar 

  154. Roffler-Tarlov, S. & Graybiel, A. M. Weaver mutation has differential effects on the dopamine-containing innervation of the limbic and nonlimbic striatum. Nature 307, 62–66 (1984).

    Article  CAS  PubMed  Google Scholar 

  155. Bolivar, V. J., Danilchuk, W. & Fentress, J. C. Separation of activation and pattern in grooming development of weaver mice. Behav. Brain Res. 75, 49–58 (1996).

    Article  CAS  PubMed  Google Scholar 

  156. Spruijt, B. M., Welbergen, P., Brakkee, J. & Gispen, W. H. Behavioral changes in ACTH-(1-24)-induced excessive grooming in aging rats. Neurobiol. Aging 8, 265–270 (1987).

    Article  CAS  PubMed  Google Scholar 

  157. Rodriguez Echandia, E. L., Broitman, S. T. & Foscolo, M. R. Effect of the chronic ingestion of chlorimipramine and desipramine on the hole board response to acute stresses in male rats. Pharmacol. Biochem. Behav. 26, 207–210 (1987).

    Article  CAS  PubMed  Google Scholar 

  158. Kalueff, A. V., Lou, Y. R., Laaksi, I. & Tuohimaa, P. Abnormal behavioral organization of grooming in mice lacking the vitamin D receptor gene. J. Neurogenet. 19, 1–24 (2005).

    Article  CAS  PubMed  Google Scholar 

  159. Estanislau, C. et al. Context-dependent differences in grooming behavior among the NIH heterogeneous stock and the Roman high- and low-avoidance rats. Neurosci. Res. 77, 187–201 (2013).

    Article  CAS  PubMed  Google Scholar 

  160. Paumier, K. L. et al. Behavioral characterization of A53T mice reveals early and late stage deficits related to Parkinson's disease. PLoS ONE 8, e70274 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Kasten, M. & Klein, C. The many faces of α-synuclein mutations. Mov. Disord. 28, 697–701 (2013).

    Article  PubMed  Google Scholar 

  162. Steele, A. D., Jackson, W. S., King, O. D. & Lindquist, S. The power of automated high-resolution behavior analysis revealed by its application to mouse models of Huntington's and prion diseases. Proc. Natl Acad. Sci. USA 104, 1983–1988 (2007).

    Article  CAS  PubMed  Google Scholar 

  163. Reddy, P. H. et al. Transgenic mice expressing mutated full-length HD cDNA: a paradigm for locomotor changes and selective neuronal loss in Huntington's disease. Phil. Trans. R. Soc. Lond. B 354, 1035–1045 (1999).

    Article  CAS  Google Scholar 

  164. Scattoni, M. L. et al. Progressive behavioural changes in the spatial open-field in the quinolinic acid rat model of Huntington's disease. Behav. Brain Res. 152, 375–383 (2004).

    Article  PubMed  Google Scholar 

  165. Dorner, J. L., Miller, B. R., Barton, S. J., Brock, T. J. & Rebec, G. V. Sex differences in behavior and striatal ascorbate release in the 140 CAG knock-in mouse model of Huntington's disease. Behav. Brain Res. 178, 90–97 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Andre, V. M. et al. Differential electrophysiological changes in striatal output neurons in Huntington's disease. J. Neurosci. 31, 1170–1182 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Hickey, M. A., Reynolds, G. P. & Morton, A. J. The role of dopamine in motor symptoms in the R6/2 transgenic mouse model of Huntington's disease. J. Neurochem. 81, 46–59 (2002).

    Article  CAS  PubMed  Google Scholar 

  168. Vidal, R., Barbeito, A. G., Miravalle, L. & Ghetti, B. Cerebral amyloid angiopathy and parenchymal amyloid deposition in transgenic mice expressing the Danish mutant form of human BRI2. Brain Pathol. 19, 58–68 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Scruggs, B. A. et al. High-throughput screening of stem cell therapy for globoid cell leukodystrophy using automated neurophenotyping of twitcher mice. Behav. Brain Res. 236, 35–47 (2013).

    Article  CAS  PubMed  Google Scholar 

  170. Bubenikova-Valesova, V. & Balcar, V. J., Tejkalova, H., Langmeier, M. & St'astny, F. Neonatal administration of N-acetyl-L-aspartyl-L-glutamate induces early neurodegeneration in hippocampus and alters behaviour in young adult rats. Neurochem. Int. 48, 515–522 (2006).

    Article  CAS  PubMed  Google Scholar 

  171. Glynn, D., Drew, C. J., Reim, K., Brose, N. & Morton, A. J. Profound ataxia in complexin I knockout mice masks a complex phenotype that includes exploratory and habituation deficits. Hum. Mol. Genet. 14, 2369–2385 (2005).

    Article  CAS  PubMed  Google Scholar 

  172. Ferrante, R. J. Mouse models of Huntington's disease and methodological considerations for therapeutic trials. Biochim. Biophys. Acta 1792, 506–520 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Hasler, G. & Northoff, G. Discovering imaging endophenotypes for major depression. Mol. Psychiatry 16, 604–619 (2011).

    Article  CAS  PubMed  Google Scholar 

  174. Prasad, K. M. & Keshavan, M. S. Structural cerebral variations as useful endophenotypes in schizophrenia: do they help construct “extended endophenotypes”? Schizophr. Bull. 34, 774–790 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Dodero, L. et al. Neuroimaging evidence of major morpho-anatomical and functional abnormalities in the BTBR T+TF/J mouse model of autism. PLoS ONE 8, e76655 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Gottesman, I. I. & Gould, T. D. The endophenotype concept in psychiatry: etymology and strategic intentions. Am. J. Psychiatry 160, 636–645 (2003).

    Article  PubMed  Google Scholar 

  177. Pigott, T. A., L'Heureux, F., Dubbert, B., Bernstein, S. & Murphy, D. L. Obsessive compulsive disorder: comorbid conditions. J. Clin. Psychiatry 55 (Suppl.), 15–27 (1994).

    PubMed  Google Scholar 

  178. Welkowitz, L. A., Struening, E. L., Pittman, J., Guardino, M. & Welkowitz, J. Obsessive-compulsive disorder and comorbid anxiety problems in a national anxiety screening sample. J. Anxiety Disord. 14, 471–482 (2000).

    Article  CAS  PubMed  Google Scholar 

  179. McGrath, M. J., Campbell, K. M., Veldman, M. B. & Burton, F. H. Anxiety in a transgenic mouse model of cortical-limbic neuro-potentiated compulsive behavior. Behav. Pharmacol. 10, 435–443 (1999).

    Article  CAS  PubMed  Google Scholar 

  180. Sturm, V. et al. The nucleus accumbens: a target for deep brain stimulation in obsessive-compulsive- and anxiety-disorders. J. Chem. Neuroanat. 26, 293–299 (2003).

    Article  PubMed  Google Scholar 

  181. Schneier, F. R. et al. Striatal dopamine D2 receptor availability in OCD with and without comorbid social anxiety disorder: preliminary findings. Depress. Anxiety 25, 1–7 (2008).

    Article  PubMed  Google Scholar 

  182. Kalueff, A. V. & Stewart, A. M. Modeling neuropsychiatric spectra to empower translational biological psychiatry. Behav. Brain Res. 276, 1–7 (2015).

    Article  PubMed  Google Scholar 

  183. Laporte, J. L., Ren-Patterson, R. F., Murphy, D. L. & Kalueff, A. V. Refining psychiatric genetics: from 'mouse psychiatry' to understanding complex human disorders. Behav. Pharmacol. 19, 377–384 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Stewart, A. M. & Kalueff, A. V. Developing better and more valid animal models of brain disorders. Behav. Brain Res. 276, 28–31 (2015).

    Article  PubMed  Google Scholar 

  185. Xu, M. et al. Targeted ablation of cholinergic interneurons in the dorsolateral striatum produces behavioral manifestations of Tourette syndrome. Proc. Natl Acad. Sci. USA 112, 893–898 (2015).

    Article  CAS  PubMed  Google Scholar 

  186. Graybiel, A. M., Canales, J. J. & Capper-Loup, C. Levodopa-induced dyskinesias and dopamine-dependent stereotypies: a new hypothesis. Trends Neurosci. 23, S71–S77 (2000).

    Article  CAS  PubMed  Google Scholar 

  187. Lieberman, P. Human Language and Our Reptilian Brain: The Subcortical Bases of Speech, Syntax, and Thought (Harvard Univ. Press, 2000).

    Google Scholar 

  188. Graybiel, A. M. The basal ganglia and cognitive pattern generators. Schizophr. Bull. 23, 459–469 (1997).

    Article  CAS  PubMed  Google Scholar 

  189. Tecott, L. H. & Nestler, E. J. Neurobehavioral assessment in the information age. Nat. Neurosci. 7, 462–466 (2004).

    Article  CAS  PubMed  Google Scholar 

  190. Kalueff, A. V., Wheaton, M. & Murphy, D. L. What's wrong with my mouse model? Advances and strategies in animal modeling of anxiety and depression. Behav. Brain Res. 179, 1–18 (2007).

    Article  CAS  PubMed  Google Scholar 

  191. Kyzar, E. et al. Towards high-throughput phenotyping of complex patterned behaviors in rodents: focus on mouse self-grooming and its sequencing. Behav. Brain Res. 225, 426–431 (2011). This paper describes the first successful application of automated behaviour-recognition protocols to quantify rodent self-grooming behaviours and their sequential microstructure, and emphasizes the value of grooming analyses in high-throughput rodent phenotyping.

    Article  PubMed  Google Scholar 

  192. Bortolato, M. et al. Social deficits and perseverative behaviors, but not overt aggression, in MAO-A hypomorphic mice. Neuropsychopharmacology 36, 2674–2688 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Escorihuela, R. M. et al. Inbred Roman high- and low-avoidance rats: differences in anxiety, novelty-seeking, and shuttlebox behaviors. Physiol. Behav. 67, 19–26 (1999).

    Article  CAS  PubMed  Google Scholar 

  194. Ferre, P. et al. Behavior of the Roman/Verh high- and low-avoidance rat lines in anxiety tests: relationship with defecation and self-grooming. Physiol. Behav. 58, 1209–1213 (1995).

    Article  CAS  PubMed  Google Scholar 

  195. Eguibar, J. R., Romero-Carbente, J. C. & Moyaho, A. Behavioral differences between selectively bred rats: D1 versus D2 receptors in yawning and grooming. Pharmacol. Biochem. Behav. 74, 827–832 (2003).

    Article  CAS  PubMed  Google Scholar 

  196. Eguibar, J. R. & Moyaho, A. Inhibition of grooming by pilocarpine differs in high- and low-yawning sublines of Sprague-Dawley rats. Pharmacol. Biochem. Behav. 58, 317–322 (1997).

    Article  CAS  PubMed  Google Scholar 

  197. Rossi-Arnaud, C. & Ammassari-Teule, M. Modifications of open field and novelty behaviours by hippocampal and amygdaloid lesions in two inbred strains of mice: lack of strain x lesion interactions. Behav. Processes 27, 155–164 (1992).

    Article  CAS  PubMed  Google Scholar 

  198. Kalueff, A. V. & Tuohimaa, P. Contrasting grooming phenotypes in three mouse strains markedly different in anxiety and activity (129S1, BALB/c and NMRI). Behav. Brain Res. 160, 1–10 (2005).

    Article  PubMed  Google Scholar 

  199. Dufour, B. D. et al. Nutritional up-regulation of serotonin paradoxically induces compulsive behavior. Nutr. Neurosci. 13, 256–264 (2010).

    Article  CAS  PubMed  Google Scholar 

  200. Rogel-Salazar, G. & Lopez-Rubalcava, C. Evaluation of the anxiolytic-like effects of clomipramine in two rat strains with different anxiety vulnerability (Wistar and Wistar-Kyoto rats): participation of 5-HT1A receptors. Behav. Pharmacol. 22, 136–146 (2011).

    Article  CAS  PubMed  Google Scholar 

  201. Kang, J. & Kim, E. Suppression of NMDA receptor function in mice prenatally exposed to valproic acid improves social deficits and repetitive behaviors. Front. Mol. Neurosci. 8, 17 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This Review is a tribute to John C. Fentress (1939–2015), a brilliant scientist, good friend and a true pioneer of ethology and neurobiology research. This study is supported by the ZENEREI Research Center (A.V.K., A.M.S.), Guangdong Ocean University (A.V.K., C.S.), St. Petersburg State University grant 1.38.201.2014 (A.V.K.), as well as by the US National Institutes of Health grants NS025529, HD028341, MH060379 (A.M.G.) and MH63649, DA015188 (K.B.). A.V.K. research is supported by the Government of Russian Federation (Act 211, contract 02.A03.21.0006 with Ural Federal University). The authors thank M. Nguyen, E. J. Kyzar and Y. Kubota for their assistance with this manuscript. They wish to acknowledge helpful suggestions from D. J. Anderson (California Institute of Technology, USA) regarding the roles of amygdala-related circuitry in grooming behaviour. The authors also thank manufacturers of neurophenotyping tools for providing information used in Supplementary information S5 (figure).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan V. Kalueff.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Supplementary information

Supplementary information S1 (movie)

Supplementary information S1 (movie) is reproduced with permission from Professor Kent Berridge. (WMV 5857 kb)

Supplementary information S2 (movie)

Supplementary information S2 (movie) is reproduced with permission from Professor Allan Kalueff. (MPG 7423 kb)

Supplementary information S3 (table)

The effects of selected hypothalamic and pituitary hormones on self-grooming behavior in rodents (PDF 271 kb)

Supplementary information S4 (table)

Genetically modified mouse strains with aberrant grooming behaviors* (PDF 349 kb)

Supplementary information S5 (figure)

Shown here are examples of rodent self-grooming and its patterning in context of automated behavioral analyses (images — courtesy of Metris BV (Netherlands) and CleverSys, Inc., USA; also see Supplementary information S6 (table) online) (PDF 517 kb)

Supplementary information S6 (table)

Summary of currently available software-based solutions for rodent grooming behavioral analyses (information as provided by developers in Summer 2015) (PDF 187 kb)

Glossary

Cephalocaudal progression

A general direction (or rule) of rodent self-grooming behaviour that begins at the nose, then continues to the face and head, the body, the tail and the genitals.

Grooming microstructure

The complex sequential organization (patterning) of self-grooming movements.

Fixed-action patterns

Instinctive species-specific behavioural sequences that, once begun, run to their completion.

Basal ganglia

A group of subcortical nuclei involved in motor control, motivation and organizing movements into behavioural sequences.

Ventral tegmental area

A midbrain region (implicated in reward, anxiety and aversion) that contains the dopaminergic cell bodies of the mesocorticolimbic system.

Research domain criteria

(RDoC). A strategy in translational mental health research that aims to explore the basic mechanisms of brain deficits to understand symptom sets that are observed across multiple disorders.

Behavioural perseveration

The repetition of a specific behaviour that becomes inappropriate in the absence of behaviour-evoking stimuli.

Stereotypies

Repetitive behaviours involving an abnormal or excessive repetition of a behavioural action in the same way over time.

Tics

Sudden, repetitive, involuntary movements or vocalizations with varying intensity and frequency.

Displacement

Behaviour that is seemingly irrelevant to the context, which is displayed during a conflict of motivations or when the animal is unable to perform an activity for which it is motivated.

Krabbe disease

(Also known as globoid cell leukodystrophy). A rare, fatal neurodegenerative disorder that is due to genetic defect causing aberrant brain myelination.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalueff, A., Stewart, A., Song, C. et al. Neurobiology of rodent self-grooming and its value for translational neuroscience. Nat Rev Neurosci 17, 45–59 (2016). https://doi.org/10.1038/nrn.2015.8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn.2015.8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing