Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neuronal circuits for fear and anxiety

An Erratum to this article was published on 10 June 2015

Key Points

  • Newly developed technologies enable us to gain novel insights into how the brain generates fear and anxiety states, based on the identification and manipulation of neuronal circuits within and among individual brain regions.

  • Fear is mediated by a brain-wide distributed network involving long-range projection pathways and local connectivity. The disinhibitory microcircuit is a common motif in the basolateral amygdala (BLA), central amygdala and the prelimbic region of the medial prefrontal cortex, and is instrumental in fear acquisition and expression.

  • Encoding of fear extinction involves many of the same brain areas that are involved in fear acquisition and expression; however, different circuits within the amygdala and prefrontal cortex are involved. Indeed, fear extinction circuits may in fact inhibit fear circuits to dampen fearful responding.

  • As with fear and fear extinction, a brain-wide neuronal network underlies anxiety, with identified local microcircuits within the bed nucleus of the stria terminalis, the lateral septum, the ventral tegmental area (VTA) and the BLA. Importantly, there is potential overlap between fear and anxiety circuits.

  • There is overlap of neuronal circuits that mediate negative and positive valence in areas such as the VTA. Understanding the interplay between these circuits is of vital importance for understanding adaptive behavioural states.

Abstract

Decades of research has identified the brain areas that are involved in fear, fear extinction, anxiety and related defensive behaviours. Newly developed genetic and viral tools, optogenetics and advanced in vivo imaging techniques have now made it possible to characterize the activity, connectivity and function of specific cell types within complex neuronal circuits. Recent findings that have been made using these tools and techniques have provided mechanistic insights into the exquisite organization of the circuitry underlying internal defensive states. This Review focuses on studies that have used circuit-based approaches to gain a more detailed, and also more comprehensive and integrated, view on how the brain governs fear and anxiety and how it orchestrates adaptive defensive behaviours.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The fear and extinction network.
Figure 2: Using optogenetics in auditory fear conditioning.
Figure 3: Disinhibitory microcircuits in fear learning.
Figure 4: The anxiety network.

Similar content being viewed by others

References

  1. Anderson, D. J. & Adolphs, R. A framework for studying emotions across species. Cell 157, 187–200 (2014). A constructive, unifying view on the neuroscience of emotions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. LeDoux, J. E. Emotion circuits in the brain. Annu. Rev. Neurosci. 23, 155–184 (2000). A classic review that covers the seminal work on the role of the amygdala in fear conditioning.

    Article  CAS  PubMed  Google Scholar 

  3. LeDoux, J. E. Coming to terms with fear. Proc. Natl Acad. Sci. USA 111, 2871–2878 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Davis, M. in The Amygdala (ed. Aggleton, J. P.) 213–288 (Oxford Univ. Press, 2000).

    Google Scholar 

  5. Davis, M., Walker, D. L., Miles, L. & Grillon, C. Phasic versus sustained fear in rats and humans: role of the extended amygdala in fear versus anxiety. Neuropsychopharmacology 35, 105–135 (2010). A comprehensive review of classic research on the key role of the amygdala in anxiety.

    Article  PubMed  Google Scholar 

  6. Blanchard, D. C. & Blanchard, R. J. in Handbook of Anxiety and Fear (eds Blanchard, R. J., Blanchard, D. C., Griebel, G. & Nutt, D.) 63–79 (Elsevier, 2008). An instructive collection of classic experimental approaches, behavioural paradigms and influential concepts in fear and anxiety.

    Book  Google Scholar 

  7. Tye, K. M. & Deisseroth, K. Optogenetic investigation of neural circuits underlying brain disease in animal models. Nature Rev. Neurosci. 13, 251–266 (2012).

    Article  CAS  Google Scholar 

  8. Sternson, S. M. & Roth, B. L. Chemogenetic tools to interrogate brain functions. Annu. Rev. Neurosci. 37, 387–407 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Chen, T. W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jennings, J. H. & Stuber, G. D. Tools for resolving functional activity and connectivity within intact neural circuits. Curr. Biol. 24, R41–R50 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Grupe, D. W. & Nitschke, J. B. Uncertainty and anticipation in anxiety: an integrated neurobiological and psychological perspective. Nature Rev. Neurosci. 14, 488–501 (2013).

    Article  CAS  Google Scholar 

  12. Lammel, S., Ion, D. I., Roeper, J. & Malenka, R. C. Projection-specific modulation of dopamine neuron synapses by aversive and rewarding stimuli. Neuron 70, 855–862 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lammel, S. et al. Input-specific control of reward and aversion in the ventral tegmental area. Nature 491, 212–217 (2012). An elegant study using modern circuit-based approaches to investigate positive and negative valence coding in the VTA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Belova, M. A., Paton, J. J., Morrison, S. E. & Salzman, C. D. Expectation modulates neural responses to pleasant and aversive stimuli in primate amygdala. Neuron 55, 970–984 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Paton, J. J., Belova, M. A., Morrison, S. E. & Salzman, C. D. The primate amygdala represents the positive and negative value of visual stimuli during learning. Nature 439, 865–870 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Maren, S. & Quirk, G. J. Neuronal signalling of fear memory. Nature Rev. Neurosci. 5, 844–852 (2004).

    Article  CAS  Google Scholar 

  17. Duvarci, S. & Pare, D. Amygdala microcircuits controlling learned fear. Neuron 82, 966–980 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pape, H. C. & Pare, D. Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. Physiol. Rev. 90, 419–463 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Fendt, M. & Fanselow, M. S. The neuroanatomical and neurochemical basis of conditioned fear. Neurosci. Biobehav. Rev. 23, 743–760 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Sah, P., Faber, E. S., Lopez De Armentia, M. & Power, J. The amygdaloid complex: anatomy and physiology. Physiol. Rev. 83, 803–834 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Kim, J. J. & Jung, M. W. Neural circuits and mechanisms involved in Pavlovian fear conditioning: a critical review. Neurosci. Biobehav. Rev. 30, 188–202 (2006).

    Article  PubMed  Google Scholar 

  22. Maren, S. Neurobiology of Pavlovian fear conditioning. Annu. Rev. Neurosci. 24, 897–931 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. McDonald, A. J. Immunohistochemical identification of γ-aminobutyric acid-containing neurons in the rat basolateral amygdala. Neurosci. Lett. 53, 203–207 (1985).

    Article  CAS  PubMed  Google Scholar 

  24. McDonald, A. J. Neurons of the lateral and basolateral amygdaloid nuclei: a Golgi study in the rat. J. Comp. Neurol. 212, 293–312 (1982).

    Article  CAS  PubMed  Google Scholar 

  25. Rainnie, D. G., Mania, I., Mascagni, F. & McDonald, A. J. Physiological and morphological characterization of parvalbumin-containing interneurons of the rat basolateral amygdala. J. Comp. Neurol. 498, 142–161 (2006).

    Article  PubMed  Google Scholar 

  26. McDonald, A. J. Cytoarchitecture of the central amygdaloid nucleus of the rat. J. Comp. Neurol. 208, 401–418 (1982).

    Article  CAS  PubMed  Google Scholar 

  27. Swanson, L. W. & Petrovich, G. D. What is the amygdala? Trends Neurosci. 21, 323–331 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Rogan, M. T., Staubli, U. V. & LeDoux, J. E. Fear conditioning induces associative long-term potentiation in the amygdala. Nature 390, 604–607 (1997). A seminal work demonstrating that amygdala neurons undergo plastic changes as a result of aversive conditioning.

    Article  CAS  PubMed  Google Scholar 

  29. Tsvetkov, E., Carlezon, W. A., Benes, F. M., Kandel, E. R. & Bolshakov, V. Y. Fear conditioning occludes LTP-induced presynaptic enhancement of synaptic transmission in the cortical pathway to the lateral amygdala. Neuron 34, 289–300 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Quirk, G. J., Repa, C. & LeDoux, J. E. Fear conditioning enhances short-latency auditory responses of lateral amygdala neurons: parallel recordings in the freely behaving rat. Neuron 15, 1029–1039 (1995). A classic in vivo study showing that fear conditioning induces plasticity in LA neurons.

    Article  CAS  PubMed  Google Scholar 

  31. Rosenkranz, J. A. & Grace, A. A. Dopamine-mediated modulation of odour-evoked amygdala potentials during Pavlovian conditioning. Nature 417, 282–287 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Quirk, G. J., Armony, J. L. & LeDoux, J. E. Fear conditioning enhances different temporal components of tone-evoked spike trains in auditory cortex and lateral amygdala. Neuron 19, 613–624 (1997). A paper demonstrating that different neuronal populations in the amygdala encode different aspects of the fear memory.

    Article  CAS  PubMed  Google Scholar 

  33. Repa, J. C. et al. Two different lateral amygdala cell populations contribute to the initiation and storage of memory. Nature Neurosci. 4, 724–731 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Johansen, J. P. et al. Optical activation of lateral amygdala pyramidal cells instructs associative fear learning. Proc. Natl Acad. Sci. USA 107, 12692–12697 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nabavi, S. et al. Engineering a memory with LTD and LTP. Nature 511, 348–352 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bordi, F. & LeDoux, J. E. Response properties of single units in areas of rat auditory thalamus that project to the amygdala. II. Cells receiving convergent auditory and somatosensory inputs and cells antidromically activated by amygdala stimulation. Exp. Brain Res. 98, 275–286 (1994).

    Article  CAS  PubMed  Google Scholar 

  37. Linke, R., Braune, G. & Schwegler, H. Differential projection of the posterior paralaminar thalamic nuclei to the amygdaloid complex in the rat. Exp. Brain Res. 134, 520–532 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. LeDoux, J. E., Ruggiero, D. A. & Reis, D. J. Projections to the subcortical forebrain from anatomically defined regions of the medial geniculate body in the rat. J. Comp. Neurol. 242, 182–213 (1985).

    Article  CAS  PubMed  Google Scholar 

  39. Bordi, F. & LeDoux, J. E. Response properties of single units in areas of rat auditory thalamus that project to the amygdala. I. Acoustic discharge patterns and frequency receptive fields. Exp. Brain Res. 98, 261–274 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. LeDoux, J. E., Farb, C. R. & Romanski, L. M. Overlapping projections to the amygdala and striatum from auditory processing areas of the thalamus and cortex. Neurosci. Lett. 134, 139–144 (1991).

    Article  CAS  PubMed  Google Scholar 

  41. Shi, C. J. & Cassell, M. D. Cortical, thalamic, and amygdaloid projections of rat temporal cortex. J. Comp. Neurol. 382, 153–175 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Mascagni, F., McDonald, A. J. & Coleman, J. R. Corticoamygdaloid and corticocortical projections of the rat temporal cortex: a Phaseolus vulgaris leucoagglutinin study. Neuroscience 57, 697–715 (1993).

    Article  CAS  PubMed  Google Scholar 

  43. Letzkus, J. J. et al. A disinhibitory microcircuit for associative fear learning in the auditory cortex. Nature 480, 331–335 (2011). A multidimensional study on the cortical circuit basis for auditory fear conditioning.

    Article  CAS  PubMed  Google Scholar 

  44. Johansen, J. P., Tarpley, J. W., LeDoux, J. E. & Blair, H. T. Neural substrates for expectation-modulated fear learning in the amygdala and periaqueductal gray. Nature Neurosci. 13, 979–986 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. McNally, G. P., Johansen, J. P. & Blair, H. T. Placing prediction into the fear circuit. Trends Neurosci. 34, 283–292 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li, S. S. & McNally, G. P. The conditions that promote fear learning: prediction error and Pavlovian fear conditioning. Neurobiol. Learn. Mem. 108, 14–21 (2014).

    Article  PubMed  Google Scholar 

  47. Oka, T., Tsumori, T., Yokota, S. & Yasui, Y. Neuroanatomical and neurochemical organization of projections from the central amygdaloid nucleus to the nucleus retroambiguus via the periaqueductal gray in the rat. Neurosci. Res. 62, 286–298 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Kim, J. J., Rison, R. A. & Fanselow, M. S. Effects of amygdala, hippocampus, and periaqueductal gray lesions on short- and long-term contextual fear. Behav. Neurosci. 107, 1093–1098 (1993). A classic study showing distinct roles for different brain areas in fear conditioning.

    Article  CAS  PubMed  Google Scholar 

  49. Walker, P. & Carrive, P. Role of ventrolateral periaqueductal gray neurons in the behavioral and cardiovascular responses to contextual conditioned fear and poststress recovery. Neuroscience 116, 897–912 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Bandler, R. & Shipley, M. T. Columnar organization in the midbrain periaqueductal gray: modules for emotional expression? Trends Neurosci. 17, 379–389 (1994).

    Article  CAS  PubMed  Google Scholar 

  51. Johansen, J. P., Cain, C. K., Ostroff, L. E. & LeDoux, J. E. Molecular mechanisms of fear learning and memory. Cell 147, 509–524 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Orsini, C. A. & Maren, S. Neural and cellular mechanisms of fear and extinction memory formation. Neurosci. Biobehav. Rev. 36, 1773–1802 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Cho, J. H. et al. Coactivation of thalamic and cortical pathways induces input timing-dependent plasticity in amygdala. Nature Neurosci. 15, 113–122 (2012).

    Article  CAS  Google Scholar 

  54. Humeau, Y., Shaban, H., Bissiere, S. & Luthi, A. Presynaptic induction of heterosynaptic associative plasticity in the mammalian brain. Nature 426, 841–845 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Bauer, E. P., Schafe, G. E. & LeDoux, J. E. NMDA receptors and L-type voltage-gated calcium channels contribute to long-term potentiation and different components of fear memory formation in the lateral amygdala. J. Neurosci. 22, 5239–5249 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Huang, Y. Y. & Kandel, E. R. Postsynaptic induction and PKA-dependent expression of LTP in the lateral amygdala. Neuron 21, 169–178 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Kim, J. J., DeCola, J. P., Landeira-Fernandez, J. & Fanselow, M. S. N-methyl-d-aspartate receptor antagonist APV blocks acquisition but not expression of fear conditioning. Behav. Neurosci. 105, 126–133 (1991).

    Article  CAS  PubMed  Google Scholar 

  58. Miserendino, M. J., Sananes, C. B., Melia, K. R. & Davis, M. Blocking of acquisition but not expression of conditioned fear-potentiated startle by NMDA antagonists in the amygdala. Nature 345, 716–718 (1990).

    Article  CAS  PubMed  Google Scholar 

  59. Rumpel, S., LeDoux, J., Zador, A. & Malinow, R. Postsynaptic receptor trafficking underlying a form of associative learning. Science 308, 83–88 (2005). An early demonstration that AMPA receptor trafficking mediates fear memory formation.

    Article  CAS  PubMed  Google Scholar 

  60. Reijmers, L. G., Perkins, B. L., Matsuo, N. & Mayford, M. Localization of a stable neural correlate of associative memory. Science 317, 1230–1233 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Herry, C. et al. Switching on and off fear by distinct neuronal circuits. Nature 454, 600–606 (2008). A report that establishes the existence of distinct neuronal subpopulations that are devoted to the encoding of fear and fear extinction.

    Article  CAS  PubMed  Google Scholar 

  62. An, B., Hong, I. & Choi, S. Long-term neural correlates of reversible fear learning in the lateral amygdala. J. Neurosci. 32, 16845–16856 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ghosh, S. & Chattarji, S. Neuronal encoding of the switch from specific to generalized fear. Nature Neurosci. 18, 112–120 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. Han, J. H. et al. Selective erasure of a fear memory. Science 323, 1492–1496 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Kim, J., Kwon, J. T., Kim, H. S., Josselyn, S. A. & Han, J. H. Memory recall and modifications by activating neurons with elevated CREB. Nature Neurosci. 17, 65–72 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Liu, X. et al. Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484, 381–385 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhou, Y. et al. CREB regulates excitability and the allocation of memory to subsets of neurons in the amygdala. Nature Neurosci. 12, 1438–1443 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Kim, D., Pare, D. & Nair, S. S. Assignment of model amygdala neurons to the fear memory trace depends on competitive synaptic interactions. J. Neurosci. 33, 14354–14358 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Szinyei, C., Narayanan, R. T. & Pape, H. C. Plasticity of inhibitory synaptic network interactions in the lateral amygdala upon fear conditioning in mice. Eur. J. Neurosci. 25, 1205–1211 (2007).

    Article  PubMed  Google Scholar 

  70. Shaban, H. et al. Generalization of amygdala LTP and conditioned fear in the absence of presynaptic inhibition. Nature Neurosci. 9, 1028–1035 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Bissiere, S., Humeau, Y. & Luthi, A. Dopamine gates LTP induction in lateral amygdala by suppressing feedforward inhibition. Nature Neurosci. 6, 587–592 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Lang, E. J. & Pare, D. Similar inhibitory processes dominate the responses of cat lateral amygdaloid projection neurons to their various afferents. J. Neurophysiol. 77, 341–352 (1997).

    Article  CAS  PubMed  Google Scholar 

  73. Li, X. F., Armony, J. L. & LeDoux, J. E. GABAA and GABAB receptors differentially regulate synaptic transmission in the auditory thalamo-amygdala pathway: an in vivo microiontophoretic study and a model. Synapse 24, 115–124 (1996).

    Article  CAS  PubMed  Google Scholar 

  74. Tully, K., Li, Y., Tsvetkov, E. & Bolshakov, V. Y. Norepinephrine enables the induction of associative long-term potentiation at thalamo-amygdala synapses. Proc. Natl Acad. Sci. USA 104, 14146–14150 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Royer, S., Martina, M. & Pare, D. An inhibitory interface gates impulse traffic between the input and output stations of the amygdala. J. Neurosci. 19, 10575–10583 (1999). Important work that demonstrates the role of ITC cell masses in gating information flow in the amygdala.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Polepalli, J. S., Sullivan, R. K., Yanagawa, Y. & Sah, P. A specific class of interneuron mediates inhibitory plasticity in the lateral amygdala. J. Neurosci. 30, 14619–14629 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wolff, S. B. et al. Amygdala interneuron subtypes control fear learning through disinhibition. Nature 509, 453–458 (2014). A recent study taking advantage of the cellular specificity and temporal precision of optogenetics to characterize amygdala interneuron function.

    Article  CAS  PubMed  Google Scholar 

  78. Bienvenu, T. C., Busti, D., Magill, P. J., Ferraguti, F. & Capogna, M. Cell-type-specific recruitment of amygdala interneurons to hippocampal theta rhythm and noxious stimuli in vivo. Neuron 74, 1059–1074 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Muller, J. F., Mascagni, F. & McDonald, A. J. Pyramidal cells of the rat basolateral amygdala: synaptology and innervation by parvalbumin-immunoreactive interneurons. J. Comp. Neurol. 494, 635–650 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Muller, J. F., Mascagni, F. & McDonald, A. J. Postsynaptic targets of somatostatin-containing interneurons in the rat basolateral amygdala. J. Comp. Neurol. 500, 513–529 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Viviani, D. et al. Oxytocin selectively gates fear responses through distinct outputs from the central amygdala. Science 333, 104–107 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Huber, D., Veinante, P. & Stoop, R. Vasopressin and oxytocin excite distinct neuronal populations in the central amygdala. Science 308, 245–248 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Muller, J. F., Mascagni, F. & McDonald, A. J. Serotonin-immunoreactive axon terminals innervate pyramidal cells and interneurons in the rat basolateral amygdala. J. Comp. Neurol. 505, 314–335 (2007).

    Article  PubMed  Google Scholar 

  84. Muller, J. F., Mascagni, F. & McDonald, A. J. Cholinergic innervation of pyramidal cells and parvalbumin-immunoreactive interneurons in the rat basolateral amygdala. J. Comp. Neurol. 519, 790–805 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Pinard, C. R., Muller, J. F., Mascagni, F. & McDonald, A. J. Dopaminergic innervation of interneurons in the rat basolateral amygdala. Neuroscience 157, 850–863 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Lovett-Barron, M. et al. Dendritic inhibition in the hippocampus supports fear learning. Science 343, 857–863 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Courtin, J. et al. Prefrontal parvalbumin interneurons shape neuronal activity to drive fear expression. Nature 505, 92–96 (2014). An elegant study that identifies a prefrontal microcircuit that is crucial for fear responses.

    Article  CAS  PubMed  Google Scholar 

  88. Pi, H. J. et al. Cortical interneurons that specialize in disinhibitory control. Nature 503, 521–524 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Froemke, R. C., Merzenich, M. M. & Schreiner, C. E. A synaptic memory trace for cortical receptive field plasticity. Nature 450, 425–429 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Cobb, S. R., Buhl, E. H., Halasy, K., Paulsen, O. & Somogyi, P. Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature 378, 75–78 (1995).

    Article  CAS  PubMed  Google Scholar 

  91. Royer, S. et al. Control of timing, rate and bursts of hippocampal place cells by dendritic and somatic inhibition. Nature Neurosci. 15, 769–775 (2012).

    Article  CAS  PubMed  Google Scholar 

  92. Wilensky, A. E., Schafe, G. E., Kristensen, M. P. & LeDoux, J. E. Rethinking the fear circuit: the central nucleus of the amygdala is required for the acquisition, consolidation, and expression of Pavlovian fear conditioning. J. Neurosci. 26, 12387–12396 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ciocchi, S. et al. Encoding of conditioned fear in central amygdala inhibitory circuits. Nature 468, 277–282 (2010). This investigation identifies a CEA microcircuit that is instrumental in fear learning.

    Article  CAS  PubMed  Google Scholar 

  94. Haubensak, W. et al. Genetic dissection of an amygdala microcircuit that gates conditioned fear. Nature 468, 270–276 (2010). This study identifies distinct cell classes that constitute the CEA microcircuit important for fear.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Knobloch, H. S. et al. Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron 73, 553–566 (2012).

    Article  CAS  PubMed  Google Scholar 

  96. Li, H. et al. Experience-dependent modification of a central amygdala fear circuit. Nature Neurosci. 16, 332–339 (2013). This paper identifies SOM+ neurons in the CEA as vital components in fear memory formation and expression.

    Article  CAS  PubMed  Google Scholar 

  97. LeDoux, J. E., Iwata, J., Cicchetti, P. & Reis, D. J. Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. J. Neurosci. 8, 2517–2529 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Duvarci, S., Popa, D. & Pare, D. Central amygdala activity during fear conditioning. J. Neurosci. 31, 289–294 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Veinante, P. & Freund-Mercier, M. J. in The Amygdala in Brain Function: Basic and Clinical Approaches (eds Shinnick-Gallagher, P., Pitkanen, A., Shekhar, A. & Cahill, L.) 552–553 (New York Academy of Sciences, 2003).

    Google Scholar 

  100. Dong, H. W., Petrovich, G. D. & Swanson, L. W. Topography of projections from amygdala to bed nuclei of the stria terminalis. Brain Res. Brain Res. Rev. 38, 192–246 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Petrovich, G. D. & Swanson, L. W. Projections from the lateral part of the central amygdalar nucleus to the postulated fear conditioning circuit. Brain Res. 763, 247–254 (1997).

    Article  CAS  PubMed  Google Scholar 

  102. Penzo, M. A., Robert, V. & Li, B. Fear conditioning potentiates synaptic transmission onto long-range projection neurons in the lateral subdivision of central amygdala. J. Neurosci. 34, 2432–2437 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Weinberger, N. M. The medial geniculate, not the amygdala, as the root of auditory fear conditioning. Hear. Res. 274, 61–74 (2011).

    Article  PubMed  Google Scholar 

  104. Burgos-Robles, A., Vidal-Gonzalez, I. & Quirk, G. J. Sustained conditioned responses in prelimbic prefrontal neurons are correlated with fear expression and extinction failure. J. Neurosci. 29, 8474–8482 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Tang, J., Wagner, S., Schachner, M., Dityatev, A. & Wotjak, C. T. Potentiation of amygdaloid and hippocampal auditory-evoked potentials in a discriminatory fear-conditioning task in mice as a function of tone pattern and context. Eur. J. Neurosci. 18, 639–650 (2003).

    Article  PubMed  Google Scholar 

  106. Li, Y., Dong, X., Li, S. & Kirouac, G. J. Lesions of the posterior paraventricular nucleus of the thalamus attenuate fear expression. Front. Behav. Neurosci. 8, 94 (2014).

    PubMed  PubMed Central  Google Scholar 

  107. Penzo, M. A. et al. The paraventricular thalamus controls a central amygdala fear circuit. Nature 519, 455–459 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Do-Monte, F. H., Quinones-Laracuente, K. & Quirk, G. J. A temporal shift in the circuits mediating retrieval of fear memory. Nature 519, 460–463 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Corcoran, K. A. & Quirk, G. J. Activity in prelimbic cortex is necessary for the expression of learned, but not innate, fears. J. Neurosci. 27, 840–844 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Senn, V. et al. Long-range connectivity defines behavioral specificity of amygdala neurons. Neuron 81, 428–437 (2014).

    Article  CAS  PubMed  Google Scholar 

  111. Sotres-Bayon, F., Sierra-Mercado, D., Pardilla-Delgado, E. & Quirk, G. J. Gating of fear in prelimbic cortex by hippocampal and amygdala inputs. Neuron 76, 804–812 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Likhtik, E., Stujenske, J. M., Topiwala, M. A., Harris, A. Z. & Gordon, J. A. Prefrontal entrainment of amygdala activity signals safety in learned fear and innate anxiety. Nature Neurosci. 17, 106–113 (2014).

    Article  CAS  PubMed  Google Scholar 

  113. Seidenbecher, T., Laxmi, T. R., Stork, O. & Pape, H. C. Amygdalar and hippocampal theta rhythm synchronization during fear memory retrieval. Science 301, 846–850 (2003). An important contribution that establishes a role for synchronized oscillations between brain regions in fear conditioning.

    Article  CAS  PubMed  Google Scholar 

  114. Sparta, D. R. et al. Inhibition of projections from the basolateral amygdala to the entorhinal cortex disrupts the acquisition of contextual fear. Front. Behav. Neurosci. 8, 129 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Myers, K. M. & Davis, M. Mechanisms of fear extinction. Mol. Psychiatry 12, 120–150 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Amano, T., Duvarci, S., Popa, D. & Pare, D. The fear circuit revisited: contributions of the basal amygdala nuclei to conditioned fear. J. Neurosci. 31, 15481–15489 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Sotres-Bayon, F., Bush, D. E. & LeDoux, J. E. Acquisition of fear extinction requires activation of NR2B-containing NMDA receptors in the lateral amygdala. Neuropsychopharmacology 32, 1929–1940 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. Herry, C., Trifilieff, P., Micheau, J., Luthi, A. & Mons, N. Extinction of auditory fear conditioning requires MAPK/ERK activation in the basolateral amygdala. Eur. J. Neurosci. 24, 261–269 (2006).

    Article  PubMed  Google Scholar 

  119. Falls, W. A., Miserendino, M. J. & Davis, M. Extinction of fear-potentiated startle: blockade by infusion of an NMDA antagonist into the amygdala. J. Neurosci. 12, 854–863 (1992). A classic neuropharmacology paper that demonstrates the necessity for NMDAR activation in fear extinction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Mao, S. C., Hsiao, Y. H. & Gean, P. W. Extinction training in conjunction with a partial agonist of the glycine site on the NMDA receptor erases memory trace. J. Neurosci. 26, 8892–8899 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Amano, T., Unal, C. T. & Pare, D. Synaptic correlates of fear extinction in the amygdala. Nature Neurosci. 13, 489–494 (2010).

    Article  CAS  PubMed  Google Scholar 

  122. Likhtik, E., Popa, D., Apergis-Schoute, J., Fidacaro, G. A. & Pare, D. Amygdala intercalated neurons are required for expression of fear extinction. Nature 454, 642–645 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Pare, D. & Smith, Y. The intercalated cell masses project to the central and medial nuclei of the amygdala in cats. Neuroscience 57, 1077–1090 (1993).

    Article  CAS  PubMed  Google Scholar 

  124. Heldt, S. A. & Ressler, K. J. Training-induced changes in the expression of GABAA-associated genes in the amygdala after the acquisition and extinction of Pavlovian fear. Eur. J. Neurosci. 26, 3631–3644 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Lin, H. C., Mao, S. C. & Gean, P. W. Block of γ-aminobutyric acid-A receptor insertion in the amygdala impairs extinction of conditioned fear. Biol. Psychiatry 66, 665–673 (2009).

    Article  CAS  PubMed  Google Scholar 

  126. Trouche, S., Sasaki, J. M., Tu, T. & Reijmers, L. G. Fear extinction causes target-specific remodeling of perisomatic inhibitory synapses. Neuron 80, 1054–1065 (2013).

    Article  CAS  PubMed  Google Scholar 

  127. McDonald, A. J. & Mascagni, F. Localization of the CB1 type cannabinoid receptor in the rat basolateral amygdala: high concentrations in a subpopulation of cholecystokinin-containing interneurons. Neuroscience 107, 641–652 (2001).

    Article  CAS  PubMed  Google Scholar 

  128. Marsicano, G. et al. The endogenous cannabinoid system controls extinction of aversive memories. Nature 418, 530–534 (2002).

    Article  CAS  PubMed  Google Scholar 

  129. Laurent, V. & Westbrook, R. F. Inactivation of the infralimbic but not the prelimbic cortex impairs consolidation and retrieval of fear extinction. Learn. Mem. 16, 520–529 (2009).

    Article  PubMed  Google Scholar 

  130. Milad, M. R. & Quirk, G. J. Neurons in medial prefrontal cortex signal memory for fear extinction. Nature 420, 70–74 (2002). A seminal study that shows the involvement of the mPFC in extinction.

    Article  CAS  PubMed  Google Scholar 

  131. Burgos-Robles, A., Vidal-Gonzalez, I., Santini, E. & Quirk, G. J. Consolidation of fear extinction requires NMDA receptor-dependent bursting in the ventromedial prefrontal cortex. Neuron 53, 871–880 (2007).

    Article  CAS  PubMed  Google Scholar 

  132. Quirk, G. J., Likhtik, E., Pelletier, J. G. & Pare, D. Stimulation of medial prefrontal cortex decreases the responsiveness of central amygdala output neurons. J. Neurosci. 23, 8800–8807 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Cho, J. H., Deisseroth, K. & Bolshakov, V. Y. Synaptic encoding of fear extinction in mPFC–amygdala circuits. Neuron 80, 1491–1507 (2013).

    Article  CAS  PubMed  Google Scholar 

  134. Hermans, D., Craske, M. G., Mineka, S. & Lovibond, P. F. Extinction in human fear conditioning. Biol. Psychiatry 60, 361–368 (2006).

    Article  PubMed  Google Scholar 

  135. Craske, M. G. et al. Optimizing inhibitory learning during exposure therapy. Behav. Res. Ther. 46, 5–27 (2008).

    Article  PubMed  Google Scholar 

  136. Bouton, M. E. Context and ambiguity in the extinction of emotional learning: implications for exposure therapy. Behav. Res. Ther. 26, 137–149 (1988).

    Article  CAS  PubMed  Google Scholar 

  137. Maren, S. & Holt, W. The hippocampus and contextual memory retrieval in Pavlovian conditioning. Behav. Brain Res. 110, 97–108 (2000).

    Article  CAS  PubMed  Google Scholar 

  138. Bissiere, S. et al. Electrical synapses control hippocampal contributions to fear learning and memory. Science 331, 87–91 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Hoover, W. B. & Vertes, R. P. Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Struct. Funct. 212, 149–179 (2007).

    Article  PubMed  Google Scholar 

  140. Canteras, N. S. & Swanson, L. W. Projections of the ventral subiculum to the amygdala, septum, and hypothalamus: a PHAL anterograde tract-tracing study in the rat. J. Comp. Neurol. 324, 180–194 (1992).

    Article  CAS  PubMed  Google Scholar 

  141. Hobin, J. A., Ji, J. & Maren, S. Ventral hippocampal muscimol disrupts context-specific fear memory retrieval after extinction in rats. Hippocampus 16, 174–182 (2006).

    Article  CAS  PubMed  Google Scholar 

  142. Hobin, J. A., Goosens, K. A. & Maren, S. Context-dependent neuronal activity in the lateral amygdala represents fear memories after extinction. J. Neurosci. 23, 8410–8416 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Maren, S. & Hobin, J. A. Hippocampal regulation of context-dependent neuronal activity in the lateral amygdala. Learn. Mem. 14, 318–324 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Sylvers, P., Lilienfeld, S. O. & LaPrairie, J. L. Differences between trait fear and trait anxiety: implications for psychopathology. Clin. Psychol. Rev. 31, 122–137 (2011).

    Article  PubMed  Google Scholar 

  145. Duvarci, S., Bauer, E. P. & Pare, D. The bed nucleus of the stria terminalis mediates inter-individual variations in anxiety and fear. J. Neurosci. 29, 10357–10361 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kim, S. Y. et al. Diverging neural pathways assemble a behavioural state from separable features in anxiety. Nature 496, 219–223 (2013). A good example of the power of modern optogenetic studies to reveal circuits for specific aspects of an emotional state.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Jennings, J. H. et al. Distinct extended amygdala circuits for divergent motivational states. Nature 496, 224–228 (2013). This study uses a combination of modern circuit-based techniques to show that the BNST mediates distinct aspects of anxiety behaviour.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Etkin, A. & Wager, T. D. Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am. J. Psychiatry 164, 1476–1488 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Machado-de-Sousa, J. P. et al. Increased amygdalar and hippocampal volumes in young adults with social anxiety. PLoS ONE 9, e88523 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Irle, E. et al. Reduced amygdalar and hippocampal size in adults with generalized social phobia. J. Psychiatry Neurosci. 35, 126–131 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Tye, K. M. et al. Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature 471, 358–362 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Felix-Ortiz, A. C. et al. BLA to vHPC inputs modulate anxiety-related behaviors. Neuron 79, 658–664 (2013). One of the first studies to apply modern approaches to study the circuit basis of anxiety.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Roberto, M. et al. Cellular and behavioral interactions of gabapentin with alcohol dependence. J. Neurosci. 28, 5762–5771 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Tasan, R. O. et al. Altered GABA transmission in a mouse model of increased trait anxiety. Neuroscience 183, 71–80 (2011).

    Article  CAS  PubMed  Google Scholar 

  155. Adhikari, A., Topiwala, M. A. & Gordon, J. A. Single units in the medial prefrontal cortex with anxiety-related firing patterns are preferentially influenced by ventral hippocampal activity. Neuron 71, 898–910 (2011). A powerful use of in vivo electrical recordings to gain a circuit perspective in anxiety research.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Adhikari, A., Topiwala, M. A. & Gordon, J. A. Synchronized activity between the ventral hippocampus and the medial prefrontal cortex during anxiety. Neuron 65, 257–269 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Kjelstrup, K. G. et al. Reduced fear expression after lesions of the ventral hippocampus. Proc. Natl Acad. Sci. USA 99, 10825–10830 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Bannerman, D. M. et al. Regional dissociations within the hippocampus — memory and anxiety. Neurosci. Biobehav. Rev. 28, 273–283 (2004).

    Article  CAS  PubMed  Google Scholar 

  159. Bannerman, D. M. et al. Hippocampal synaptic plasticity, spatial memory and anxiety. Nature Rev. Neurosci. 15, 181–192 (2014).

    Article  CAS  Google Scholar 

  160. Pitkanen, A., Pikkarainen, M., Nurminen, N. & Ylinen, A. Reciprocal connections between the amygdala and the hippocampal formation, perirhinal cortex, and postrhinal cortex in rat. A review. Ann. NY Acad. Sci. 911, 369–391 (2000).

    Article  CAS  PubMed  Google Scholar 

  161. Strange, B. A., Witter, M. P., Lein, E. S. & Moser, E. I. Functional organization of the hippocampal longitudinal axis. Nature Rev. Neurosci. 15, 655–669 (2014).

    Article  CAS  Google Scholar 

  162. Fanselow, M. S. & Dong, H. W. Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 65, 7–19 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Birn, R. M. et al. Evolutionarily conserved prefrontal–amygdalar dysfunction in early-life anxiety. Mol. Psychiatry 19, 915–922 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Motzkin, J. C., Philippi, C. L., Wolf, R. C., Baskaya, M. K. & Koenigs, M. Ventromedial prefrontal cortex is critical for the regulation of amygdala activity in humans. Biol. Psychiatry 77, 276–284 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Gray, J. A. & McNaughton, N. The Neuropsychology of Anxiety (Oxford Univ. Press, 2000).

    Google Scholar 

  166. Sheehan, T. P., Chambers, R. A. & Russell, D. S. Regulation of affect by the lateral septum: implications for neuropsychiatry. Brain Res. Brain Res. Rev. 46, 71–117 (2004).

    Article  PubMed  Google Scholar 

  167. Guzman, Y. F. et al. Fear-enhancing effects of septal oxytocin receptors. Nature Neurosci. 16, 1185–1187 (2013).

    Article  CAS  PubMed  Google Scholar 

  168. Radulovic, J., Ruhmann, A., Liepold, T. & Spiess, J. Modulation of learning and anxiety by corticotropin-releasing factor (CRF) and stress: differential roles of CRF receptors 1 and 2. J. Neurosci. 19, 5016–5025 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Anthony, T. E. et al. Control of stress-induced persistent anxiety by an extra-amygdala septohypothalamic circuit. Cell 156, 522–536 (2014). A multimethod approach that refined the role of the septohippocampal system in stress-induced anxiety.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Graeff, F. G., Viana, M. B. & Mora, P. O. Dual role of 5-HT in defense and anxiety. Neurosci. Biobehav. Rev. 21, 791–799 (1997).

    Article  CAS  PubMed  Google Scholar 

  171. Walker, D. L., Miles, L. A. & Davis, M. Selective participation of the bed nucleus of the stria terminalis and CRF in sustained anxiety-like versus phasic fear-like responses. Prog. Neuropsychopharmacol. Biol. Psychiatry 33, 1291–1308 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Itoi, K. & Sugimoto, N. The brainstem noradrenergic systems in stress, anxiety and depression. J. Neuroendocrinol. 22, 355–361 (2010).

    Article  CAS  PubMed  Google Scholar 

  173. Litvin, Y., Pentkowski, N. S., Pobbe, R. L., Blanchard, D. C. & Blanchard, R. J. in Handbook of Anxiety and Fear (eds Blanchard, R. J., Blanchard, D. C., Griebel, G. & Nutt, D.) 81–99 (Elsevier, 2008).

    Book  Google Scholar 

  174. Tan, K. R. et al. GABA neurons of the VTA drive conditioned place aversion. Neuron 73, 1173–1183 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Fields, H. L., Hjelmstad, G. O., Margolis, E. B. & Nicola, S. M. Ventral tegmental area neurons in learned appetitive behavior and positive reinforcement. Annu. Rev. Neurosci. 30, 289–316 (2007).

    Article  CAS  PubMed  Google Scholar 

  176. Joshua, M., Adler, A., Mitelman, R., Vaadia, E. & Bergman, H. Midbrain dopaminergic neurons and striatal cholinergic interneurons encode the difference between reward and aversive events at different epochs of probabilistic classical conditioning trials. J. Neurosci. 28, 11673–11684 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Fadok, J. P., Dickerson, T. M. & Palmiter, R. D. Dopamine is necessary for cue-dependent fear conditioning. J. Neurosci. 29, 11089–11097 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Matsumoto, M. & Hikosaka, O. Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature 459, 837–841 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Zweifel, L. S. et al. Activation of dopamine neurons is critical for aversive conditioning and prevention of generalized anxiety. Nature Neurosci. 14, 620–626 (2011).

    Article  CAS  PubMed  Google Scholar 

  180. Margolis, E. B., Mitchell, J. M., Ishikawa, J., Hjelmstad, G. O. & Fields, H. L. Midbrain dopamine neurons: projection target determines action potential duration and dopamine D2 receptor inhibition. J. Neurosci. 28, 8908–8913 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Lammel, S. et al. Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system. Neuron 57, 760–773 (2008).

    Article  CAS  PubMed  Google Scholar 

  182. Gunaydin, L. A. et al. Natural neural projection dynamics underlying social behavior. Cell 157, 1535–1551 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Matsumoto, M. & Hikosaka, O. Lateral habenula as a source of negative reward signals in dopamine neurons. Nature 447, 1111–1115 (2007).

    Article  CAS  PubMed  Google Scholar 

  184. Li, B. et al. Synaptic potentiation onto habenula neurons in the learned helplessness model of depression. Nature 470, 535–539 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Stamatakis, A. M. & Stuber, G. D. Activation of lateral habenula inputs to the ventral midbrain promotes behavioral avoidance. Nature Neurosci. 15, 1105–1107 (2012).

    Article  CAS  PubMed  Google Scholar 

  186. Hong, S., Jhou, T. C., Smith, M., Saleem, K. S. & Hikosaka, O. Negative reward signals from the lateral habenula to dopamine neurons are mediated by rostromedial tegmental nucleus in primates. J. Neurosci. 31, 11457–11471 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Shabel, S. J., Proulx, C. D., Piriz, J. & Malinow, R. Mood regulation. GABA/glutamate co-release controls habenula output and is modified by antidepressant treatment. Science 345, 1494–1498 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Livneh, U. & Paz, R. Aversive-bias and stage-selectivity in neurons of the primate amygdala during acquisition, extinction, and overnight retention. J. Neurosci. 32, 8598–8610 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Shabel, S. J. & Janak, P. H. Substantial similarity in amygdala neuronal activity during conditioned appetitive and aversive emotional arousal. Proc. Natl Acad. Sci. USA 106, 15031–15036 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Zhang, W. et al. Functional circuits and anatomical distribution of response properties in the primate amygdala. J. Neurosci. 33, 722–733 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Redondo, R. L. et al. Bidirectional switch of the valence associated with a hippocampal contextual memory engram. Nature 513, 426–430 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Stuber, G. D. et al. Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. Nature 475, 377–380 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank J. Letzkus for providing constructive criticism of the initial manuscript. Work on this article was supported by the Novartis Research Foundation, the Swiss National Science Foundation (grants to A.L.), and the Brain & Behaviour Research Foundation, which awarded NARSAD Young Investigator grants to P.T. and J.P.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Lüthi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Valence

In the psychological or behavioural context, valence is used to describe the emotional value — positive or negative — that is associated with a distinct or situational stimulus.

Microcircuits

In contrast to long-range projection pathways between distinct brain regions, microcircuits consist of interconnected neurons within a specific brain region and often involve inhibitory interneurons.

Neuronal substrates

Used as an umbrella term to encompass multiple aspects of brain function, neuronal substrates include anatomical and cellular neuroarchitecture, electrical and neurochemical processes, and circuit mechanisms.

Plasticity

Often used to describe changes specifically in synaptic transmission, plasticity can also refer to different experience- or learning-induced changes within neuronal circuits — such as alteration of connectivity, morphology, and cellular and molecular composition — or to observed changes in stimulus- or context-driven neuronal activity patterns.

Projection neurons

(Also known as principal neurons). An excitatory glutamatergic or inhibitory GABAergic projection neuron projects to a brain area outside the region in which its cell body is located.

Interneurons

Mainly comprising inhibitory GABAergic cells, locally connected interneurons exhibit specific morphology, electrophysiological properties, molecular composition, projection targets and cellular functions to control activity of projection neurons or other interneurons.

Defensive behaviours

Expressed in response to threatening stimuli or situations, defensive behaviours serve to avoid or reduce harm and are highly conserved across mammals.

Fear memory trace

Often used to emphasize its physical location inside the brain, a fear memory trace refers to the neuronal substrates that underlie the formation, storage and recall of the internal representation of a fearful event.

Disinhibition

Describing a neuronal mechanism prevalent in fear learning, disinhibition results in enhanced activity of a postsynaptic neuron by way of inhibiting an inhibitory presynaptic input.

Theta rhythms

A specific type of oscillatory neuronal activity in the 4–10 Hz range. Theta rhythms have been strongly implicated in fear learning and expression.

Intercalated cell masses

(ITC cell masses). As specialized clusters of mostly inhibitory neurons nestled in the fibre bundles surrounding the amygdala, ITC cell masses are thought to gate information flow in the amygdala.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tovote, P., Fadok, J. & Lüthi, A. Neuronal circuits for fear and anxiety. Nat Rev Neurosci 16, 317–331 (2015). https://doi.org/10.1038/nrn3945

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3945

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing