Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nuclear and cytosolic JNK signalling in neurons

Key Points

  • JUN amino-terminal kinases (JNKs) are dominant regulators of protein phosphorylation in the nervous system.

  • JNKs serve critical functions in developing brain, being required for developmental cell death, neural tube closure, axonal pathfinding, radial migration and dendrite architecture determination.

  • JNKs are sensors of stress, eliciting transcriptional responses in the nucleus and intrinsic death pathway responses in the cytosol, which communicate a strong pro-apoptotic signal.

  • Inhibitors of JNKs or genetic interference approaches prevent the development of Alzheimer's disease hallmarks in preclinical studies.

  • JNKs phosphorylate components of the synaptic machinery, implicating them in synaptic plasticity changes — that is, strengthening or weakening of synapses over time.

  • Recent genetic association studies suggest that JNK pathway gene disruption confers susceptibility to neuropsychiatric disorders — autism, schizophrenia and intellectual disability.

Abstract

It has been over 20 years since JUN amino-terminal kinases (JNKs) were identified as protein kinases that are strongly activated by cellular stress and that have a key role in apoptosis. Examination of Jnk-knockout mice and characterization of JNK behaviour in neuronal cells has further revealed the importance of the JNK family in the nervous system. As well as regulating neuronal death, JNKs govern brain morphogenesis and axodendritic architecture during development, and regulate important neuron-specific functions such as synaptic plasticity and memory formation. This Review examines the evidence that the spatial segregation of JNKs in neurons underlies their distinct functions and that compartment-specific targeting of JNKs may offer promising new therapeutic avenues for the treatment of diseases of the nervous system, such as stroke and neurodegenerative disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The JNK cascade and JNK isoform expression in the mammalian brain.
Figure 2: JNK function in the cytoplasm.
Figure 3: The nuclear function of JNKs.
Figure 4: JNK function in brain development.
Figure 5: JNK regulates stress responses in the axon.

Similar content being viewed by others

References

  1. Kyriakis, J. M. & Avruch, J. Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update. Physiol. Rev. 92, 689–737 (2012).

    CAS  PubMed  Google Scholar 

  2. Huttlin, E. L. et al. A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143, 1174–1189 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Lundby, A. et al. Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues. Nature Commun. 3, 876 (2012).

    Google Scholar 

  4. Coffey, E. T. & Courtney, M. J. Regulation of SAPKs in CNS neurons. Biochem. Soc. Trans. 25, S568 (1997).

    CAS  PubMed  Google Scholar 

  5. Hu, Y., Metzler, B. & Xu, Q. Discordant activation of stress-activated protein kinases or c-Jun NH2-terminal protein kinases in tissues of heat-stressed mice. J. Biol. Chem. 272, 9113–9119 (1997).

    CAS  PubMed  Google Scholar 

  6. Coffey, E. T., Hongisto, V., Dickens, M., Davis, R. J. & Courtney, M. J. Dual roles for c-Jun N-terminal kinase in developmental and stress responses in cerebellar granule neurons. J. Neurosci. 20, 7602–7613 (2000).

    CAS  PubMed  Google Scholar 

  7. Björkblom, B. et al. Constitutively active cytoplasmic c-Jun N-terminal kinase 1 is a dominant regulator of dendritic architecture: role of microtubule-associated protein 2 as an effector. J. Neurosci. 25, 6350–6361 (2005). This study shows that dendrite architecture is disturbed in cerebellar granule neurons isolated from Jnk1−/− mice.

    PubMed  PubMed Central  Google Scholar 

  8. Kuan, C. Y. et al. A critical role of neural-specific JNK3 for ischemic apoptosis. Proc. Natl Acad. Sci. USA 100, 15184–15189 (2003).

    CAS  PubMed  Google Scholar 

  9. Tararuk, T. et al. JNK1 phosphorylation of SCG10 determines microtubule dynamics and axodendritic length. J. Cell Biol. 173, 265–277 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Shoichet, S. A. et al. Truncation of the CNS-expressed JNK3 in a patient with a severe developmental epileptic encephalopathy. Hum. Genet. 118, 559–567 (2006). A study providing the first evidence of a JNK gene disruption in a patient with learning disability and epilepsy. This link has been supported by subsequent case studies.

    PubMed  Google Scholar 

  11. Baptista, J. et al. Breakpoint mapping and array CGH in translocations: comparison of a phenotypically normal and an abnormal cohort. Am. J. Hum. Genet. 82, 927–936 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Winchester, C. L. et al. Converging evidence that sequence variations in the novel candidate gene MAP2K7 (MKK7) are functionally associated with schizophrenia. Hum. Mol. Genet. 21, 4910–4921 (2012). The article provides the first genetic link between the JNK pathway and schizophrenia. This human cohort study reports the association of MKK7 anomalies with schizophrenia.

    CAS  PubMed  Google Scholar 

  13. Kunde, S. A. et al. Characterisation of de novo MAPK10/JNK3 truncation mutations associated with cognitive disorders in two unrelated patients. Hum. Genet. 132, 461–471 (2013).

    PubMed  Google Scholar 

  14. Weiss, L. A. et al. Association between microdeletion and microduplication at 16p11.2 and autism. N. Engl. J. Med. 358, 667–675 (2008). This study shows that JNK pathway gene anomalies are associated with autism spectrum disorders for the first time.

    CAS  PubMed  Google Scholar 

  15. de Anda, F. C. et al. Autism spectrum disorder susceptibility gene TAOK2 affects basal dendrite formation in the neocortex. Nature Neurosci. 15, 1022–1031 (2012). This study demonstrates that TAOK2 (an upstream JNK activator) is a dominant regulator of basal dendrite development in the cortex.

    CAS  PubMed  Google Scholar 

  16. Kuan, C. Y. et al. The Jnk1 and Jnk2 protein kinases are required for regional specific apoptosis during early brain development. Neuron 22, 667–676 (1999). This study characterizes brain development defects in Jnk−/− mice.

    CAS  PubMed  Google Scholar 

  17. Carboni, L., Carletti, R., Tacconi, S., Corti, C. & Ferraguti, F. Differential expression of SAPK isoforms in the rat brain. An in situ hybridisation study in the adult rat brain and during post-natal development. Brain Res. Mol. Brain Res. 60, 57–68 (1998).

    CAS  PubMed  Google Scholar 

  18. Lein, E. S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007).

    CAS  PubMed  Google Scholar 

  19. Brecht, S. et al. Specific pathophysiological functions of JNK isoforms in the brain. Eur. J. Neurosci. 21, 363–377 (2005). A biochemical characterization of JNK isoform expression in the rodent brain.

    PubMed  Google Scholar 

  20. Lee, J. K., Park, J., Lee, Y. D., Lee, S. H. & Han, P. L. Distinct localization of SAPK isoforms in neurons of adult mouse brain implies multiple signaling modes of SAPK pathway. Brain Res. Mol. Brain Res. 70, 116–124 (1999).

    CAS  PubMed  Google Scholar 

  21. Coffey, E. T. et al. c-Jun N-terminal protein kinase (JNK) 2/3 is specifically activated by stress, mediating c-Jun activation, in the presence of constitutive JNK1 activity in cerebellar neurons. J. Neurosci. 22, 4335–4345 (2002). A demonstration of JNK2 and JNK3 isoform activation by stress in primary neurons.

    CAS  PubMed  Google Scholar 

  22. Chen, J. T. et al. Impaired long-term potentiation in c-Jun N-terminal kinase 2-deficient mice. J. Neurochem. 93, 463–473 (2005). A study showing that LTP is impaired in Jnk2−/− mice.

    CAS  PubMed  Google Scholar 

  23. Cavalli, V., Kujala, P., Klumperman, J. & Goldstein, L. S. Sunday Driver links axonal transport to damage signaling. J. Cell Biol. 168, 775–787 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Feltrin, D. et al. Growth cone MKK7 mRNA targeting regulates MAP1b-dependent microtubule bundling to control neurite elongation. PLoS Biol. 10, e1001439 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Centeno, C. et al. Role of the JNK pathway in NMDA-mediated excitotoxicity of cortical neurons. Cell Death Differ. 14, 240–253 (2007).

    CAS  PubMed  Google Scholar 

  26. Chang, L., Jones, Y., Ellisman, M. H., Goldstein, L. S. & Karin, M. JNK1 is required for maintenance of neuronal microtubules and controls phosphorylation of microtubule-associated proteins. Dev. Cell 4, 521–533 (2003).

    CAS  PubMed  Google Scholar 

  27. Podkowa, M. et al. Microtubule stabilization by bone morphogenetic protein receptor-mediated scaffolding of c-Jun N-terminal kinase promotes dendrite formation. Mol. Cell. Biol. 30, 2241–2250 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Björkblom, B. et al. All JNKs can kill, but nuclear localization is critical for neuronal death. J. Biol. Chem. 283, 19704–19713 (2008). This report challenges the idea that inhibition of a single JNK isoform (for example, JNK3) will provide neuroprotection. It demonstrates the importance of nuclear JNK for signalling death responses. Inhibition of JNK in the cytosol does not protect from trophic withdrawal-induced death.

    PubMed  Google Scholar 

  29. Giasson, B. I. & Mushynski, W. E. Study of proline-directed protein kinases involved in phosphorylation of the heavy neurofilament subunit. J. Neurosci. 17, 9466–9472 (1997).

    CAS  PubMed  Google Scholar 

  30. Westerlund, N. et al. Phosphorylation of SCG10/stathmin-2 determines multipolar stage exit and neuronal migration rate. Nature Neurosci. 14, 305–313 (2011). A study showing that JNK1 regulates multipolar transition and bipolar cell movement during development of the cortex.

    CAS  PubMed  Google Scholar 

  31. Fosbrink, M., Aye-Han, N. N., Cheong, R., Levchenko, A. & Zhang, J. Visualization of JNK activity dynamics with a genetically encoded fluorescent biosensor. Proc. Natl Acad. Sci. USA 107, 5459–5464 (2010).

    CAS  PubMed  Google Scholar 

  32. Komatsu, N. et al. Development of an optimized backbone of FRET biosensors for kinases and GTPases. Mol. Biol. Cell 22, 4647–4656 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Waetzig, V., Zhao, Y. & Herdegen, T. The bright side of JNKs — multitalented mediators in neuronal sprouting, brain. Prog. Neurobiol. 80, 84–97 (2006).

    CAS  PubMed  Google Scholar 

  34. Zhao, Y. & Herdegen, T. Cerebral ischemia provokes a profound exchange of activated JNK isoforms in brain mitochondria. Mol. Cell. Neurosci. 41, 186–195 (2009).

    CAS  PubMed  Google Scholar 

  35. Zhao, Y. et al. The JNK inhibitor D-JNKI-1 blocks apoptotic JNK signaling in brain mitochondria. Mol. Cell. Neurosci. 49, 300–310 (2012).

    CAS  PubMed  Google Scholar 

  36. Harris, C. A. & Johnson, E. M. BH3-only Bcl-2 family members are coordinately regulated by the JNK pathway and require Bax to induce apoptosis in neurons. J. Biol. Chem. 276, 37754–37760 (2001).

    CAS  PubMed  Google Scholar 

  37. Putcha, G. V. et al. Induction of BIM, a proapoptotic BH3-only BCL-2 family member, is critical for neuronal apoptosis. Neuron 29, 615–628 (2001).

    CAS  PubMed  Google Scholar 

  38. Putcha, G. V. et al. JNK-mediated BIM phosphorylation potentiates BAX-dependent apoptosis. Neuron 38, 899–914 (2003).

    CAS  PubMed  Google Scholar 

  39. Lei, K. & Davis, R. J. JNK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis. Proc. Natl Acad. Sci. USA 100, 2432–2437 (2003).

    CAS  PubMed  Google Scholar 

  40. Becker, E. B., Howell, J., Kodama, Y., Barker, P. A. & Bonni, A. Characterization of the c-Jun N-terminal kinase-BimEL signaling pathway in neuronal apoptosis. J. Neurosci. 24, 8762–8770 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Okuno, S., Saito, A., Hayashi, T. & Chan, P. H. The c-Jun N-terminal protein kinase signaling pathway mediates Bax activation and subsequent neuronal apoptosis through interaction with Bim after transient focal cerebral ischemia. J. Neurosci. 24, 7879–7887 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim, M. J. et al. Synaptic accumulation of PSD-95 and synaptic function regulated by phosphorylation of serine-295 of PSD-95. Neuron 56, 488–502 (2007). The first report to show the impact of JNK on the dendritic spine protein PSD95.

    CAS  PubMed  Google Scholar 

  43. Thomas, G. M., Lin, D. T., Nuriya, M. & Huganir, R. L. Rapid and bi-directional regulation of AMPA receptor phosphorylation and trafficking by JNK. EMBO J. 27, 361–372 (2008). This study characterizes a molecular mechanism whereby JNK regulates AMPAR membrane insertion.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Edbauer, D. et al. Identification and characterization of neuronal mitogen-activated protein kinase substrates using a specific phosphomotif antibody. Mol. Cell Proteomics 8, 681–695 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Cho, I. H., Lee, K. W., Ha, H. Y. & Han, P. L. JNK/stress-activated protein kinase associated protein 1 is required for early development of telencephalic commissures in embryonic brains. Exp. Mol. Med. 43, 462–470 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Miura, E. et al. Expression and distribution of JNK/SAPK-associated scaffold protein JSAP1 in developing and adult mouse brain. J. Neurochem. 97, 1431–1446 (2006).

    CAS  PubMed  Google Scholar 

  47. Ito, M. et al. Isoforms of JSAP1 scaffold protein generated through alternative splicing. Gene 255, 229–234 (2000).

    CAS  PubMed  Google Scholar 

  48. Husi, H., Ward, M. A., Choudhary, J. S., Blackstock, W. P. & Grant, S. G. Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nature Neurosci. 3, 661–669 (2000).

    CAS  PubMed  Google Scholar 

  49. Pak, D. T., Yang, S., Rudolph-Correia, S., Kim, E. & Sheng, M. Regulation of dendritic spine morphology by SPAR, a PSD-95-associated RapGAP. Neuron 31, 289–303 (2001).

    CAS  PubMed  Google Scholar 

  50. Peng, J. et al. Semiquantitative proteomic analysis of rat forebrain postsynaptic density fractions by mass spectrometry. J. Biol. Chem. 279, 21003–21011 (2004).

    CAS  PubMed  Google Scholar 

  51. Zhang, Y., Zhou, L. & Miller, C. A. A splicing variant of a death domain protein that is regulated by a mitogen-activated kinase is a substrate for c-Jun N-terminal kinase in the human central nervous system. Proc. Natl Acad. Sci. USA 95, 2586–2591 (1998).

    CAS  PubMed  Google Scholar 

  52. Yang, D. D. et al. Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature 389, 865–870 (1997). This study shows the importance of JNK3 as a mediator of excitotoxic death.

    CAS  PubMed  Google Scholar 

  53. Crocker, S. J. et al. c-Jun mediates axotomy-induced dopamine neuron death in vivo. Proc. Natl Acad. Sci. USA 98, 13385–13390 (2001).

    CAS  PubMed  Google Scholar 

  54. Lindwall, C. & Kanje, M. Retrograde axonal transport of JNK signaling molecules influence injury induced nuclear changes in p-c-Jun and ATF3 in adult rat sensory neurons. Mol. Cell. Neurosci. 29, 269–282 (2005).

    CAS  PubMed  Google Scholar 

  55. Herr, I., van Dam, H. & Angel, P. Binding of promoter-associated AP-1 is not altered during induction and subsequent repression of the c-jun promoter by TPA and UV irradiation. Carcinogenesis 15, 1105–1113 (1994).

    CAS  PubMed  Google Scholar 

  56. Yuan, Z. et al. Opposing roles for ATF2 and c-Fos in c-Jun-mediated neuronal apoptosis. Mol. Cell. Biol. 29, 2431–2442 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Ham, J., Eilers, A., Whitfield, J., Neame, S. J. & Shah, B. c-Jun and the transcriptional control of neuronal apoptosis. Biochem. Pharmacol. 60, 1015–1021 (2000).

    CAS  PubMed  Google Scholar 

  58. Whitfield, J., Neame, S. J., Paquet, L., Bernard, O. & Ham, J. Dominant-negative c-Jun promotes neuronal survival by reducing BIM expression and inhibiting mitochondrial cytochrome c release. Neuron 29, 629–643 (2001).

    CAS  PubMed  Google Scholar 

  59. Besirli, C. G., Wagner, E. F. & Johnson, E. M. The limited role of NH2-terminal c-Jun phosphorylation in neuronal apoptosis: identification of the nuclear pore complex as a potential target of the JNK pathway. J. Cell Biol. 170, 401–411 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Jacobs, W. B. et al. p63 is an essential proapoptotic protein during neural development. Neuron 48, 743–756 (2005).

    CAS  PubMed  Google Scholar 

  61. Wyttenbach, A. & Tolkovsky, A. M. The BH3-only protein Puma is both necessary and sufficient for neuronal apoptosis induced by DNA damage in sympathetic neurons. J. Neurochem. 96, 1213–1226 (2006).

    CAS  PubMed  Google Scholar 

  62. Kristiansen, M., Menghi, F., Hughes, R., Hubank, M. & Ham, J. Global analysis of gene expression in NGF-deprived sympathetic neurons identifies molecular pathways associated with cell death. BMC Genomics 12, 551 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Ham, J. et al. A c-Jun dominant negative mutant protects sympathetic neurons against programmed cell death. Neuron 14, 927–939 (1995).

    CAS  PubMed  Google Scholar 

  64. Behrens, A., Sibilia, M. & Wagner, E. F. Amino-terminal phosphorylation of c-Jun regulates stress-induced apoptosis and cellular proliferation. Nature Genet. 21, 326–329 (1999). This article highlights the importance of JUN phosphorylation as a trigger for neuronal apoptosis.

    CAS  PubMed  Google Scholar 

  65. Ruff, C. A. et al. Neuronal c-Jun is required for successful axonal regeneration, but the effects of phosphorylation of its N-terminus are moderate. J. Neurochem. 121, 607–618 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Desagher, S. et al. Genes regulated in neurons undergoing transcription-dependent apoptosis belong to signaling pathways rather than the apoptotic machinery. J. Biol. Chem. 280, 5693–5702 (2005).

    CAS  PubMed  Google Scholar 

  67. Tiwari, V. K. et al. A chromatin-modifying function of JNK during stem cell differentiation. Nature Genet. 44, 94–100 (2012). A study demonstrating that JNK phosphorylates histone H3 on serine 10, an event that is associated with chromatin relaxation. It also shows that JNK binds to transcriptionally active gene promoters during neuronal differentiation.

    CAS  Google Scholar 

  68. Klein, A. M., Zaganjor, E. & Cobb, M. H. Chromatin-tethered MAPKs. Curr. Opin. Cell Biol. 25, 272–277 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Yang, S. H., Sharrocks, A. D. & Whitmarsh, A. J. MAP kinase signalling cascades and transcriptional regulation. Gene 513, 1–13 (2013).

    CAS  PubMed  Google Scholar 

  70. Baek, S. H. When signaling kinases meet histones and histone modifiers in the nucleus. Mol. Cell 42, 274–284 (2011).

    CAS  PubMed  Google Scholar 

  71. Suganuma, T. et al. The ATAC acetyltransferase complex coordinates MAP kinases to regulate JNK target genes. Cell 142, 726–736 (2010).

    CAS  PubMed  Google Scholar 

  72. Sabapathy, K. et al. Defective neural tube morphogenesis and altered apoptosis in the absence of both JNK1 and JNK2. Mech. Dev. 89, 115–124 (1999). This study characterizes brain development defects in JNK-knockout mice. It identifies neural tube defects and the results are entirely consistent with the parallel report in reference 16.

    CAS  PubMed  Google Scholar 

  73. Karin, M. & Gallagher, E. From JNK to pay dirt: jun kinases, their biochemistry, physiology and clinical importance. IUBMB Life 57, 283–295 (2005).

    CAS  PubMed  Google Scholar 

  74. Yang, D. et al. Targeted disruption of the MKK4 gene causes embryonic death, inhibition of c-Jun NH2-terminal kinase activation, and defects in AP-1 transcriptional activity. Proc. Natl Acad. Sci. USA 94, 3004–3009 (1997).

    CAS  PubMed  Google Scholar 

  75. Ganiatsas, S. et al. SEK1 deficiency reveals mitogen-activated protein kinase cascade crossregulation and leads to abnormal hepatogenesis. Proc. Natl Acad. Sci. USA 95, 6881–6886 (1998).

    CAS  PubMed  Google Scholar 

  76. Asaoka, Y. & Nishina, H. Diverse physiological functions of MKK4 and MKK7 during early embryogenesis. J. Biochem. 148, 393–401 (2010).

    CAS  PubMed  Google Scholar 

  77. Glise, B. Bourbon, H. & Noselli, S. hemipterous encodes a novel Drosophila MAP kinase kinase, required for epithelial cell sheet movement. Cell 83, 451–461 (1995).

    CAS  PubMed  Google Scholar 

  78. Sluss, H. K. et al. A JNK signal transduction pathway that mediates morphogenesis and an immune response in Drosophila. Genes Dev. 10, 2745–2758 (1996).

    CAS  PubMed  Google Scholar 

  79. Yamanaka, H. et al. JNK functions in the non-canonical Wnt pathway to regulate convergent extension movements in vertebrates. EMBO Rep. 3, 69–75 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Rui, Y. et al. A β-catenin-independent dorsalization pathway activated by Axin/JNK signaling and antagonized by Aida. Dev. Cell 13, 268–282 (2007).

    CAS  PubMed  Google Scholar 

  81. Seo, J. et al. Negative regulation of wnt11 expression by Jnk signaling during zebrafish gastrulation. J. Cell Biochem. 110, 1022–1037 (2010).

    CAS  PubMed  Google Scholar 

  82. Eferl, R. et al. Functions of c-Jun in liver and heart development. J. Cell Biol. 145, 1049–1061 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Maekawa, T. et al. Mouse ATF-2 null mutants display features of a severe type of meconium aspiration syndrome. J. Biol. Chem. 274, 17813–17819 (1999).

    CAS  PubMed  Google Scholar 

  84. Wiederkehr, A., Staple, J. & Caroni, P. The motility-associated proteins GAP-43, MARCKS, and CAP-23 share unique targeting and surface activity-inducing properties. Exp. Cell Res. 236, 103–116 (1997).

    CAS  PubMed  Google Scholar 

  85. Bjorkblom, B. et al. c-Jun N-terminal kinase phosphorylation of MARCKSL1 determines actin stability. Mol. Cell. Biol. 32, 3513–3526 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Chen, J. et al. Disruption of the MacMARCKS gene prevents cranial neural tube closure and results in anencephaly. Proc. Natl Acad. Sci. USA 93, 6275–6279 (1996).

    CAS  PubMed  Google Scholar 

  87. Wu, M., Chen, D. F., Sasaoka, T. & Tonegawa, S. Neural tube defects and abnormal brain development in F52-deficient mice. Proc. Natl Acad. Sci. USA 93, 2110–2115 (1996).

    CAS  PubMed  Google Scholar 

  88. Loh, S. H., Francescut, L., Lingor, P., Bähr, M. & Nicotera, P. Identification of new kinase clusters required for neurite outgrowth and retraction by a loss-of-function RNA interference screen. Cell Death Differ. 15, 283–298 (2008).

    CAS  PubMed  Google Scholar 

  89. Boutin, C., Goffinet, A. M. & Tissir, F. Celsr1-3 cadherins in PCP and brain development. Curr. Top. Dev. Biol. 101, 161–183 (2012).

    CAS  PubMed  Google Scholar 

  90. Heasley, L. E. et al. GTPase-deficient Gα16 and Gαq induce PC12 cell differentiation and persistent activation of cJun NH2-terminal kinases. Mol. Cell. Biol. 16, 648–656 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Oliva, A. A. Jr, Atkins, C. M., Copenagle, L. & Banker, G. A. Activated c-Jun N-terminal kinase is required for axon formation. J. Neurosci. 26, 9462–9470 (2006). A study demonstrating that JNK activity is important for axonal growth.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Qu, C. et al. c-Jun N-terminal kinase 1 (JNK1) is required for coordination of netrin signaling in axon guidance. J. Biol. Chem. 288, 1883–1895 (2013).

    CAS  PubMed  Google Scholar 

  93. Shafer, B., Onishi, K., Lo, C., Colakoglu, G. & Zou, Y. Vangl2 promotes Wnt/planar cell polarity-like signaling by antagonizing Dvl1-mediated feedback inhibition in growth cone guidance. Dev. Cell 20, 177–191 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Lai Wing Sun, K., Correia, J. P. & Kennedy, T. E. Netrins: versatile extracellular cues with diverse functions. Development 138, 2153–2169 (2011).

    PubMed  Google Scholar 

  95. Ben-Zvi, A. et al. Semaphorin 3A and neurotrophins: a balance between apoptosis and survival signaling in embryonic DRG neurons. J. Neurochem. 96, 585–597 (2006). This report shows that JNK is activated by the guidance molecule semaphorin 3A.

    CAS  PubMed  Google Scholar 

  96. Ha, H. Y. et al. The axon guidance defect of the telencephalic commissures of the JSAP1-deficient brain was partially rescued by the transgenic expression of JIP1. Dev. Biol. 277, 184–199 (2005). A study showing that axonal commissure development and midline crossing is impaired in mice lacking the JNK scaffold protein JIP3 (also known as JSAP1). Consistent with JNK activity being central, phosphorylated JNK immunoreactivity is reduced in the brains of these animals.

    CAS  PubMed  Google Scholar 

  97. Xu, P., Das, M., Reilly, J. & Davis, R. J. JNK regulates FoxO-dependent autophagy in neurons. Genes Dev. 25, 310–322 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Rosso, S. B., Sussman, D., Wynshaw-Boris, A. & Salinas, P. C. Wnt signaling through Dishevelled, Rac and JNK regulates dendritic development. Nature Neurosci. 8, 34–42 (2005).

    CAS  PubMed  Google Scholar 

  99. Marín, O., Valiente, M., Ge, X. & Tsai, L. H. Guiding neuronal cell migrations. Cold Spring Harb. Perspect. Biol. 2, a001834 (2010).

    PubMed  PubMed Central  Google Scholar 

  100. LoTurco, J. J. & Bai, J. The multipolar stage and disruptions in neuronal migration. Trends Neurosci. 29, 407–413 (2006).

    CAS  PubMed  Google Scholar 

  101. Kawauchi, T., Chihama, K., Nabeshima, Y. & Hoshino, M. The in vivo roles of STEF/Tiam1, Rac1 and JNK in cortical neuronal migration. EMBO J. 22, 4190–4201 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Mizuno, N. et al. G protein-coupled receptor signaling through Gq and JNK negatively regulates neural progenitor cell migration. Proc. Natl Acad. Sci. USA 102, 12365–12370 (2005).

    CAS  PubMed  Google Scholar 

  103. Chi, H., Sarkisian, M. R., Rakic, P. & Flavell, R. A. Loss of mitogen-activated protein kinase kinase kinase 4 (MEKK4) results in enhanced apoptosis and defective neural tube development. Proc. Natl Acad. Sci. USA 102, 3846–3851 (2005).

    CAS  PubMed  Google Scholar 

  104. Sarkisian, M. R. et al. MEKK4 signaling regulates filamin expression and neuronal migration. Neuron 52, 789–801 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Hirai, S. et al. The c-Jun N-terminal kinase activator dual leucine zipper kinase regulates axon growth and neuronal migration in the developing cerebral cortex. J. Neurosci. 26, 11992–12002 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Mazzitelli, S., Xu, P., Ferrer, I., Davis, R. J. & Tournier, C. The loss of c-Jun N-terminal protein kinase activity prevents the amyloidogenic cleavage of amyloid precursor protein and the formation of amyloid plaques in vivo. J. Neurosci. 31, 16969–16976 (2011). The study validates that JNK activity contributes to the formation of amyloid plaques in vivo using mice with targeted deletion of Mkk4 and Mkk7 in the nervous system.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Mukherjee, P. K., DeCoster, M. A., Campbell, F. Z., Davis, R. J. & Bazan, N. G. Glutamate receptor signaling interplay modulates stress-sensitive mitogen-activated protein kinases and neuronal cell death. J. Biol. Chem. 274, 6493–6498 (1999). A study demonstrating, for the first time, that JNK is activated by NMDA.

    CAS  PubMed  Google Scholar 

  108. Borsello, T. et al. A peptide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia. Nature Med. 9, 1180–1186 (2003). A study showing profound protection in a stroke model upon (post-insult) treatment with D-JNKI-1, a peptide inhibitor of JNK.

    CAS  PubMed  Google Scholar 

  109. Kennedy, N. J. et al. Requirement of JIP scaffold proteins for NMDA-mediated signal transduction. Genes Dev. 21, 2336–2346 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Yang, H., Courtney, M. J., Martinsson, P. & Manahan-Vaughan, D. Hippocampal long-term depression is enhanced, depotentiation is inhibited and long-term potentiation is unaffected by the application of a selective c-Jun N-terminal kinase inhibitor to freely behaving rats. Eur. J. Neurosci. 33, 1647–1655 (2011).

    PubMed  Google Scholar 

  111. Elias, G. M. & Nicoll, R. A. Synaptic trafficking of glutamate receptors by MAGUK scaffolding proteins. Trends Cell Biol. 17, 343–352 (2007).

    CAS  PubMed  Google Scholar 

  112. Li, X. M. et al. JNK1 contributes to metabotropic glutamate receptor-dependent long-term depression and short-term synaptic plasticity in the mice area hippocampal CA1. Eur. J. Neurosci. 25, 391–396 (2007).

    PubMed  Google Scholar 

  113. Migaud, M. et al. Enhanced long-term potentiation and impaired learning in mice with mutant postsynaptic density-95 protein. Nature 396, 433–439 (1998).

    CAS  PubMed  Google Scholar 

  114. Mauna, J. C., Miyamae, T., Pulli, B. & Thiels, E. Protein phosphatases 1 and 2A are both required for long-term depression and associated dephosphorylation of cAMP response element binding protein in hippocampal area CA1 in vivo. Hippocampus 21, 1093–1104 (2011).

    CAS  PubMed  Google Scholar 

  115. Sherrin, T., Blank, T. & Todorovic, C. c-Jun N-terminal kinases in memory and synaptic plasticity. Rev. Neurosci. 22, 403–410 (2011).

    CAS  PubMed  Google Scholar 

  116. Bowman, A. B. et al. Kinesin-dependent axonal transport is mediated by the sunday driver (SYD). Cell 103, 583–594 (2000).

    CAS  PubMed  Google Scholar 

  117. Verhey, K. J. et al. Cargo of kinesin identified as JIP scaffolding proteins and associated signaling. J. Cell Biol. 152, 959–970 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Byrd, D. T. et al. UNC-16, a JNK-signaling scaffold protein, regulates vesicle transport in C. elegans. Neuron 32, 787–800 (2001).

    CAS  PubMed  Google Scholar 

  119. Whitmarsh, A. J. et al. Requirement of the JIP1 scaffold protein for stress-induced JNK activation. Genes Dev. 15, 2421–2432 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Fu, M. M. & Holzbaur, E. L. JIP1 regulates the directionality of APP axonal transport by coordinating kinesin and dynein motors. J. Cell Biol. 202, 495–508 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Morfini, G. A. et al. Pathogenic huntingtin inhibits fast axonal transport by activating JNK3 and phosphorylating kinesin. Nature Neurosci. 12, 864–871 (2009).

    CAS  PubMed  Google Scholar 

  122. Manning, A. M. & Davis, R. J. Targeting JNK for therapeutic benefit: from junk to gold? Nature Rev. Drug Discov. 2, 554–565 (2003).

    CAS  Google Scholar 

  123. Morishima, Y. et al. β-amyloid induces neuronal apoptosis via a mechanism that involves the c-Jun. J. Neurosci. 21, 7551–7560 (2001).

    CAS  PubMed  Google Scholar 

  124. Keramaris, E. et al. c-Jun N-terminal kinase 3 deficiency protects neurons from axotomy-induced death in vivo through mechanisms independent of c-Jun phosphorylation. J. Biol. Chem. 280, 1132–1141 (2005).

    CAS  PubMed  Google Scholar 

  125. Shin, J. E. et al. SCG10 is a JNK target in the axonal degeneration pathway. Proc. Natl Acad. Sci. USA 109, E3696–E3705 (2012).

    CAS  PubMed  Google Scholar 

  126. Graczyk, P. P. JNK inhibitors as anti-inflammatory and neuroprotective agents. Future Med. Chem. 5, 539–551 (2013).

    CAS  PubMed  Google Scholar 

  127. Nijboer, C. H., Bonestroo, H. J., Zijlstra, J., Kavelaars, A. & Heijnen, C. J. Mitochondrial JNK phosphorylation as a novel therapeutic target to inhibit neuroinflammation and apoptosis after neonatal ischemic brain damage. Neurobiol. Dis. 54, 432–444 (2013).

    CAS  PubMed  Google Scholar 

  128. Dirnagl, U., Iadecola, C. & Moskowitz, M. A. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 22, 391–397 (1999).

    CAS  PubMed  Google Scholar 

  129. Okazawa, H. & Estus, S. The JNK/c-Jun cascade and Alzheimer's disease. Am. J. Alzheimers Dis. Other Demen. 17, 79–88 (2002).

    PubMed  Google Scholar 

  130. Schwarzschild, M. A., Cole, R. L. & Hyman, S. E. Glutamate, but not dopamine, stimulates stress-activated protein kinase and AP-1-mediated transcription in striatal neurons. J. Neurosci. 17, 3455–3466 (1997).

    CAS  PubMed  Google Scholar 

  131. Zhu, Y. et al. Rap2-JNK removes synaptic AMPA receptors during depotentiation. Neuron 46, 905–916 (2005).

    CAS  PubMed  Google Scholar 

  132. Bogoyevitch, M. A., Ngoei, K. R., Zhao, T. T., Yeap, Y. Y. & Ng, D. C. c-Jun N-terminal kinase (JNK) signaling: recent advances and challenges. Biochim. Biophys. Acta 1804, 463–475 (2010).

    CAS  PubMed  Google Scholar 

  133. Sugino, T. et al. Activation of mitogen-activated protein kinases after transient forebrain ischemia in gerbil hippocampus. J. Neurosci. 20, 4506–4514 (2000).

    CAS  PubMed  Google Scholar 

  134. Hirt, L. et al. D-JNKI1, a cell-penetrating c-Jun-N-terminal kinase inhibitor, protects against cell death in severe cerebral ischemia. Stroke 35, 1738–1743 (2004).

    CAS  PubMed  Google Scholar 

  135. Pirianov, G. et al. Deletion of the c-Jun N-terminal kinase 3 gene protects neonatal mice against cerebral hypoxic-ischaemic injury. J. Cereb. Blood Flow Metab. 27, 1022–1032 (2007).

    CAS  PubMed  Google Scholar 

  136. Jeon, S. H., Kim, Y. S., Bae, C. D. & Park, J. B. Activation of JNK and p38 in rat hippocampus after kainic acid induced seizure. Exp. Mol. Med. 32, 227–230 (2000).

    CAS  PubMed  Google Scholar 

  137. Spigolon, G., Veronesi, C., Bonny, C. & Vercelli, A. c-Jun N-terminal kinase signaling pathway in excitotoxic cell death following kainic acid-induced status epilepticus. Eur. J. Neurosci. 31, 1261–1272 (2010).

    PubMed  Google Scholar 

  138. Miao, B., Yin, X. H., Pei, D. S., Zhang, Q. G. & Zhang, G. Y. Neuroprotective effects of preconditioning ischemia on ischemic brain injury through down-regulating activation of JNK1/2 via N-methyl-D-aspartate receptor-mediated Akt1 activation. J. Biol. Chem. 280, 21693–21699 (2005).

    CAS  PubMed  Google Scholar 

  139. Navon, H., Bromberg, Y., Sperling, O. & Shani, E. Neuroprotection by NMDA preconditioning against glutamate cytotoxicity is mediated through activation of ERK 1/2, inactivation of JNK, and by prevention of glutamate-induced CREB inactivation. J. Mol. Neurosci. 46, 100–108 (2012).

    CAS  PubMed  Google Scholar 

  140. Trojanowski, J. Q. & Lee, V. M. Rous-Whipple Award Lecture. The Alzheimer's brain: finding out what's broken tells us how to fix it. Am. J. Pathol. 167, 1183–1188 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Ferrer, I., Blanco, R., Carmona, M. & Puig, B. Phosphorylated mitogen-activated protein kinase (MAPK/ERK-P), protein kinase of 38 kDa (p38-P), stress-activated protein kinase (SAPK/JNK-P), and calcium/calmodulin-dependent kinase II (CaM kinase II) are differentially expressed in tau deposits in neurons and glial cells in tauopathies. J. Neural Transm. 108, 1397–1415 (2001). An important study showing increased JNK activity in post-mortem brains from individuals with Alzheimer's or Parkinson's disease.

    CAS  PubMed  Google Scholar 

  142. Ferrer, I. et al. Active, phosphorylation-dependent MAP kinases, MAPK/ERK, SAPK/JNK and p38, and specific transcription factor substrates are differentially expressed following systemic administration of kainic acid to the adult rat. Acta Neuropathol. 103, 391–407 (2002).

    CAS  PubMed  Google Scholar 

  143. Yoon, S. O. et al. JNK3 perpetuates metabolic stress induced by Aβ peptides. Neuron 75, 824–837 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Reynolds, C. H., Utton, M. A., Gibb, G. M., Yates, A. & Anderton, B. H. Stress-activated protein kinase/c-jun N-terminal kinase phosphorylates tau protein. J. Neurochem. 68, 1736–1744 (1997).

    CAS  PubMed  Google Scholar 

  145. Reynolds, C. H., Betts, J. C., Blackstock, W. P., Nebreda, A. R. & Anderton, B. H. Phosphorylation sites on tau identified by nanoelectrospray mass spectrometry: differences in vitro between the mitogen-activated protein kinases ERK2, c-Jun N-terminal kinase and P38, and glycogen synthase kinase-3β. J. Neurochem. 74, 1587–1595 (2000).

    CAS  PubMed  Google Scholar 

  146. Savage, M. J., Lin, Y. G., Ciallella, J. R., Flood, D. G. & Scott, R. W. Activation of c-Jun N-terminal kinase and p38 in an Alzheimer's disease model is associated with amyloid deposition. J. Neurosci. 22, 3376–3385 (2002).

    CAS  PubMed  Google Scholar 

  147. Hwang, D. Y. et al. Aberrant expressions of pathogenic phenotype in Alzheimer's diseased transgenic mice carrying NSE-controlled APPsw. Exp. Neurol. 186, 20–32 (2004).

    CAS  PubMed  Google Scholar 

  148. Braithwaite, S. P. et al. Inhibition of c-Jun kinase provides neuroprotection in a model of Alzheimer's disease. Neurobiol. Dis. 39, 311–317 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Sclip, A. et al. c-Jun N-terminal kinase regulates soluble Aβ oligomers and cognitive impairment in AD mouse model. J. Biol. Chem. 286, 43871–43880 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Standen, C. L. et al. Phosphorylation of thr668 in the cytoplasmic domain of the Alzheimer's disease amyloid precursor protein by stress-activated protein kinase 1b (Jun N-terminal kinase-3). J. Neurochem. 76, 316–320 (2001).

    CAS  PubMed  Google Scholar 

  151. Lee, M. S. et al. APP processing is regulated by cytoplasmic phosphorylation. J. Cell Biol. 163, 83–95 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Yoshida, H., Hastie, C. J., McLauchlan, H., Cohen, P. & Goedert, M. Phosphorylation of microtubule-associated protein tau by isoforms of c-Jun N-terminal kinase (JNK). J. Neurochem. 90, 352–358 (2004).

    CAS  PubMed  Google Scholar 

  153. Ferrer, I. et al. Tau phosphorylation and kinase activation in familial tauopathy linked to deln296 mutation. Neuropathol. Appl. Neurobiol. 29, 23–34 (2003).

    CAS  PubMed  Google Scholar 

  154. Tran, H. T., Sanchez, L. & Brody, D. L. Inhibition of JNK by a peptide inhibitor reduces traumatic brain injury-induced tauopathy in transgenic mice. J. Neuropathol. Exp. Neurol. 71, 116–129 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Saporito, M. S., Brown, E. M., Miller, M. S. & Carswell, S. CEP-1347/KT-7515, an inhibitor of c-jun N-terminal kinase activation, attenuates the 1-methyl-4-phenyl tetrahydropyridine-mediated loss of nigrostriatal dopaminergic neurons in vivo. J. Pharmacol. Exp. Ther. 288, 421–427 (1999).

    CAS  PubMed  Google Scholar 

  156. Wang, G., Pan, J. & Chen, S. D. Kinases and kinase signaling pathways: potential therapeutic targets in Parkinson's disease. Prog. Neurobiol. 98, 207–221 (2012).

    CAS  PubMed  Google Scholar 

  157. Sweeney, Z. K. & Lewcock, J. W. ACS Chemical Neuroscience spotlight on CEP-1347. ACS Chem. Neurosci. 2, 3–4 (2011).

    CAS  PubMed  Google Scholar 

  158. Liu, Y. F. Expression of polyglutamine-expanded Huntingtin activates the SEK1-JNK pathway and induces apoptosis in a hippocampal neuronal cell line. J. Biol. Chem. 273, 28873–28877 (1998).

    CAS  PubMed  Google Scholar 

  159. McCarthy, S. E. et al. Microduplications of 16p11.2 are associated with schizophrenia. Nature Genet. 41, 1223–1227 (2009).

    CAS  PubMed  Google Scholar 

  160. Pavlowsky, A. et al. A postsynaptic signaling pathway that may account for the cognitive defect due to IL1RAPL1 mutation. Curr. Biol. 20, 103–115 (2010).

    CAS  PubMed  Google Scholar 

  161. Bennett, B. L. et al. SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc. Natl Acad. Sci. USA 98, 13681–13686 (2001).

    CAS  PubMed  Google Scholar 

  162. Guan, Q. H. et al. Neuroprotection against ischemic brain injury by SP600125 via suppressing the extrinsic and intrinsic pathways of apoptosis. Brain Res. 1092, 36–46 (2006).

    CAS  PubMed  Google Scholar 

  163. Yoshimura, K. et al. c-Jun N-terminal kinase induces axonal degeneration and limits motor recovery after spinal cord injury in mice. Neurosci. Res. 71, 266–277 (2011).

    CAS  PubMed  Google Scholar 

  164. Bain, J., McLauchlan, H., Elliott, M. & Cohen, P. The specificities of protein kinase inhibitors: an update. Biochem. J. 371, 199–204 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Murata, Y. et al. Delayed inhibition of c-Jun N-terminal kinase worsens outcomes after focal cerebral ischemia. J. Neurosci. 32, 8112–8115 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Bowers, S. et al. Design and synthesis of brain penetrant selective JNK inhibitors with improved pharmacokinetic properties for the prevention of neurodegeneration. Bioorg. Med. Chem. Lett. 21, 5521–5527 (2011).

    CAS  PubMed  Google Scholar 

  167. Probst, G. D. et al. Highly selective c-Jun N-terminal kinase (JNK) 2 and 3 inhibitors with in vitro CNS-like pharmacokinetic properties prevent neurodegeneration. Bioorg. Med. Chem. Lett. 21, 315–319 (2011).

    CAS  PubMed  Google Scholar 

  168. Hom, R. K. et al. Design and synthesis of disubstituted thiophene and thiazole based inhibitors of JNK. Bioorg. Med. Chem. Lett. 20, 7303–7307 (2010).

    CAS  PubMed  Google Scholar 

  169. Kamenecka, T. et al. Synthesis, biological evaluation, X-ray structure, and pharmacokinetics of aminopyrimidine c-jun-N-terminal kinase (JNK) inhibitors. J. Med. Chem. 53, 419–431 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Noël, R. et al. Synthesis and SAR of 4-(pyrazol-3-yl)-pyridines as novel c-jun N-terminal kinase inhibitors. Bioorg. Med. Chem. Lett. 21, 2732–2735 (2011).

    PubMed  Google Scholar 

  171. Jiang, R. et al. Design and synthesis of 1-aryl-5-anilinoindazoles as c-Jun N-terminal kinase inhibitors. Bioorg. Med. Chem. Lett. 23, 2683–2687 (2013).

    CAS  PubMed  Google Scholar 

  172. Bonny, C. Blocking stress signaling pathways with cell permeable peptides. Adv. Exp. Med. Biol. 588, 133–143 (2006).

    PubMed  Google Scholar 

  173. Wiegler, K., Bonny, C., Coquoz, D. & Hirt, L. The JNK inhibitor XG-102 protects from ischemic damage with delayed intravenous administration also in the presence of recombinant tissue plasminogen activator. Cerebrovasc. Dis. 26, 360–366 (2008).

    CAS  PubMed  Google Scholar 

  174. Charalampopoulos, I. et al. Genetic dissection of neurotrophin signaling through the p75 neurotrophin receptor. Cell Rep. 2, 1563–1570 (2012). This study demonstrates that JNK activity must be blocked in the nucleus in order to prevent caspase 3 activation and neuronal death in response to p75 neurotrophin receptor signalling. Blocking JNK activity in the cytoplasm did not confer protection.

    CAS  PubMed  Google Scholar 

  175. Repici, M. et al. Time-course of c-Jun N-terminal kinase activation after cerebral ischemia and effect of D-JNKI1 on c-Jun and caspase-3 activation. Neuroscience 150, 40–49 (2007).

    CAS  PubMed  Google Scholar 

  176. Chambers, J. W., Cherry, L., Laughlin, J. D., Figuera-Losada, M. & Lograsso, P. V. Selective inhibition of mitochondrial JNK signaling achieved using peptide mimicry of the Sab kinase interacting motif-1 (KIM1). ACS Chem. Biol. 6, 808–818 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Tünnemann, G. et al. Cargo-dependent mode of uptake and bioavailability of TAT-containing proteins and peptides in living cells. FASEB J. 20, 1775–1784 (2006).

    PubMed  Google Scholar 

  178. Hirai, S. et al. MAPK-upstream protein kinase (MUK) regulates the radial migration of immature neurons in telencephalon of mouse embryo. Development 129, 4483–4495 (2002).

    CAS  PubMed  Google Scholar 

  179. Song, S. et al. Essential role of E2-25K/Hip-2 in mediating amyloid-β neurotoxicity. Mol. Cell 12, 553–563 (2003).

    CAS  PubMed  Google Scholar 

  180. Zhang, L. et al. A role for MEK kinase 1 in TGF-β/activin-induced epithelium movement and embryonic eyelid closure. EMBO J. 22, 4443–4454 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Kawabe, H. et al. Regulation of Rap2A by the ubiquitin ligase Nedd4-1 controls neurite development. Neuron 65, 358–372 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Hirai, S., Banba, Y., Satake, T. & Ohno, S. Axon formation in neocortical neurons depends on stage-specific regulation of microtubule stability by the dual leucine zipper kinase-c-Jun N-terminal kinase pathway. J. Neurosci. 31, 6468–6480 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Suh, L. H., Oster, S. F., Soehrman, S. S., Grenningloh, G. & Sretavan, D. W. L1/Laminin modulation of growth cone response to EphB triggers growth pauses and regulates the microtubule destabilizing protein SCG10. J. Neurosci. 24, 1976–1986 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Jeanneteau, F., Deinhardt, K., Miyoshi, G., Bennett, A. M. & Chao, M. V. The MAP kinase phosphatase MKP-1 regulates BDNF-induced axon branching. Nature Neurosci. 13, 1373–1379 (2010).

    CAS  PubMed  Google Scholar 

  185. Wang, X. et al. Targeted deletion of the mitogen-activated protein kinase kinase 4 gene in the nervous system causes severe brain developmental defects and premature death. Mol. Cell. Biol. 27, 7935–7946 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Dong, C. et al. Defective T cell differentiation in the absence of Jnk1. Science 282, 2092–2095 (1998).

    CAS  PubMed  Google Scholar 

  187. Manassero, G. et al. Role of JNK isoforms in the development of neuropathic pain following sciatic nerve transection in the mouse. Mol. Pain 8, 39 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Reinecke, K., Herdegen, T., Eminel, S., Aldenhoff, J. B. & Schiffelholz, T. Knockout of c-Jun N-terminal kinases 1, 2 or 3 isoforms induces behavioural changes. Behav. Brain Res. 245, 88–95 (2013).

    CAS  PubMed  Google Scholar 

  189. Yang, D. D. et al. Differentiation of CD4+ T cells to Th1 cells requires MAP kinase JNK2. Immunity 9, 575–585 (1998).

    CAS  PubMed  Google Scholar 

  190. Hunot, S. et al. JNK-mediated induction of cyclooxygenase 2 is required for neurodegeneration in a mouse model of Parkinson's disease. Proc. Natl Acad. Sci. USA 101, 665–670 (2004).

    CAS  PubMed  Google Scholar 

  191. Sherrin, T. et al. Hippocampal c-Jun-N-terminal kinases serve as negative regulators of associative learning. J. Neurosci. 30, 13348–13361 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Inoue, A. et al. Forgetting in C. elegans is accelerated by neuronal communication via the TIR-1/JNK-1 pathway. Cell Rep. 3, 808–819 (2013).

    CAS  PubMed  Google Scholar 

  193. Villanueva, A. et al. jkk-1 and mek-1 regulate body movement coordination and response to heavy metals through jnk-1 in Caenorhabditis elegans. EMBO J. 20, 5114–5128 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author thanks D. Flinkman and P. James for critically reading the manuscript. This research was supported by Åbo Akademi University and the Academy of Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleanor T. Coffey.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

FURTHER INFORMATION

HMS LINCS Database

PowerPoint slides

Supplementary information

Supplementary information S1 (table)

List of identified JNK substrates. (PDF 134 kb)

Supplementary information S2 (figure)

JNK-targeted therapeutic strategies. (PDF 130 kb)

Glossary

Fluorescence resonance energy transfer sensors

(FRET sensors). Fluorescence resonance energy transfer reporters that detect protein–protein interactions. Here, I refer to a tandem FRET sensor, which transfers light energy of a particular wavelength emitted by a donor fluorophore to an acceptor fluorophore to yield a FRET response that can be harnessed to provide spatiotemporal information on various functional readouts in living cells (for example, kinase activity).

Arborization

A term used to describe the branching or ramification of dendrites.

Excitotoxicity

A type of pathological neuronal death that results from excessive stimulation of glutamate receptors.

AP1

(Activating protein1). AP1 is a transcription factor dimer comprising proteins belonging to JUN, ATF or FOS families.

Exencephaly

A developmental defect in which the brain extrudes outside the skull.

Neurulation

A process during early development of the CNS in which the neural plate is formed. It is followed by neural plate closure and formation of the neural tube.

Commissures

Bundles of nerve fibres that connect the two cerebral hemispheres.

Pial surface

The outer surface of the brain that creates the boundary between the grey matter and the cerebrospinal fluid.

JNK-binding domain

(JBD). JBD is a protein domain found in JUN-amino-terminal kinase (JNK)-interacting protein 1 (JIP1) that competes with JNK for substrate binding and therefore acts as a competitive, non-catalytic site inhibitor.

Radial migration

Newborn glutamatergic neurons of the mammalian neocortex move long distances in synchronized cohorts to produce the six precisely arranged cortical layers. This particular type of neuronal migration is guided by radial glial scaffolds, hence the term radial migration.

Curly-tail phenotypes

This describes the phenotype found in mouse in which the spinal neural tube has failed to close.

Long-term depression

(LTD). A reduction of synaptic strength after application of a long-term, low-intensity stimulus.

Long-term potentiation

(LTP). An increase in synaptic strength after application of a strong tetanus.

Ischaemic preconditioning

This term refers to the protection rendered by exposure to sequential periods of sublethal ischaemia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coffey, E. Nuclear and cytosolic JNK signalling in neurons. Nat Rev Neurosci 15, 285–299 (2014). https://doi.org/10.1038/nrn3729

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3729

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing