Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immune mediators in the brain and peripheral tissues in autism spectrum disorder

Key Points

  • Genetic and environmental risk factors for autism spectrum disorder (ASD) suggest that dysfunction of the immune system may contribute to the development of this disorder.

  • Maternal immune dysfunction due to autoimmune disease, infection or immunogenetics may alter common molecular signalling pathways in the developing brain, increasing the likelihood of ASD.

  • Individuals with ASD exhibit chronic changes in immune system function that may represent disease-related pathophysiology, beneficial compensation or a combination of both.

  • ASD-related changes in the expression of immune molecules in the brain are not always indicative of neuroinflammation, even though these changes may be detrimental to brain development and function.

  • Many immune molecules are expressed in the brain at synapses, and their signalling may converge on several intracellular signalling hubs, such as myocyte-specific enhancer factor 2 (MEF2) and mammalian target of rapamycin (mTOR), that also mediate idiopathic and syndromic forms of ASD.

  • Immune molecules provide a new and important set of targets for the development of new therapeutics for ASD.

Abstract

Increasing evidence points to a central role for immune dysregulation in autism spectrum disorder (ASD). Several ASD risk genes encode components of the immune system and many maternal immune system-related risk factors — including autoimmunity, infection and fetal reactive antibodies — are associated with ASD. In addition, there is evidence of ongoing immune dysregulation in individuals with ASD and in animal models of this disorder. Recently, several molecular signalling pathways — including pathways downstream of cytokines, the receptor MET, major histocompatibility complex class I molecules, microglia and complement factors — have been identified that link immune activation to ASD phenotypes. Together, these findings indicate that the immune system is a point of convergence for multiple ASD-related genetic and environmental risk factors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ASD risk factors during pregnancy converge on maternal immune system activation.
Figure 2: Immune molecules at glutamatergic synapses.
Figure 3: Synaptic immune signalling converges on mTOR.

Similar content being viewed by others

References

  1. King, B. H., Navot, N., Bernier, R. & Webb, S. J. Update on diagnostic classification in autism. Curr. Opin. Psychiatry 27, 105–109 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Developmental Disabilities Monitoring Network Surveillance Year 2010 Principal Investigators & Centers for Disease Control and Prevention (CDC). Prevalence of autism spectrum disorder among children aged 8 years — autism and developmental disabilities monitoring network, 11 Sites, United States, 2010. MMWR Surveill. Summ. 63, 1–21 (2014).

  3. Hertz-Picciotto, I. & Delwiche, L. The rise in autism and the role of age at diagnosis. Epidemiology 20, 84–90 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hallmayer, J. et al. Genetic heritability and shared environmental factors among twin pairs with autism. Arch. Gen. Psychiatry 68, 1095–1102 (2011). A critical reappraisal of heritability in ASD showing a large role for non-genetic factors.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rosenberg, R. E. et al. Characteristics and concordance of autism spectrum disorders among 277 twin pairs. Arch. Pediatr. Adolesc. Med. 163, 907–914 (2009).

    Article  PubMed  Google Scholar 

  6. Pessah, I. N. et al. Immunologic and neurodevelopmental susceptibilities of autism. Neurotoxicology 29, 532–545 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Bilbo, S. D. & Schwarz, J. M. Early-life programming of later-life brain and behavior: a critical role for the immune system. Front. Behav. Neurosci. 3, 14 (2009). An extensive review of the lifelong consequences of in utero and early postnatal environmental insults on brain and immune function.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Silverstein, A. M. The most elegant immunological experiment of the XIX century. Nat. Immunol. 1, 93–94 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Jackson, K. D., Howie, L. D. & Akinbami, L. J. Trends in allergic conditions among children: United States, 1997–2011. NCHS Data Brief 121, 1–8 (2013).

    Google Scholar 

  10. Akinbami, L. J. et al. Trends in asthma prevalence, health care use, and mortality in the United States, 2001–2010. NCHS Data Brief 94, 1–8 (2012).

    Google Scholar 

  11. Thorburn, A. N., Macia, L. & Mackay, C. R. Diet, metabolites, and “Western-lifestyle” inflammatory diseases. Immunity 40, 833–842 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Stamou, M., Streifel, K. M., Goines, P. E. & Lein, P. J. Neuronal connectivity as a convergent target of gene x environment interactions that confer risk for autism spectrum disorders. Neurotoxicol. Teratol. 36, 3–16 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Taylor, L. E., Swerdfeger, A. L. & Eslick, G. D. Vaccines are not associated with autism: an evidence-based meta-analysis of case-control and cohort studies. Vaccine 32, 3623–3629 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Bailey, A. et al. Autism as a strongly genetic disorder: evidence from a British twin study. Psychol. Med. 25, 63–77 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Steffenburg, S. et al. A twin study of autism in Denmark, Finland, Iceland, Norway and Sweden. J. Child Psychol. Psychiatry 30, 405–416 (1989).

    Article  CAS  PubMed  Google Scholar 

  16. Sandin, S. et al. The familial risk of autism. JAMA 311, 1770–1777 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Devlin, B. & Scherer, S. W. Genetic architecture in autism spectrum disorder. Curr. Opin. Genet. Dev. 22, 229–237 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Gaugler, T. et al. Most genetic risk for autism resides with common variation. Nat. Genet. 46, 881–885 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Berg, J. M. & Geschwind, D. H. Autism genetics: searching for specificity and convergence. Genome Biol. 13, 247 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Santini, E. & Klann, E. Reciprocal signaling between translational control pathways and synaptic proteins in autism spectrum disorders. Sci. Signal. 7, re10 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Franz, D. N. & Weiss, B. D. Molecular therapies for tuberous sclerosis and neurofibromatosis. Curr. Neurol. Neurosci. Rep. 12, 294–301 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Schaaf, C. P. & Zoghbi, H. Y. Solving the autism puzzle a few pieces at a time. Neuron 70, 806–808 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Marshall, C. R. et al. Structural variation of chromosomes in autism spectrum disorder. Am. J. Hum. Genet. 82, 477–488 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. O'Roak, B. J. & State, M. W. Autism genetics: strategies, challenges, and opportunities. Autism Res. 1, 4–17 (2008).

    Article  PubMed  Google Scholar 

  25. Luo, R. et al. Genome-wide transcriptome profiling reveals the functional impact of rare de novo and recurrent CNVs in autism spectrum disorders. Am. J. Hum. Genet. 91, 38–55 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Peng, Y., Huentelman, M., Smith, C. & Qiu, S. MET receptor tyrosine kinase as an autism genetic risk factor. Int. Rev. Neurobiol. 113, 135–165 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Campbell, D. B. et al. Disruption of cerebral cortex MET signaling in autism spectrum disorder. Ann. Neurol. 62, 243–250 (2007).

    Article  PubMed  Google Scholar 

  28. Campbell, D. B., Li, C., Sutcliffe, J. S., Persico, A. M. & Levitt, P. Genetic evidence implicating multiple genes in the MET receptor tyrosine kinase pathway in autism spectrum disorder. Autism Res. 1, 159–168 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jackson, P. B. et al. Further evidence that the rs1858830 C variant in the promoter region of the MET gene is associated with autistic disorder. Autism Res. 2, 232–236 (2009).

    Article  PubMed  Google Scholar 

  30. Voineagu, I. et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 474, 380–384 (2011). A landmark study identifying the enrichment of synaptic and immune gene modules in the transcriptomes of individuals with ASD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rudie, J. D. et al. Autism-associated promoter variant in MET impacts functional and structural brain networks. Neuron 75, 904–915 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hedrick, A. et al. Autism risk gene MET variation and cortical thickness in typically developing children and adolescents. Autism Res. 5, 434–439 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Plummer, J. T. et al. Transcriptional regulation of the MET receptor tyrosine kinase gene by MeCP2 and sex-specific expression in autism and Rett syndrome. Transl Psychiatry 3, e316 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rutella, S. et al. Hepatocyte growth factor favors monocyte differentiation into regulatory interleukin (IL)-10++IL-12low/neg accessory cells with dendritic-cell features. Blood 108, 218–227 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Okunishi, K. et al. A novel role of hepatocyte growth factor as an immune regulator through suppressing dendritic cell function. J. Immunol. 175, 4745–4753 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Tahara, Y. et al. Hepatocyte growth factor facilitates colonic mucosal repair in experimental ulcerative colitis in rats. J. Pharmacol. Exp. Ther. 307, 146–151 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Ido, A., Numata, M., Kodama, M. & Tsubouchi, H. Mucosal repair and growth factors: recombinant human hepatocyte growth factor as an innovative therapy for inflammatory bowel disease. J. Gastroenterol. 40, 925–931 (2005).

    Article  PubMed  Google Scholar 

  38. Okunishi, K. et al. Hepatocyte growth factor significantly suppresses collagen-induced arthritis in mice. J. Immunol. 179, 5504–5513 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Futamatsu, H. et al. Hepatocyte growth factor ameliorates the progression of experimental autoimmune myocarditis: a potential role for induction of T helper 2 cytokines. Circ. Res. 96, 823–830 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Kuroiwa, T. et al. Hepatocyte growth factor prevents lupus nephritis in a murine lupus model of chronic graft-versus-host disease. Arthritis Res. Ther. 8, R123 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Oh, K. et al. Ameliorating effect of hepatocyte growth factor on inflammatory bowel disease in a murine model. Am. J. Physiol. Gastrointest. Liver Physiol. 288, G729–G735 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Mizuno, S., Matsumoto, K., Li, M. Y. & Nakamura, T. HGF reduces advancing lung fibrosis in mice: a potential role for MMP-dependent myofibroblast apoptosis. FASEB J. 19, 580–582 (2005).

    Article  PubMed  Google Scholar 

  43. Heuer, L., Braunschweig, D., Ashwood, P., Van de Water, J. & Campbell, D. B. Association of a MET genetic variant with autism-associated maternal autoantibodies to fetal brain proteins and cytokine expression. Translat. Psychiatry 1, e48 (2011).

    Article  CAS  Google Scholar 

  44. Thaxton, J. E. & Sharma, S. Interleukin-10: a multi-faceted agent of pregnancy. Am. J. Reprod. Immunol. 63, 482–491 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Volk, H. E. et al. Autism spectrum disorder: interaction of air pollution with the MET receptor tyrosine kinase gene. Epidemiology 25, 44–47 (2014). A proof-of-concept study showing how gene–environment synergies may contribute to an increase in the incidence of ASD.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hsiao, E. Y. Immune dysregulation in autism spectrum disorder. Int. Rev. Neurobiol. 113, 269–302 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Needleman, L. A. & McAllister, A. K. The major histocompatibility complex and autism spectrum disorder. Dev. Neurobiol. 72, 1288–1301 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gough, S. C. & Simmonds, M. J. The HLA region and autoimmune disease: associations and mechanisms of action. Curr. Genom. 8, 453–465 (2007).

    Article  CAS  Google Scholar 

  49. Keil, A. et al. Parental autoimmune diseases associated with autism spectrum disorders in offspring. Epidemiology 21, 805–808 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Mostafa, G. A., Shehab, A. A. & Al-Ayadhi, L. Y. The link between some alleles on human leukocyte antigen system and autism in children. J. Neuroimmunol. 255, 70–74 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Warren, R. P., Burger, R. A., Odell, D., Torres, A. R. & Warren, W. L. Decreased plasma concentrations of the C4B complement protein in autism. Arch. Pediatr. Adolesc. Med. 148, 180–183 (1994).

    Article  CAS  PubMed  Google Scholar 

  52. Warren, R. P. et al. Increased frequency of the null allele at the complement C4b locus in autism. Clin. Exp. Immunol. 83, 438–440 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Deng, Y. & Tsao, B. P. Genetic susceptibility to systemic lupus erythematosus in the genomic era. Nat. Rev. Rheumatol. 6, 683–692 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mostafa, G. A. & Shehab, A. A. The link of C4B null allele to autism and to a family history of autoimmunity in Egyptian autistic children. J. Neuroimmunol. 223, 115–119 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Careaga, M. & Ashwood, P. Autism spectrum disorders: from immunity to behavior. Methods Mol. Biol. 934, 219–240 (2012).

    Article  PubMed  Google Scholar 

  56. O'Roak, B. J. et al. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat. Genet. 43, 585–589 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sanders, S. J. et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 485, 237–241 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sauna, Z. E. & Kimchi-Sarfaty, C. Understanding the contribution of synonymous mutations to human disease. Nat. Rev. Genet. 12, 683–691 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Parmley, J. L. & Hurst, L. D. How do synonymous mutations affect fitness? Bioessays 29, 515–519 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Takahashi, H. & Craig, A. M. Protein tyrosine phosphatases PTPδ, PTPσ, and LAR: presynaptic hubs for synapse organization. Trends Neurosci. 36, 522–534 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bhat, S. S. et al. Disruption of the IL1RAPL1 gene associated with a pericentromeric inversion of the X chromosome in a patient with mental retardation and autism. Clin. Genet. 73, 94–96 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Bahi, N. et al. IL1 receptor accessory protein like, a protein involved in X-linked mental retardation, interacts with neuronal calcium sensor-1 and regulates exocytosis. Hum. Mol. Genet. 12, 1415–1425 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Piton, A. et al. Mutations in the calcium-related gene IL1RAPL1 are associated with autism. Hum. Mol. Genet. 17, 3965–3974 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. McDougle, C. J. et al. Toward an immune-mediated subtype of autism spectrum disorder. Brain Res. 1617, 72–92 (2014).

    Article  PubMed  CAS  Google Scholar 

  65. Atladottir, H. O. et al. Association of family history of autoimmune diseases and autism spectrum disorders. Pediatrics 124, 687–694 (2009).

    Article  PubMed  Google Scholar 

  66. Kohane, I. S. et al. The co-morbidity burden of children and young adults with autism spectrum disorders. PLoS ONE 7, e33224 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Patterson, P. H. Immune involvement in schizophrenia and autism: etiology, pathology and animal models. Behav. Brain Res. 204, 313–321 (2009). An authoritative review of immune contributions to neurodevelopmental disorders.

    Article  CAS  PubMed  Google Scholar 

  68. Iaccarino, L. et al. Polarization of TH2 response is decreased during pregnancy in systemic lupus erythematosus. Reumatismo 64, 314–320 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Diamond, B., Huerta, P. T., Mina-Osorio, P., Kowal, C. & Volpe, B. T. Losing your nerves? Maybe it's the antibodies. Nat. Rev. Immunol. 9, 449–456 (2009). An excellent review of the mechanisms by which autoantibodies modulate brain function and behaviour.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Brimberg, L., Sadiq, A., Gregersen, P. K. & Diamond, B. Brain-reactive IgG correlates with autoimmunity in mothers of a child with an autism spectrum disorder. Mol. Psychiatry 18, 1171–1177 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Lee, J. Y. et al. Neurotoxic autoantibodies mediate congenital cortical impairment of offspring in maternal lupus. Nat. Med. 15, 91–96 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Zhang, J., Jacobi, A. M., Wang, T. & Diamond, B. Pathogenic autoantibodies in systemic lupus erythematosus are derived from both self-reactive and non-self-reactive B cells. Mol. Med. 14, 675–681 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Franchin, G. et al. Anti-DNA antibodies cross-react with C1q. J. Autoimmun. 44, 34–39 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Wang, L. et al. Female mouse fetal loss mediated by maternal autoantibody. J. Exp. Med. 209, 1083–1089 (2012). The first study to demonstrate a molecular mechanism whereby maternally derived autoantibodies exert sex-specific effects.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Frazier, T. W., Georgiades, S., Bishop, S. L. & Hardan, A. Y. Behavioral and cognitive characteristics of females and males with autism in the Simons Simplex Collection. J. Am. Acad. Child Adolesc. Psychiatry 53, 329–340 (2014).

    Article  PubMed  Google Scholar 

  76. Braunschweig, D. & Van de Water, J. Maternal autoantibodies in autism. Arch. Neurol. 69, 693–699 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Braunschweig, D. et al. Autism-specific maternal autoantibodies recognize critical proteins in developing brain. Transl Psychiatry 3, e277 (2013). A seminal study identifying fetal protein targets of ASD-specific maternal antibodies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Martin, L. A. et al. Stereotypies and hyperactivity in rhesus monkeys exposed to IgG from mothers of children with autism. Brain Behav. Immun. 22, 806–816 (2008). The first study to show a causal relationship between antibodies from mothers of ASD children and ASD-like behaviours in a non-human primate model.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bauman, M. D. et al. Maternal antibodies from mothers of children with autism alter brain growth and social behavior development in the rhesus monkey. Transl Psychiatry 3, e278 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ben Bashat, D. et al. Accelerated maturation of white matter in young children with autism: a high b value DWI study. Neuroimage 37, 40–47 (2007).

    Article  PubMed  Google Scholar 

  81. Billeci, L., Calderoni, S., Tosetti, M., Catani, M. & Muratori, F. White matter connectivity in children with autism spectrum disorders: a tract-based spatial statistics study. BMC Neurol. 12, 148 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Wolff, J. J. et al. Differences in white matter fiber tract development present from 6 to 24 months in infants with autism. Am. J. Psychiatry 169, 589–600 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Singer, H. S. et al. Prenatal exposure to antibodies from mothers of children with autism produces neurobehavioral alterations: a pregnant dam mouse model. J. Neuroimmunol. 211, 39–48 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Camacho, J. et al. Embryonic intraventricular exposure to autism-specific maternal autoantibodies produces alterations in autistic-like stereotypical behaviors in offspring mice. Behav. Brain Res. 266, 46–51 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Patterson, P. H. Maternal infection and immune involvement in autism. Trends Mol. Med. 17, 389–394 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chess, S. Autism in children with congenital rubella. J. Autism Child. Schizophr. 1, 33–47 (1971). The first report of increased incidence of ASD using specific behavioural criteria in a large cohort of children with congenital rubella.

    Article  CAS  PubMed  Google Scholar 

  87. Chess, S. Follow-up report on autism in congenital rubella. J. Autism Child. Schizophr. 7, 69–81 (1977).

    Article  CAS  PubMed  Google Scholar 

  88. Swisher, C. N. & Swisher, L. Letter: congenital rubella and autistic behavior. N. Engl. J. Med. 293, 198 (1975).

    CAS  PubMed  Google Scholar 

  89. Abdallah, M. W. et al. Amniotic fluid inflammatory cytokines: potential markers of immunologic dysfunction in autism spectrum disorders. World J. Biol. Psychiatry 14, 528–538 (2013).

    Article  PubMed  Google Scholar 

  90. Goines, P. E. et al. Increased midgestational IFN-γ, IL-4 and IL-5 in women bearing a child with autism: a case-control study. Mol. Autism 2, 13 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Atladottir, H. O. et al. Maternal infection requiring hospitalization during pregnancy and autism spectrum disorders. J. Autism Dev. Disord. 40, 1423–1430 (2010).

    Article  PubMed  Google Scholar 

  92. Atladottir, H. O., Henriksen, T. B., Schendel, D. E. & Parner, E. T. Autism after infection, febrile episodes, and antibiotic use during pregnancy: an exploratory study. Pediatrics 130, e1447–e1454 (2012). The largest epidemiological study so far on ASD incidence following maternal infection.

    Article  PubMed  Google Scholar 

  93. Missault, S. et al. The risk for behavioural deficits is determined by the maternal immune response to prenatal immune challenge in a neurodevelopmental model. Brain Behav. Immun. 42, 138–46 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Patterson, P. H. Maternal infection: window on neuroimmune interactions in fetal brain development and mental illness. Curr. Opin. Neurobiol. 12, 115–118 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Knuesel, I. et al. Maternal immune activation and abnormal brain development across CNS disorders. Nat. Rev. Neurol. 10, 643–660 (2014). A comprehensive review of empirical evidence linking MIA to numerous CNS disorders.

    Article  CAS  PubMed  Google Scholar 

  96. Smith, S. E., Li, J., Garbett, K., Mirnics, K. & Patterson, P. H. Maternal immune activation alters fetal brain development through interleukin-6. J. Neurosci. 27, 10695–10702 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Malkova, N. V., Yu, C. Z., Hsiao, E. Y., Moore, M. J. & Patterson, P. H. Maternal immune activation yields offspring displaying mouse versions of the three core symptoms of autism. Brain Behav. Immun. 26, 607–616 (2012). The first report to demonstrate face and construct validity of the poly(I:C) rodent model of MIA for the three core symptoms of ASD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bauman, M. D. et al. Activation of the maternal immune system during pregnancy alters behavioral development of rhesus monkey offspring. Biol. Psychiatry 75, 332–341 (2014).

    Article  CAS  PubMed  Google Scholar 

  99. Shi, L. et al. Activation of the maternal immune system alters cerebellar development in the offspring. Brain Behav. Immun. 23, 116–123 (2009).

    Article  PubMed  CAS  Google Scholar 

  100. Amaral, D. G., Schumann, C. M. & Nordahl, C. W. Neuroanatomy of autism. Trends Neurosci. 31, 137–145 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Ponzio, N. M., Servatius, R., Beck, K., Marzouk, A. & Kreider, T. Cytokine levels during pregnancy influence immunological profiles and neurobehavioral patterns of the offspring. Ann. NY Acad. Sci. 1107, 118–128 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Meyer, U. et al. Adult behavioral and pharmacological dysfunctions following disruption of the fetal brain balance between pro-inflammatory and IL-10-mediated anti-inflammatory signaling. Mol. Psychiatry 13, 208–221 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Onore, C., Careaga, M. & Ashwood, P. The role of immune dysfunction in the pathophysiology of autism. Brain Behav. Immun. 26, 383–392 (2012).

    Article  CAS  PubMed  Google Scholar 

  104. Mostafa, G. A. & Al-Ayadhi, L. Y. The possible relationship between allergic manifestations and elevated serum levels of brain specific auto-antibodies in autistic children. J. Neuroimmunol. 261, 77–81 (2013).

    Article  CAS  PubMed  Google Scholar 

  105. Singh, V. K., Warren, R., Averett, R. & Ghaziuddin, M. Circulating autoantibodies to neuronal and glial filament proteins in autism. Pediatr. Neurol. 17, 88–90 (1997).

    Article  CAS  PubMed  Google Scholar 

  106. Singh, V. K., Warren, R. P., Odell, J. D., Warren, W. L. & Cole, P. Antibodies to myelin basic protein in children with autistic behavior. Brain Behav. Immun. 7, 97–103 (1993).

    Article  CAS  PubMed  Google Scholar 

  107. Vojdani, A. et al. Antibodies to neuron-specific antigens in children with autism: possible cross-reaction with encephalitogenic proteins from milk, Chlamydia pneumoniae and Streptococcus group A. J. Neuroimmunol. 129, 168–177 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Singer, H. S. et al. Antibrain antibodies in children with autism and their unaffected siblings. J. Neuroimmunol. 178, 149–155 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Singh, V. K., Singh, E. A. & Warren, R. P. Hyperserotoninemia and serotonin receptor antibodies in children with autism but not mental retardation. Biol. Psychiatry 41, 753–755 (1997).

    Article  CAS  PubMed  Google Scholar 

  110. Singh, V. K. & Rivas, W. H. Prevalence of serum antibodies to caudate nucleus in autistic children. Neurosci. Lett. 355, 53–56 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Silva, S. C. et al. Autoantibody repertoires to brain tissue in autism nuclear families. J. Neuroimmunol. 152, 176–182 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Cabanlit, M., Wills, S., Goines, P., Ashwood, P. & Van de Water, J. Brain-specific autoantibodies in the plasma of subjects with autistic spectrum disorder. Ann. NY Acad. Sci. 1107, 92–103 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Wills, S. et al. Detection of autoantibodies to neural cells of the cerebellum in the plasma of subjects with autism spectrum disorders. Brain Behav. Immun. 23, 64–74 (2009).

    Article  CAS  PubMed  Google Scholar 

  114. Morris, C. M., Zimmerman, A. W. & Singer, H. S. Childhood serum anti-fetal brain antibodies do not predict autism. Pediatr. Neurol. 41, 288–290 (2009).

    Article  PubMed  Google Scholar 

  115. Goines, P. et al. Autoantibodies to cerebellum in children with autism associate with behavior. Brain Behav. Immun. 25, 514–523 (2011).

    Article  CAS  PubMed  Google Scholar 

  116. Vargas, D. L., Nascimbene, C., Krishnan, C., Zimmerman, A. W. & Pardo, C. A. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann. Neurol. 57, 67–81 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Molloy, C. A. et al. Elevated cytokine levels in children with autism spectrum disorder. J. Neuroimmunol. 172, 198–205 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Okada, K. et al. Decreased serum levels of transforming growth factor-β1 in patients with autism. Prog. Neuropsychopharmacol. Biol. Psychiatry 31, 187–190 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Ashwood, P. et al. Decreased transforming growth factor β1 in autism: a potential link between immune dysregulation and impairment in clinical behavioral outcomes. J. Neuroimmunol. 204, 149–153 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ashwood, P. et al. Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome. Brain Behav. Immun. 25, 40–45 (2011).

    Article  CAS  PubMed  Google Scholar 

  121. Ashwood, P. et al. Associations of impaired behaviors with elevated plasma chemokines in autism spectrum disorders. J. Neuroimmunol. 232, 196–199 (2011).

    Article  CAS  PubMed  Google Scholar 

  122. Abdallah, M. W. et al. Neonatal levels of cytokines and risk of autism spectrum disorders: an exploratory register-based historic birth cohort study utilizing the Danish Newborn Screening Biobank. J. Neuroimmunol. 252, 75–82 (2012).

    Article  CAS  PubMed  Google Scholar 

  123. Napolioni, V. et al. Plasma cytokine profiling in sibling pairs discordant for autism spectrum disorder. J. Neuroinflammation 10, 38 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Warren, R. P., Foster, A. & Margaretten, N. C. Reduced natural killer cell activity in autism. J. Am. Acad. Child Adolesc. Psychiatry 26, 333–335 (1987).

    Article  CAS  PubMed  Google Scholar 

  125. Enstrom, A. M., Onore, C. E., Van de Water, J. A. & Ashwood, P. Differential monocyte responses to TLR ligands in children with autism spectrum disorders. Brain Behav. Immun. 24, 64–71 (2010).

    Article  CAS  PubMed  Google Scholar 

  126. Warren, R. P., Margaretten, N. C., Pace, N. C. & Foster, A. Immune abnormalities in patients with autism. J. Autism Dev. Disord. 16, 189–197 (1986).

    Article  CAS  PubMed  Google Scholar 

  127. Ashwood, P. et al. Altered T cell responses in children with autism. Brain Behav. Immun. 25, 840–849 (2011).

    Article  CAS  PubMed  Google Scholar 

  128. Gupta, S., Aggarwal, S., Rashanravan, B. & Lee, T. Th1- and Th2-like cytokines in CD4+ and CD8+ T cells in autism. J. Neuroimmunol. 85, 106–109 (1998).

    Article  CAS  PubMed  Google Scholar 

  129. Warren, R. P., Yonk, J., Burger, R. W., Odell, D. & Warren, W. L. DR-positive T cells in autism: association with decreased plasma levels of the complement C4B protein. Neuropsychobiology 31, 53–57 (1995).

    Article  CAS  PubMed  Google Scholar 

  130. Stubbs, E. G. & Crawford, M. L. Depressed lymphocyte responsiveness in autistic children. J. Autism Child. Schizophr. 7, 49–55 (1977). The first report to identify immune cell abnormalities in individuals with ASD.

    Article  CAS  PubMed  Google Scholar 

  131. Plioplys, A. V., Greaves, A., Kazemi, K. & Silverman, E. Lymphocyte function in autism and Rett syndrome. Neuropsychobiology 29, 12–16 (1994).

    Article  CAS  PubMed  Google Scholar 

  132. Derecki, N. C. et al. Regulation of learning and memory by meningeal immunity: a key role for IL-4. J. Exp. Med. 207, 1067–1080 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Hsiao, E. Y., McBride, S. W., Chow, J., Mazmanian, S. K. & Patterson, P. H. Modeling an autism risk factor in mice leads to permanent immune dysregulation. Proc. Natl Acad. Sci. USA 109, 12776–12781 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Mandal, M. et al. Maternal immune stimulation during pregnancy shapes the immunological phenotype of offspring. Brain Behav. Immun. 33, 33–45 (2013).

    Article  CAS  PubMed  Google Scholar 

  135. Onore, C. E., Schwartzer, J. J., Careaga, M., Berman, R. F. & Ashwood, P. Maternal immune activation leads to activated inflammatory macrophages in offspring. Brain Behav. Immun. 38, 220–226 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Li, X. et al. Elevated immune response in the brain of autistic patients. J. Neuroimmunol. 207, 111–116 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Wei, H. et al. IL-6 is increased in the cerebellum of autistic brain and alters neural cell adhesion, migration and synaptic formation. J. Neuroinflammation 8, 52 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Morgan, J. T. et al. Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism. Biol. Psychiatry 68, 368–376 (2010).

    Article  PubMed  Google Scholar 

  139. Tetreault, N. A. et al. Microglia in the cerebral cortex in autism. J. Autism Dev. Disord. 42, 2569–2584 (2012).

    Article  PubMed  Google Scholar 

  140. Tani, Y., Fernell, E., Watanabe, Y., Kanai, T. & Langstrom, B. Decrease in 6R-5,6,7,8-tetrahydrobiopterin content in cerebrospinal fluid of autistic patients. Neurosci. Lett. 181, 169–172 (1994).

    Article  CAS  PubMed  Google Scholar 

  141. Komori, H. et al. Cerebrospinal fluid biopterin and biogenic amine metabolites during oral R-THBP therapy for infantile autism. J. Autism Dev. Disord. 25, 183–193 (1995).

    Article  CAS  PubMed  Google Scholar 

  142. Zimmerman, A. W. et al. Cerebrospinal fluid and serum markers of inflammation in autism. Pediatr. Neurol. 33, 195–201 (2005).

    Article  PubMed  Google Scholar 

  143. Arrode-Bruses, G. & Bruses, J. L. Maternal immune activation by poly I:C induces expression of cytokines IL-1β and IL-13, chemokine MCP-1 and colony stimulating factor VEGF in fetal mouse brain. J. Neuroinflammation 9, 83 (2012).

    Article  CAS  PubMed  Google Scholar 

  144. Meyer, U. et al. The time of prenatal immune challenge determines the specificity of inflammation-mediated brain and behavioral pathology. J. Neurosci. 26, 4752–4762 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Garay, P. A., Hsiao, E. Y., Patterson, P. H. & McAllister, A. K. Maternal immune activation causes age- and region-specific changes in brain cytokines in offspring throughout development. Brain Behav. Immun. 31, 54–68 (2013). The first study to show age- and region-specific immune changes in the brains of offspring from MIA rodents.

    Article  CAS  PubMed  Google Scholar 

  146. Estes, M. L. & McAllister, A. K. Alterations in immune cells and mediators in the brain: it's not always neuroinflammation! Brain Pathol. 24, 623–630 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Palmer, C., Bik, E. M., DiGiulio, D. B., Relman, D. A. & Brown, P. O. Development of the human infant intestinal microbiota. PLoS Biol. 5, e177 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Wu, H. J. & Wu, E. The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes 3, 4–14 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Salzman, N. H. Microbiota–immune system interaction: an uneasy alliance. Curr. Opin. Microbiol. 14, 99–105 (2011).

    Article  PubMed  Google Scholar 

  150. Song, Y., Liu, C. & Finegold, S. M. Real-time PCR quantitation of clostridia in feces of autistic children. Appl. Environ. Microbiol. 70, 6459–6465 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Parracho, H. M., Bingham, M. O., Gibson, G. R. & McCartney, A. L. Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. J. Med. Microbiol. 54, 987–991 (2005).

    Article  PubMed  Google Scholar 

  152. Finegold, S. M. Desulfovibrio species are potentially important in regressive autism. Med. Hypotheses 77, 270–274 (2011).

    Article  PubMed  Google Scholar 

  153. Gaboriau-Routhiau, V. et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31, 677–689 (2009).

    Article  CAS  PubMed  Google Scholar 

  154. Ishikawa, H. et al. Effect of intestinal microbiota on the induction of regulatory CD25+ CD4+ T cells. Clin. Exp. Immunol. 153, 127–135 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Mazmanian, S. K., Liu, C. H., Tzianabos, A. O. & Kasper, D. L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122, 107–118 (2005).

    Article  CAS  PubMed  Google Scholar 

  156. de Magistris, L. et al. Alterations of the intestinal barrier in patients with autism spectrum disorders and in their first-degree relatives. J. Pediatr. Gastroenterol. Nutr. 51, 418–424 (2010).

    Article  PubMed  Google Scholar 

  157. Coury, D. L. et al. Gastrointestinal conditions in children with autism spectrum disorder: developing a research agenda. Pediatrics 130 (Suppl. 2), S160–S168 (2012).

    Article  PubMed  Google Scholar 

  158. Hsiao, E. Y. et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155, 1451–1463 (2013). A proof-of-concept study showing that ASD-like behaviours can be ameliorated by modulation of the microbiota.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Finegold, S. M., Downes, J. & Summanen, P. H. Microbiology of regressive autism. Anaerobe 18, 260–262 (2012).

    Article  CAS  PubMed  Google Scholar 

  160. Deverman, B. E. & Patterson, P. H. Cytokines and CNS development. Neuron 64, 61–78 (2009). An excellent review of the diverse and non-classical roles of cytokines in the developing brain.

    Article  CAS  PubMed  Google Scholar 

  161. Garay, P. A. & McAllister, A. K. Novel roles for immune molecules in neural development: implications for neurodevelopmental disorders. Front. Synaptic Neurosci. 2, 136 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Goines, P. E. & Ashwood, P. Cytokine dysregulation in autism spectrum disorders (ASD): possible role of the environment. Neurotoxicol. Teratol. 36, 67–81 (2013).

    Article  CAS  PubMed  Google Scholar 

  163. de la Mano, A. et al. Role of interleukin-1β in the control of neuroepithelial proliferation and differentiation of the spinal cord during development. Cytokine 37, 128–137 (2007).

    Article  CAS  PubMed  Google Scholar 

  164. Gambino, F. et al. IL1RAPL1 controls inhibitory networks during cerebellar development in mice. Eur. J. Neurosci. 30, 1476–1486 (2009).

    Article  PubMed  Google Scholar 

  165. Valnegri, P. et al. The X-linked intellectual disability protein IL1RAPL1 regulates excitatory synapse formation by binding PTPδ and RhoGAP2. Hum. Mol. Genet. 20, 4797–4809 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Yoshida, T. & Mishina, M. Zebrafish orthologue of mental retardation protein IL1RAPL1 regulates presynaptic differentiation. Mol. Cell. Neurosci. 39, 218–228 (2008).

    Article  CAS  PubMed  Google Scholar 

  167. Yoshida, T. et al. IL-1 receptor accessory protein-like 1 associated with mental retardation and autism mediates synapse formation by trans-synaptic interaction with protein tyrosine phosphatase δ. J. Neurosci. 31, 13485–13499 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Yoshida, T. et al. Interleukin-1 receptor accessory protein organizes neuronal synaptogenesis as a cell adhesion molecule. J. Neurosci. 32, 2588–2600 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Pavlowsky, A. et al. A postsynaptic signaling pathway that may account for the cognitive defect due to IL1RAPL1 mutation. Curr. Biol. 20, 103–115 (2010).

    Article  CAS  PubMed  Google Scholar 

  170. Houbaert, X. et al. Target-specific vulnerability of excitatory synapses leads to deficits in associative memory in a model of intellectual disorder. J. Neurosci. 33, 13805–13819 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Moretti, P. et al. Learning and memory and synaptic plasticity are impaired in a mouse model of Rett syndrome. J. Neurosci. 26, 319–327 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Goshen, I. & Yirmiya, R. Interleukin-1 (IL-1): a central regulator of stress responses. Front. Neuroendocrinol. 30, 30–45 (2009).

    Article  CAS  PubMed  Google Scholar 

  173. Bernardino, L. et al. Tumor necrosis factor-α modulates survival, proliferation, and neuronal differentiation in neonatal subventricular zone cell cultures. Stem Cells 26, 2361–2371 (2008).

    Article  CAS  PubMed  Google Scholar 

  174. Pribiag, H. & Stellwagen, D. Neuroimmune regulation of homeostatic synaptic plasticity. Neuropharmacology 78, 13–22 (2014).

    Article  CAS  PubMed  Google Scholar 

  175. Nagakura, I., Van Wart, A., Petravicz, J., Tropea, D. & Sur, M. STAT1 regulates the homeostatic component of visual cortical plasticity via an AMPA receptor-mediated mechanism. J. Neurosci. 34, 10256–10263 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Murray, P. J. The JAK–STAT signaling pathway: input and output integration. J. Immunol. 178, 2623–2629 (2007).

    Article  CAS  PubMed  Google Scholar 

  177. Tropea, D. et al. Gene expression changes and molecular pathways mediating activity-dependent plasticity in visual cortex. Nat. Neurosci. 9, 660–668 (2006).

    Article  CAS  PubMed  Google Scholar 

  178. Tai, D. J., Hsu, W. L., Liu, Y. C., Ma, Y. L. & Lee, E. H. Novel role and mechanism of protein inhibitor of activated STAT1 in spatial learning. EMBO J. 30, 205–220 (2011).

    Article  CAS  PubMed  Google Scholar 

  179. Feng, J. et al. Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat. Neurosci. 13, 423–430 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Nicolas, C. S. et al. The Jak/STAT pathway is involved in synaptic plasticity. Neuron 73, 374–390 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Judson, M. C., Bergman, M. Y., Campbell, D. B., Eagleson, K. L. & Levitt, P. Dynamic gene and protein expression patterns of the autism-associated met receptor tyrosine kinase in the developing mouse forebrain. J. Comp. Neurol. 513, 511–531 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Ieraci, A., Forni, P. E. & Ponzetto, C. Viable hypomorphic signaling mutant of the Met receptor reveals a role for hepatocyte growth factor in postnatal cerebellar development. Proc. Natl Acad. Sci. USA 99, 15200–15205 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Wu, H. H. & Levitt, P. Prenatal expression of MET receptor tyrosine kinase in the fetal mouse dorsal raphe nuclei and the visceral motor/sensory brainstem. Dev. Neurosci. 35, 1–16 (2013).

    Article  PubMed  CAS  Google Scholar 

  184. Eagleson, K. L., Milner, T. A., Xie, Z. & Levitt, P. Synaptic and extrasynaptic location of the receptor tyrosine kinase Met during postnatal development in the mouse neocortex and hippocampus. J. Comp. Neurol. 521, 3241–3259 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Tyndall, S. J. & Walikonis, R. S. The receptor tyrosine kinase Met and its ligand hepatocyte growth factor are clustered at excitatory synapses and can enhance clustering of synaptic proteins. Cell Cycle 5, 1560–1568 (2006).

    Article  CAS  PubMed  Google Scholar 

  186. Nakano, M. et al. Hepatocyte growth factor promotes the number of PSD-95 clusters in young hippocampal neurons. Exp. Neurol. 207, 195–202 (2007).

    Article  CAS  PubMed  Google Scholar 

  187. Kawas, L. H., Benoist, C. C., Harding, J. W., Wayman, G. A. & Abu-Lail, N. I. Nanoscale mapping of the Met receptor on hippocampal neurons by AFM and confocal microscopy. Nanomed. Nanotechnol. Biol. Med. 9, 428–438 (2013).

    Article  CAS  Google Scholar 

  188. Lim, C. S. & Walikonis, R. S. Hepatocyte growth factor and c-Met promote dendritic maturation during hippocampal neuron differentiation via the Akt pathway. Cell. Signal. 20, 825–835 (2008).

    Article  CAS  PubMed  Google Scholar 

  189. Akimoto, M. et al. Hepatocyte growth factor as an enhancer of NMDA currents and synaptic plasticity in the hippocampus. Neuroscience 128, 155–162 (2004).

    Article  CAS  PubMed  Google Scholar 

  190. Qiu, S., Anderson, C. T., Levitt, P. & Shepherd, G. M. Circuit-specific intracortical hyperconnectivity in mice with deletion of the autism-associated Met receptor tyrosine kinase. J. Neurosci. 31, 5855–5864 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Elmer, B. M., Estes, M. L., Barrow, S. L. & McAllister, A. K. MHCI requires MEF2 transcription factors to negatively regulate synapse density during development and in disease. J. Neurosci. 33, 13791–13804 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Corriveau, R. A., Huh, G. S. & Shatz, C. J. Regulation of class I MHC gene expression in the developing and mature CNS by neural activity. Neuron 21, 505–520 (1998). The first report of the activity-dependent expression of MHCI molecules in the developing brain.

    Article  CAS  PubMed  Google Scholar 

  193. Elmer, B. M. & McAllister, A. K. Major histocompatibility complex class I proteins in brain development and plasticity. Trends Neurosci. 35, 660–670 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Lee, H. et al. Synapse elimination and learning rules co-regulated by MHC class I H2-Db. Nature 509, 195–200 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Goddard, C. A., Butts, D. A. & Shatz, C. J. Regulation of CNS synapses by neuronal MHC class I. Proc. Natl Acad. Sci. USA 104, 6828–6833 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Needleman, L. A., Liu, X. B., El-Sabeawy, F., Jones, E. G. & McAllister, A. K. MHC class I molecules are present both pre- and postsynaptically in the visual cortex during postnatal development and in adulthood. Proc. Natl Acad. Sci. USA 107, 16999–17004 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Glynn, M. W. et al. MHCI negatively regulates synapse density during the establishment of cortical connections. Nat. Neurosci. 14, 442–451 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Fourgeaud, L. et al. MHC class I modulates NMDA receptor function and AMPA receptor trafficking. Proc. Natl Acad. Sci. USA 107, 22278–22283 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Huh, G. S. et al. Functional requirement for class I MHC in CNS development and plasticity. Science 290, 2155–2159 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Nelson, P. A. et al. MHC class I immune proteins are critical for hippocampus-dependent memory and gate NMDAR-dependent hippocampal long-term depression. Learn. Mem. 20, 505–517 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Flavell, S. W. et al. Genome-wide analysis of MEF2 transcriptional program reveals synaptic target genes and neuronal activity-dependent polyadenylation site selection. Neuron 60, 1022–1038 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Flavell, S. W. et al. Activity-dependent regulation of MEF2 transcription factors suppresses excitatory synapse number. Science 311, 1008–1012 (2006).

    Article  CAS  PubMed  Google Scholar 

  203. Paciorkowski, A. R. et al. MEF2C haploinsufficiency features consistent hyperkinesis, variable epilepsy, and has a role in dorsal and ventral neuronal developmental pathways. Neurogenetics 14, 99–111 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Martin, C. L. et al. Cytogenetic and molecular characterization of A2BP1/FOX1 as a candidate gene for autism. Am. J.Med. Genet. B Neuropsychiatr. Genet. 144B, 869–876 (2007).

  205. Babatz, T. D., Kumar, R. A., Sudi, J., Dobyns, W. B. & Christian, S. L. Copy number and sequence variants implicate APBA2 as an autism candidate gene. Autism Res. 2, 359–364 (2009).

    Article  PubMed  Google Scholar 

  206. Parikshak, N. N. et al. Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism. Cell 155, 1008–1021 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Zang, T. et al. Postsynaptic FMRP bidirectionally regulates excitatory synapses as a function of developmental age and MEF2 activity. Mol. Cell. Neurosci. 56, 39–49 (2013).

    Article  CAS  PubMed  Google Scholar 

  208. Tsai, N. P. et al. Multiple autism-linked genes mediate synapse elimination via proteasomal degradation of a synaptic scaffold PSD-95. Cell 151, 1581–1594 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Ebert, D. H. & Greenberg, M. E. Activity-dependent neuronal signalling and autism spectrum disorder. Nature 493, 327–337 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Morgan, J. T. et al. Abnormal microglial-neuronal spatial organization in the dorsolateral prefrontal cortex in autism. Brain Res. 1456, 72–81 (2012).

    Article  CAS  PubMed  Google Scholar 

  211. Suzuki, K. et al. Microglial activation in young adults with autism spectrum disorder. JAMA Psychiatry 70, 49–58 (2013).

    Article  PubMed  Google Scholar 

  212. Prinz, M. & Priller, J. Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat. Rev. Neurosci. 15, 300–312 (2014). An authoritative review of microglial origins and contributions to normal brain function and disease.

    Article  CAS  PubMed  Google Scholar 

  213. Butovsky, O. et al. Microglia activated by IL-4 or IFN-γ differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells. Mol. Cell. Neurosci. 31, 149–160 (2006).

    Article  CAS  PubMed  Google Scholar 

  214. Cunningham, C. L., Martinez-Cerdeno, V. & Noctor, S. C. Microglia regulate the number of neural precursor cells in the developing cerebral cortex. J. Neurosci. 33, 4216–4233 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Schafer, D. P., Lehrman, E. K. & Stevens, B. The “quad-partite” synapse: microglia-synapse interactions in the developing and mature CNS. Glia 61, 24–36 (2013).

    Article  PubMed  Google Scholar 

  216. Paolicelli, R. C. et al. Synaptic pruning by microglia is necessary for normal brain development. Science 333, 1456–1458 (2011).

    Article  CAS  PubMed  Google Scholar 

  217. Zhan, Y. et al. Deficient neuron–microglia signaling results in impaired functional brain connectivity and social behavior. Nat. Neurosci. 17, 400–406 (2014).

    Article  CAS  PubMed  Google Scholar 

  218. Odell, D. et al. Confirmation of the association of the C4B null allelle in autism. Hum. Immunol. 66, 140–145 (2005).

    Article  CAS  PubMed  Google Scholar 

  219. Truedsson, L., Bengtsson, A. A. & Sturfelt, G. Complement deficiencies and systemic lupus erythematosus. Autoimmunity 40, 560–566 (2007).

    Article  CAS  PubMed  Google Scholar 

  220. Stevens, B. et al. The classical complement cascade mediates CNS synapse elimination. Cell 131, 1164–1178 (2007). A pioneering report of the complement cascade playing an unexpected part in synaptic pruning.

    Article  CAS  PubMed  Google Scholar 

  221. Gasque, P. Complement: a unique innate immune sensor for danger signals. Mol. Immunol. 41, 1089–1098 (2004).

    Article  CAS  PubMed  Google Scholar 

  222. Schafer, D. P. et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74, 691–705 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Bialas, A. R. & Stevens, B. TGF-β signaling regulates neuronal C1q expression and developmental synaptic refinement. Nat. Neurosci. 16, 1773–1782 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Bilbo, S. D. & Frank, A. Beach award: programming of neuroendocrine function by early-life experience: a critical role for the immune system. Horm. Behav. 63, 684–691 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Perry, V. H., Newman, T. A. & Cunningham, C. The impact of systemic infection on the progression of neurodegenerative disease. Nat. Rev. Neurosci. 4, 103–112 (2003).

    Article  CAS  PubMed  Google Scholar 

  226. Streit, W. J. & Xue, Q. S. Life and death of microglia. J. Neuroimmune Pharmacol. 4, 371–379 (2009).

    Article  PubMed  Google Scholar 

  227. Costa-Mattioli, M. & Monteggia, L. M. mTOR complexes in neurodevelopmental and neuropsychiatric disorders. Nat. Neurosci. 16, 1537–1543 (2013).

    Article  CAS  PubMed  Google Scholar 

  228. Takei, N. & Nawa, H. mTOR signaling and its roles in normal and abnormal brain development. Front. Mol. Neurosci. 7, 28 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  229. Kassai, H. et al. Selective activation of mTORC1 signaling recapitulates microcephaly, tuberous sclerosis, and neurodegenerative diseases. Cell Rep. 7, 1626–1639 (2014).

    Article  CAS  PubMed  Google Scholar 

  230. Powell, J. D., Pollizzi, K. N., Heikamp, E. B. & Horton, M. R. Regulation of immune responses by mTOR. Annu. Rev. Immunol. 30, 39–68 (2012).

    Article  CAS  PubMed  Google Scholar 

  231. Ricciardi, S. et al. Reduced AKT/mTOR signaling and protein synthesis dysregulation in a Rett syndrome animal model. Hum. Mol. Genet. 20, 1182–1196 (2011).

    Article  CAS  PubMed  Google Scholar 

  232. Qin, S. et al. Failure to ubiquitinate c-Met leads to hyperactivation of mTOR signaling in a mouse model of autosomal dominant polycystic kidney disease. J. Clin. Invest. 120, 3617–3628 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Derecki, N. C. et al. Wild-type microglia arrest pathology in a mouse model of Rett syndrome. Nature 484, 105–109 (2012). A seminal study showing immune cell-specific rescue of Rett syndrome-like behaviours and pathophysiology postnatally in a mouse model.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Sharma, A. et al. Autologous bone marrow mononuclear cell therapy for autism: an open label proof of concept study. Stem Cells Int. 2013, 623875 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  235. Lv, Y. T. et al. Transplantation of human cord blood mononuclear cells and umbilical cord-derived mesenchymal stem cells in autism. J. Translat. Med. 11, 196 (2013).

    Article  CAS  Google Scholar 

  236. Bilousova, T. V. et al. Minocycline promotes dendritic spine maturation and improves behavioural performance in the fragile X mouse model. J. Med. Genet. 46, 94–102 (2009).

    Article  CAS  PubMed  Google Scholar 

  237. Rotschafer, S. E., Trujillo, M. S., Dansie, L. E., Ethell, I. M. & Razak, K. A. Minocycline treatment reverses ultrasonic vocalization production deficit in a mouse model of fragile X syndrome. Brain Res. 1439, 7–14 (2012).

    Article  CAS  PubMed  Google Scholar 

  238. Leigh, M. J. et al. A randomized double-blind, placebo-controlled trial of minocycline in children and adolescents with fragile X syndrome. J. Dev. Behav. Pediatr. 34, 147–155 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  239. Posey, D. J. et al. A pilot study of D-cycloserine in subjects with autistic disorder. Am. J. Psychiatry 161, 2115–2117 (2004).

    Article  PubMed  Google Scholar 

  240. Sandler, R. H. et al. Short-term benefit from oral vancomycin treatment of regressive-onset autism. J. Child Neurol. 15, 429–435 (2000).

    Article  CAS  PubMed  Google Scholar 

  241. Ramirez, P. L., Barnhill, K., Gutierrez, A., Schutte, C. & Hewitson, L. Improvements in behavioral symptoms following antibiotic therapy in a 14-year-old male with autism. Case Rep. Psychiatry 2013, 239034 (2013).

    PubMed  PubMed Central  Google Scholar 

  242. Pardo, C. A. et al. A pilot open-label trial of minocycline in patients with autism and regressive features. J. Neurodev. Disord. 5, 9 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  243. Jung, H. J. et al. Minocycline inhibits angiogenesis in vitro through the translational suppression of HIF-1α. Arch. Biochem. Biophys. 545, 74–82 (2014).

    Article  CAS  PubMed  Google Scholar 

  244. Sullivan, R. C. Why do autistic children...? J. Autism Dev. Disord. 10, 231–241 (1980).

    Article  CAS  PubMed  Google Scholar 

  245. Cotterill, R. M. Fever in autistics. Nature 313, 426 (1985).

    Article  CAS  PubMed  Google Scholar 

  246. Curran, L. K. et al. Behaviors associated with fever in children with autism spectrum disorders. Pediatrics 120, e1386–e1392 (2007).

    Article  PubMed  Google Scholar 

  247. Naviaux, J. C. et al. Reversal of autism-like behaviors and metabolism in adult mice with single-dose antipurinergic therapy. Transl Psychiatry 4, e400 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Naviaux, J. C. et al. Antipurinergic therapy corrects the autism-like features in the fragile X (Fmr1 knockout) mouse model. Mol. Autism 6, 1 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  249. Kipnis, J., Gadani, S. & Derecki, N. C. Pro-cognitive properties of T cells. Nat. Rev. Immunol. 12, 663–669 (2012). An excellent review examining the unexpected physiological role of adaptive immunity in learning and memory.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Walsh, J. T., Watson, N. & Kipnis, J. T cells in the central nervous system: messengers of destruction or purveyors of protection? Immunology 141, 340–344 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Kipnis, J., Cohen, H., Cardon, M., Ziv, Y. & Schwartz, M. T cell deficiency leads to cognitive dysfunction: implications for therapeutic vaccination for schizophrenia and other psychiatric conditions. Proc. Natl Acad. Sci. USA 101, 8180–8185 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Rattazzi, L. et al. CD4+ but not CD8+ T cells revert the impaired emotional behavior of immunocompromised RAG-1-deficient mice. Transl Psychiatry 3, e280 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Brynskikh, A., Warren, T., Zhu, J. & Kipnis, J. Adaptive immunity affects learning behavior in mice. Brain Behav. Immun. 22, 861–869 (2008).

    Article  CAS  PubMed  Google Scholar 

  254. Ron-Harel, N. et al. Age-dependent spatial memory loss can be partially restored by immune activation. Rejuven. Res. 11, 903–913 (2008).

    Article  CAS  Google Scholar 

  255. Radjavi, A., Smirnov, I. & Kipnis, J. Brain antigen-reactive CD4+ T cells are sufficient to support learning behavior in mice with limited T cell repertoire. Brain Behav. Immun. 35, 58–63 (2014).

    Article  CAS  PubMed  Google Scholar 

  256. Derecki, N. C., Quinnies, K. M. & Kipnis, J. Alternatively activated myeloid (M2) cells enhance cognitive function in immune compromised mice. Brain Behav. Immun. 25, 379–385 (2011).

    Article  CAS  PubMed  Google Scholar 

  257. Baudouin, S. J. Heterogeneity and convergence: the synaptic pathophysiology of autism. Eur. J. Neurosci. 39, 1107–1113 (2014).

    Article  PubMed  Google Scholar 

  258. Patterson, P. H. Modeling autistic features in animals. Pediat. Res. 69, 34R–40R (2011).

    Article  PubMed  Google Scholar 

  259. Giovanoli, S. et al. Stress in puberty unmasks latent neuropathological consequences of prenatal immune activation in mice. Science 339, 1095–1099 (2013). A proof-of-concept study showing that accretion of environmental risk factors leads to distinct neurodevelopmental pathophysiology.

    Article  CAS  PubMed  Google Scholar 

  260. Abbas, A. K., Lichtman, A. H. & Pillai, S. Cellular and Molecular Immunology 7th edn (Saunders, 2012).

    Google Scholar 

  261. Schmitz, M. L., Weber, A., Roxlau, T., Gaestel, M. & Kracht, M. Signal integration, crosstalk mechanisms and networks in the function of inflammatory cytokines. Biochim. Biophys. Acta 1813, 2165–2175 (2011).

    Article  CAS  PubMed  Google Scholar 

  262. Cavaillon, J. M. Pro- versus anti-inflammatory cytokines: myth or reality. Cell. Mol. Biol. 47, 695–702 (2001).

    CAS  PubMed  Google Scholar 

  263. Yirmiya, R. & Goshen, I. Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav. Immun. 25, 181–213 (2011).

    Article  CAS  PubMed  Google Scholar 

  264. Schwartz, M. & Shechter, R. Protective autoimmunity functions by intracranial immunosurveillance to support the mind: the missing link between health and disease. Mol. Psychiatry 15, 342–354 (2010).

    Article  CAS  PubMed  Google Scholar 

  265. Xanthos, D. N. & Sandkuhler, J. Neurogenic neuroinflammation: inflammatory CNS reactions in response to neuronal activity. Nat. Rev. Neurosci. 15, 43–53 (2014). An excellent opinion piece cautioning against an 'inflammatory-centric' perspective of immune changes in the brain.

    Article  CAS  PubMed  Google Scholar 

  266. Wang, J. et al. Wild-type microglia do not reverse pathology in mouse models of Rett syndrome. Nature 521, E1–E4 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank members of the McAllister laboratory for ongoing discussions about the topics covered in this Review, especially B. M. Elmer. M.L.E. has been supported by a Dennis Weatherstone Predoctoral Fellowship from Autism Speaks (#7825), the Letty and James Callinan and Cathy and Andrew Moley Fellowship from the ARCS (Achievement Rewards for College Scientists) Foundation, and a Dissertation Year Fellowship from the University of California Office of the President. A.K.M. is supported by grants from the National Institute of Neurological Disorders and Stroke (NINDS; R01-NS060125-05), the National Institute of Mental Health (NIMH; P50-MH106438-01), the Simons Foundation (SFARI #321998), and the University of California Davis Research Investments in Science and Engineering Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kimberley McAllister.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

Autoimmune disorders

Disorders wherein the immune system attacks normal substances and tissues of the body.

Maternal immune activation

(MIA). An animal model of prenatal immune challenge generated by stimulating the maternal immune system with viral or bacterial mimics, live antigens or inflammatory cytokines.

Copy number variants

Deletions or duplications of chromosomal segments that lead to phenotypic diversity among individuals.

Single-nucleotide polymorphism

(SNP). The most common form of genetic variation due to nucleotide substitutions.

Human leukocyte antigen

(HLA). The gene locus that encodes the human versions of three different classes of major histocompatibility complex proteins.

Complement

A system of plasma proteins that attack extracellular pathogens, assist in pathogen and cellular debris clearance by phagocytes and facilitate synaptic pruning in the brain.

Maternal immunoglobulin G (IgG) antibodies

IgG antibodies that pass through the placenta during the third trimester and enter fetal circulation, where they persist at high titre levels for several months after birth.

Blood–brain barrier

(BBB). A selectively permeable network of endothelial cells, pericytes and astrocytes separating the circulating blood from the brain extracellular fluid. The BBB begins to form in the first trimester and is fully formed by birth in humans. Infection, disease and certain drugs can increase the permeability of the BBB.

Fetal-brain-reactive antibodies

Maternally derived immunoglobulin G antibodies that can cross the placenta and bind to fetal brain proteins.

Polyinosinic–polycytidylic acid

(Poly(I:C)). Mismatched double-stranded RNA that acts as a viral mimic.

Gut microbiota

A diverse set of microorganisms that inhabit the gut and shape host immune function.

Phagocytosis

The engulfment of extracellular pathogens or cellular debris by certain immune cells, including microglia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Estes, M., McAllister, A. Immune mediators in the brain and peripheral tissues in autism spectrum disorder. Nat Rev Neurosci 16, 469–486 (2015). https://doi.org/10.1038/nrn3978

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3978

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing