Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Iron metabolism in the CNS: implications for neurodegenerative diseases

Key Points

  • Iron homeostasis in the CNS operates in parallel with systemic iron homeostasis, because iron must cross the blood–brain barrier or blood–cerebrospinal fluid barrier to enter the CNS.

  • Oligodendrocytes within the CNS synthesize transferrin, and most CNS cells acquire iron through transferrin receptor 1 in concert with the iron transporter divalent metal transporter 1 (DMT1).

  • Neurons in the globus pallidus are unusually rich in ferritin and iron, containing iron at levels comparable to those in the liver, the systemic iron repository.

  • In the CNS, astrocytes depend on glycosyl phosphatidylinisotol (GPI)-linked ceruloplasmin generated by alternative splicing to facilitate iron export by ferroportin.

  • MRI has revolutionized neurological diagnostics by detecting specific regional iron overload in the brains of patients with movement disorders and thereby characterizing rare types of specific inherited diseases.

  • Thus far, nine neurodegeneration with brain iron accumulation (NBIA) disease genes have been identified, two of which are caused by mutations in known iron metabolism proteins that result in aceruloplasminaemia and neuroferritinopathy.

  • Identification of other NBIA disease genes has not yet led to recognition of a common pathogenic pathway, but recent studies have shown defects of mitochondrial cristae in models of two of the most common diseases, pantothenate kinase-associated neurodegeneration (PKAN) and phospholipase A2, group VI (PLA2G6)-associated neurodegeneration (PLAN), suggesting that defective cardiolipin synthesis or maintenance may be a common feature.

  • Perivascular iron accumulation and astrocytic iron overload have been described in PKAN and mitochondrial membrane-associated neurodegeneration (MPAN), raising the possibility that astrocytic chemosensing of metabolic distress from diseased brain regions may convey signals to the blood–brain barrier, which cause increased uptake of nutrients such as iron as part of a regulatory response designed to counteract energy failure in dying neurons.

  • Iron chelators have been used successfully to prevent retinal degeneration in ferroxidase-deficient mice, but in some diseases, neurons may die from iron deficiency rather than iron overload, and the iron overload noted in some diseases may be attributable to activation and influx of microglia into the area of neurodegeneration.

Abstract

Abnormal accumulation of brain iron has been detected in various neurodegenerative diseases, but the contribution of iron overload to pathology remains unclear. In a group of distinctive brain iron overload diseases known as 'neurodegeneration with brain iron accumulation' (NBIA) diseases, nine disease genes have been identified. Brain iron accumulation is observed in the globus pallidus and other brain regions in NBIA diseases, which are often associated with severe dystonia and gait abnormalities. Only two of these diseases, aceruloplasminaemia and neuroferritinopathy, are directly caused by abnormalities in iron metabolism, mainly in astrocytes and neurons, respectively. Understanding the early molecular pathophysiology of these diseases should aid insights into the role of iron and the design of specific therapeutic approaches.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cellular iron metabolism and transport in mammalian cells.
Figure 2: The proteinaceous ferritin shell is porous in neuroferritinopathy.
Figure 3: MRI, pathology and potential molecular basis of PKAN.
Figure 4: Potential effects of PANK2 and PLA2G6 mutations on mitochondria.
Figure 5: MRI detection of iron — is iron accumulation a cause or consequence of disease?

Similar content being viewed by others

References

  1. Duyn, J. H. Study of brain anatomy with high-field MRI: recent progress. Magn. Reson. Imaging 28, 1210–1215 (2010). This review discusses the rapid evolution of MRI since the technique was introduced three decades ago. Tissue iron composition is important because of its paramagnetic effects and contribution to high-resolution imaging.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sian-Hulsmann, J., Mandel, S., Youdim, M. B. & Riederer, P. The relevance of iron in the pathogenesis of Parkinson's disease. J. Neurochem. 118, 939–957 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Weinreb, O., Amit, T., Mandel, S., Kupershmidt, L. & Youdim, M. B. Neuroprotective multifunctional iron chelators: from redox-sensitive process to novel therapeutic opportunities. Antioxid. Redox Signal. 13, 919–949 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Boddaert, N. et al. Selective iron chelation in Friedreich ataxia: biologic and clinical implications. Blood 110, 401–408 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Gröger, A. & Berg, D. Does structural neuroimaging reveal a disturbance of iron metabolism in Parkinson's disease? Implications from MRI and TCS studies. J. Neural Transm. 119, 1523–1528 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Fuqua, B. K., Vulpe, C. D. & Anderson, G. J. Intestinal iron absorption. J. Trace Elem. Med. Biol. 26, 115–119 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Steere, A. N., Byrne, S. L., Chasteen, N. D. & Mason, A. B. Kinetics of iron release from transferrin bound to the transferrin receptor at endosomal pH. Biochim. Biophys. Acta 1820, 326–333 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Ganz, T. & Nemeth, E. Hepcidin and iron homeostasis. Biochim. Biophys. Acta 1823, 1434–1443 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mastrogiannaki, M. et al. HIF-2α, but not HIF-1α, promotes iron absorption in mice. J. Clin. Invest. 119, 1159–1166 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lambe, T. et al. Identification of a Steap3 endosomal targeting motif essential for normal iron metabolism. Blood 113, 1805–1808 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Philpott, C. C. Coming into view: eukaryotic iron chaperones and intracellular iron delivery. J. Biol. Chem. 287, 13518–13523 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen, W. et al. Abcb10 physically interacts with mitoferrin-1 (Slc25a37) to enhance its stability and function in the erythroid mitochondria. Proc. Natl Acad. Sci. USA 106, 16263–16268 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Arosio, P., Ingrassia, R. & Cavadini, P. Ferritins: a family of molecules for iron storage, antioxidation and more. Biochim. Biophys. Acta 1790, 589–599 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Cohen, L. A. et al. Serum ferritin is derived primarily from macrophages through a nonclassical secretory pathway. Blood 116, 1574–1584 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. De Domenico, I. et al. Ferroportin-mediated mobilization of ferritin iron precedes ferritin degradation by the proteasome. EMBO J. 25, 5396–5404 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Brightman, M. W., Klatzo, I., Olsson, Y. & Reese, T. S. The blood–brain barrier to proteins under normal and pathological conditions. J. Neurol. Sci. 10, 215–239 (1970).

    Article  CAS  PubMed  Google Scholar 

  17. Bradbury, M. W. Transport of iron in the blood–brain–cerebrospinal fluid system. J. Neurochem. 69, 443–454 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Ballabh, P., Braun, A. & Nedergaard, M. The blood– brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol. Dis. 16, 1–13 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Moos, T. Brain iron homeostasis. Dan. Med. Bull. 49, 279–301 (2002).

    CAS  PubMed  Google Scholar 

  20. Wu, L. J. et al. Expression of the iron transporter ferroportin in synaptic vesicles and the blood–brain barrier. Brain Res. 1001, 108–117 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. McCarthy, R. C. & Kosman, D. J. Ferroportin and exocytoplasmic ferroxidase activity are required for brain microvascular endothelial cell iron efflux. J. Biol. Chem. 288, 17932–17940 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Moos, T., Rosengren Nielsen, T., Skjorringe, T. & Morgan, E. H. Iron trafficking inside the brain. J. Neurochem. 103, 1730–1740 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Kono, S. Aceruloplasminemia. Curr. Drug Targets 13, 1190–1199 (2012). An updated review of aceruloplasminaemia, covering pathophysiology and clinical presentation.

    Article  CAS  PubMed  Google Scholar 

  24. Tian, H., McKnight, S. L. & Russell, D. W. Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev. 11, 72–82 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Majmundar, A. J., Wong, W. J. & Simon, M. C. Hypoxia-inducible factors and the response to hypoxic stress. Mol. Cell 40, 294–309 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Verkhratsky, A. et al. Neurological diseases as primary gliopathies: a reassessment of neurocentrism. ASN Neuro 4, e00082 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zakin, M. M., Baron, B. & Guillou, F. Regulation of the tissue-specific expression of transferrin gene. Dev. Neurosci. 24, 222–226 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Rouault, T. A. & Cooperman, S. Brain iron metabolism. Semin. Pediatr. Neurol. 13, 142–148 (2006).

    Article  PubMed  Google Scholar 

  29. Rouault, T. A. The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nature Chem. Biol. 2, 406–414 (2006).

    Article  CAS  Google Scholar 

  30. Connor, J. R., Menzies, S. L., St Martin, S. M. & Mufson, E. J. Cellular distribution of transferrin, ferritin, and iron in normal and aged human brains. J. Neurosci. Res. 27, 595–611 (1990).

    Article  CAS  PubMed  Google Scholar 

  31. Todorich, B., Zhang, X. & Connor, J. R. H-ferritin is the major source of iron for oligodendrocytes. Glia 59, 927–935 (2011).

    Article  PubMed  Google Scholar 

  32. Hadziahmetovic, M. et al. Ceruloplasmin/hephaestin knockout mice model morphologic and molecular features of AMD. Invest. Ophthalmol. Vis. Sci. 49, 2728–2736 (2008).

    Article  PubMed  Google Scholar 

  33. Paradowski, M., Lobos, M., Kuydowicz, J., Krakowiak, M. & Kubasiewicz-Ujma, B. Acute phase proteins in serum and cerebrospinal fluid in the course of bacterial meningitis. Clin. Biochem. 28, 459–466 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Jeong, S. Y. & David, S. Glycosylphosphatidylinositol-anchored ceruloplasmin is required for iron efflux from cells in the central nervous system. J. Biol. Chem. 278, 27144–27148 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Hentze, M. W., Muckenthaler, M. U., Galy, B. & Camaschella, C. Two to tango: regulation of mammalian iron metabolism. Cell 142, 24–38 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Anderson, C. P., Shen, M., Eisenstein, R. S. & Leibold, E. A. Mammalian iron metabolism and its control by iron regulatory proteins. Biochim. Biophys. Acta 1823, 1468–1483 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Meyron-Holtz, E. G. et al. Genetic ablations of iron regulatory proteins 1 and 2 reveal why iron regulatory protein 2 dominates iron homeostasis. EMBO J. 23, 386–395 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ruiz, J. C., Walker, S. D., Anderson, S. A., Eisenstein, R. S. & Bruick, R. K. F-box and leucine-rich repeat protein 5 (FBXL5) is required for maintenance of cellular and systemic iron homeostasis. J. Biol. Chem. 288, 552–560 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schulz, K., Vulpe, C. D., Harris, L. Z. & David, S. Iron efflux from oligodendrocytes is differentially regulated in gray and white matter. J. Neurosci. 31, 13301–13311 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hallgren, B. & Sourander, P. The effect of age on the non-haemin iron in the human brain. J. Neurochem. 3, 41–51 (1958).

    Article  CAS  PubMed  Google Scholar 

  41. Hill, J. M. & Switzer, R. C. The regional distribution and cellular localization of iron in the rat brain. Neuroscience 11, 595–603 (1984).

    Article  CAS  PubMed  Google Scholar 

  42. Koeppen, A. H. The history of iron in the brain. J. Neurol. Sci. 134 (Suppl.), 1–9 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. Gelman, N. et al. MR imaging of human brain at 3.0 T: preliminary report on transverse relaxation rates and relation to estimated iron content. Radiology 210, 759–767 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Koeppen, A. H. A brief history of brain iron research. J. Neurol. Sci. 207, 95–97 (2003).

    Article  PubMed  Google Scholar 

  45. Zecca, L., Youdim, M. B., Riederer, P., Connor, J. R. & Crichton, R. R. Iron, brain ageing and neurodegenerative disorders. Nature Rev. Neurosci. 5, 863–873 (2004). This review discusses the role of iron overload in the pathogenesis of Parkinson's disease and Alzheimer's disease through a proposed oxidative stress pathway, and discusses the potential benefits of iron chelator therapy in these common diseases.

    Article  CAS  Google Scholar 

  46. Sullivan, E. V., Adalsteinsson, E., Rohlfing, T. & Pfefferbaum, A. Relevance of iron deposition in deep gray matter brain structures to cognitive and motor performance in healthy elderly men and women: exploratory findings. Brain Imaging Behav. 3, 167–175 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Vicente, A. M. & Costa, R. M. Looking at the trees in the central forest: a new pallidal-striatal cell type. Neuron 74, 967–969 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Garden, G. A. & Möller, T. Microglia biology in health and disease. J. Neuroimmune Pharmacol. 1, 127–137 (2006).

    Article  PubMed  Google Scholar 

  49. Cheepsunthorn, P., Radov, L., Menzies, S., Reid, J. & Connor, J. R. Characterization of a novel brain-derived microglial cell line isolated from neonatal rat brain. Glia 35, 53–62 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Gerlach, M., Double, K. L., Youdim, M. B. & Riederer, P. Potential sources of increased iron in the substantia nigra of parkinsonian patients. J. Neural Transm. 70 (Suppl.), 133–142 (2006).

    CAS  Google Scholar 

  51. Hare, D. J., Gerlach, M. & Riederer, P. Considerations for measuring iron in post-mortem tissue of Parkinson's disease patients. J. Neural Transm. 119, 1515–1521 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Simmons, D. A. et al. Ferritin accumulation in dystrophic microglia is an early event in the development of Huntington's disease. Glia 55, 1074–1084 (2007).

    Article  PubMed  Google Scholar 

  53. Schrag, M., Mueller, C., Oyoyo, U., Smith, M. A. & Kirsch, W. M. Iron, zinc and copper in the Alzheimer's disease brain: a quantitative meta-analysis. Some insight on the influence of citation bias on scientific opinion. Prog. Neurobiol. 94, 296–306 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ayton, S., Lei, P. & Bush, A. I. Metallostasis in Alzheimer disease. Free Radic. Biol. Med. http://dx.doi.org/10.1016/j.freeradbiomed.2012.10.558 (2012).

  55. Bush, A. I. The metal theory of Alzheimer's disease. J. Alzheimers Dis. 33, S277–S281 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. House, M. J. et al. Correlation of proton transverse relaxation rates (R2) with iron concentrations in postmortem brain tissue from alzheimer's disease patients. Magn. Reson. Med. 57, 172–180 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Gerlach, M., Ben-Shachar, D., Riederer, P. & Youdim, M. B. Altered brain metabolism of iron as a cause of neurodegenerative diseases? J. Neurochem. 63, 793–807 (1994).

    Article  CAS  PubMed  Google Scholar 

  58. Halliwell, B. Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 18, 685–716 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Dusek, P., Jankovic, J. & Le, W. Iron dysregulation in movement disorders. Neurobiol. Dis. 46, 1–18 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Dusek, P. & Schneider, S. A. Neurodegeneration with brain iron accumulation. Curr. Opin. Neurol. 25, 499–506 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Prohaska, R. et al. Brain, blood, and iron: perspectives on the roles of erythrocytes and iron in neurodegeneration. Neurobiol. Dis. 46, 607–624 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Miyajima, H., Takahashi, Y. & Kono, S. Aceruloplasminemia, an inherited disorder of iron metabolism. Biometals 16, 205–213 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. McNeill, A., Pandolfo, M., Kuhn, J., Shang, H. & Miyajima, H. The neurological presentation of ceruloplasmin gene mutations. Eur. Neurol. 60, 200–205 (2008).

    Article  PubMed  Google Scholar 

  64. Gonzalez-Cuyar, L. F. et al. Redox active iron accumulation in aceruloplasminemia. Neuropathology 28, 466–471 (2008).

    Article  PubMed  Google Scholar 

  65. Patel, B. N. et al. Ceruloplasmin regulates iron levels in the CNS and prevents free radical injury. J. Neurosci. 22, 6578–6586 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jeong, S. Y. & David, S. Age-related changes in iron homeostasis and cell death in the cerebellum of ceruloplasmin-deficient mice. J. Neurosci. 26, 9810–9819 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kono, S. & Miyajima, H. Molecular and pathological basis of aceruloplasminemia. Biol. Res. 39, 15–23 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Brissot, P., Ropert, M., Le Lan, C. & Loreal, O. Non-transferrin bound iron: a key role in iron overload and iron toxicity. Biochim. Biophys. Acta 1820, 403–410 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Kaneko, K. et al. Extensive brain pathology in a patient with aceruloplasminemia with a prolonged duration of illness. Hum. Pathol. 43, 451–456 (2012).

    Article  PubMed  Google Scholar 

  70. Kono, S. et al. Biochemical features of ceruloplasmin gene mutations linked to aceruloplasminemia. Neuromolecular Med. 8, 361–374 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Hadziahmetovic, M. et al. The oral iron chelator deferiprone protects against iron overload-induced retinal degeneration. Invest. Ophthalmol. Vis. Sci. 52, 959–968 (2011). This paper studies the effects of iron chelation on retinal integrity in ferroxidase-deficient mice and finds a beneficial effect, with implications for the treatment of human disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Burn, J. & Chinnery, P. F. Neuroferritinopathy. Semin. Pediatr. Neurol. 13, 176–181 (2006). This paper summarizes the discovery of neuroferritinopathy caused by mutations in the gene encoding ferritin light chain.

    Article  PubMed  Google Scholar 

  73. McNeill, A. & Chinnery, P. F. Neurodegeneration with brain iron accumulation. Handb. Clin. Neurol. 100, 161–172 (2011).

    Article  PubMed  Google Scholar 

  74. Friedman, A., Arosio, P., Finazzi, D., Koziorowski, D. & Galazka-Friedman, J. Ferritin as an important player in neurodegeneration. Parkinsonism Relat. Disord. 17, 423–430 (2011).

    Article  PubMed  Google Scholar 

  75. Pietsch, E. C., Chan, J. Y., Torti, F. M. & Torti, S. V. Nrf2 mediates the induction of ferritin H in response to xenobiotics and cancer chemopreventive dithiolethiones. J. Biol. Chem. 278, 2361–2369 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Hintze, K. J., Katoh, Y., Igarashi, K. & Theil, E. C. Bach1 repression of ferritin and thioredoxin reductase1 is heme-sensitive in cells and in vitro and coordinates expression with heme oxygenase1, β-globin, and NADP(H) quinone (oxido) reductase1. J. Biol. Chem. 282, 34365–34371 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Baraibar, M. A., Muhoberac, B. B., Garringer, H. J., Hurley, T. D. & Vidal, R. Unraveling of the E-helices and disruption of 4-fold pores are associated with iron mishandling in a mutant ferritin causing neurodegeneration. J. Biol. Chem. 285, 1950–1956 (2010). This paper describes the structural basis for neuroferritinopathy by solving the structure of ferritin molecules that contain the mutant ferritin light chain and discovering discontinuities that result in formation of the proteinaceous ferritin shell.

    Article  CAS  PubMed  Google Scholar 

  78. Vidal, R. et al. Expression of a mutant form of the ferritin light chain gene induces neurodegeneration and iron overload in transgenic mice. J. Neurosci. 28, 60–67 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Keogh, M. J. & Chinnery, P. F. Current concepts and controversies in neurodegeneration with brain iron accumulation. Semin. Pediatr. Neurol. 19, 51–56 (2012).

    Article  PubMed  Google Scholar 

  80. Kole, R., Krainer, A. R. & Altman, S. RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nature Rev. Drug Discov. 11, 125–140 (2012).

    Article  CAS  Google Scholar 

  81. Prakash, T. P. An overview of sugar-modified oligonucleotides for antisense therapeutics. Chem. Biodivers. 8, 1616–1641 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Kruer, M. C. et al. Neuroimaging features of neurodegeneration with brain iron accumulation. AJNR Am. J. Neuroradiol. 33, 407–414 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gregory, A. & Hayflick, S. J. Genetics of neurodegeneration with brain iron accumulation. Curr. Neurol. Neurosci. Rep. 11, 254–261 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hogarth, P. et al. New NBIA subtype: genetic, clinical, pathologic, and radiographic features of MPAN. Neurology 80, 268–275 (2013). This paper describes clinical and pathological findings in a large cohort of patients with mutations in C19orf12 , a recently discovered NBIA disease gene of unknown function that associates with mitochondria and is co-regulated with proteins involved in fatty acid biogenesis and branched chain amino acid degradation. Perivascular haemosiderin deposition and neuronal loss in the globus pallidus develop in this NBIA disease.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Haack, T. B. et al. Exome sequencing revealsde novo WDR45 mutations causing a phenotypically distinct, X-linked dominant form of NBIA. Am. J. Hum. Genet. 91, 1144–1149 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kruer, M. C. et al. Analysis of ATP13A2 in large neurodegeneration with brain iron accumulation (NBIA) and dystonia-parkinsonism cohorts. Neurosci. Lett. 523, 35–38 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ben-Omran, T. et al. Phenotypic heterogeneity in Woodhouse–Sakati syndrome: two new families with a mutation in the C2orf37 gene. Am. J. Med. Genet. A 155A, 2647–2653 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhou, B. et al. A novel pantothenate kinase gene (PANK2) is defective in Hallervorden–Spatz syndrome. Nature Genet. 28, 345–349 (2001). This study identified the first NBIA gene. After PANK2 mutations were identified, numerous patients with brain iron accumulation were recognized to have mutations in other genes, which were subsequently identified by positional cloning and exome sequencing.

    Article  CAS  PubMed  Google Scholar 

  89. Leonardi, R., Rock, C. O., Jackowski, S. & Zhang, Y. M. Activation of human mitochondrial pantothenate kinase 2 by palmitoylcarnitine. Proc. Natl Acad. Sci. USA 104, 1494–1499 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Brunetti, D. et al. Pantothenate kinase-associated neurodegeneration: altered mitochondria membrane potential and defective respiration in Pank2 knock-out mouse model. Hum. Mol. Genet. 21, 5294–5305 (2012). Analysis of Pank2 -knockout mice revealed mitochondrial defects, including defective respiration and loss of intact cristae. This paper begins to dissect the molecular pathophysiology of PKAN.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Johnson, M. A. et al. Mitochondrial localization of human PANK2 and hypotheses of secondary iron accumulation in pantothenate kinase-associated neurodegeneration. Ann. NY Acad. Sci. 1012, 282–298 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Zhang, Y. M. et al. Chemical knockout of pantothenate kinase reveals the metabolic and genetic program responsible for hepatic coenzyme A homeostasis. Chem. Biol. 14, 291–302 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kuo, Y. M. et al. Deficiency of pantothenate kinase 2 (Pank2) in mice leads to retinal degeneration and azoospermia. Hum. Mol. Genet. 14, 49–57 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Kuo, Y. M., Hayflick, S. J. & Gitschier, J. Deprivation of pantothenic acid elicits a movement disorder and azoospermia in a mouse model of pantothenate kinase-associated neurodegeneration. J. Inherit. Metab. Dis. 30, 310–317 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bosveld, F. et al. De novo CoA biosynthesis is required to maintain DNA integrity during development of the Drosophila nervous system. Hum. Mol. Genet. 17, 2058–2069 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Wu, Z., Li, C., Lv, S. & Zhou, B. Pantothenate kinase-associated neurodegeneration: insights from a Drosophila model. Hum. Mol. Genet. 18, 3659–3672 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Rana, A. et al. Pantethine rescues a Drosophila model for pantothenate kinase-associated neurodegeneration. Proc. Natl Acad. Sci. USA 107, 6988–6993 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Siudeja, K. et al. Impaired Coenzyme A metabolism affects histone and tubulin acetylation in Drosophila and human cell models of pantothenate kinase associated neurodegeneration. EMBO Mol. Med. 3, 755–766 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hartig, M. B., Prokisch, H., Meitinger, T. & Klopstock, T. Pantothenate kinase-associated neurodegeneration. Curr. Drug Targets 13, 1182–1189 (2012).

    Article  CAS  PubMed  Google Scholar 

  100. Leoni, V. et al. Metabolic consequences of mitochondrial coenzyme A deficiency in patients with PANK2 mutations. Mol. Genet. Metab. 105, 463–471 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. Poli, M. et al. Pantothenate kinase-2 (Pank2) silencing causes cell growth reduction, cell-specific ferroportin upregulation and iron deregulation. Neurobiol. Dis. 39, 204–210 (2010).

    Article  CAS  PubMed  Google Scholar 

  102. Chaumeil, M. M. et al. Hyperpolarized 13C MR spectroscopic imaging can be used to monitor Everolimus treatment in vivo in an orthotopic rodent model of glioblastoma. Neuroimage 59, 193–201 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Kruer, M. C. et al. Novel histopathologic findings in molecularly-confirmed pantothenate kinase-associated neurodegeneration. Brain 134, 947–958 (2011). This research paper correlates histological iron stains with MRI results in the globus pallidus. Perivascular iron accumulations were detected in macrophages and also as diffuse 'iron dust' in the neuropile. Iron-loaded astrocytes were prevalent, whereas iron-loaded neurons were rare and appeared to be degenerating.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Hayflick, S. J. et al. Cranial MRI changes may precede symptoms in Hallervorden–Spatz syndrome. Pediatr. Neurol. 25, 166–169 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Zhao, Z. et al. Protection of pancreatic β-cells by group VIA phospholipase A2-mediated repair of mitochondrial membrane peroxidation. Endocrinology 151, 3038–3048 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Beck, G. et al. Neuroaxonal dystrophy in calcium-independent phospholipase A2β deficiency results from insufficient remodeling and degeneration of mitochondrial and presynaptic membranes. J. Neurosci. 31, 11411–11420 (2011). In this paper, the authors analysed a mouse with PLA2G6 deficiency, and they detected disorganization of mitochondrial cristae and loss of membrane potential, which could be central to the pathogenesis of disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Claypool, S. M. & Koehler, C. M. The complexity of cardiolipin in health and disease. Trends Biochem. Sci. 37, 32–41 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Zachman, D. K. et al. The role of calcium-independent phospholipase A2 in cardiolipin remodeling in the spontaneously hypertensive heart failure rat heart. J. Lipid Res. 51, 525–534 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Paisan-Ruiz, C. et al. Characterization of PLA2G6 as a locus for dystonia-parkinsonism. Ann. Neurol. 65, 19–23 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Paisan-Ruiz, C. et al. Widespread Lewy body and tau accumulation in childhood and adult onset dystonia-parkinsonism cases with PLA2G6 mutations. Neurobiol. Aging 33, 814–823 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Patil, V. A., Fox, J. L., Gohil, V. M., Winge, D. R. & Greenberg, M. L. Loss of cardiolipin leads to perturbation of mitochondrial and cellular iron homeostasis. J. Biol. Chem. 288, 1696–1705 (2013).

    Article  CAS  PubMed  Google Scholar 

  112. Rouault, T. A. Biogenesis of iron-sulfur clusters in mammalian cells: new insights and relevance to human disease. Dis. Model. Mech. 5, 155–164 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hartig, M. B. et al. Absence of an orphan mitochondrial protein, c19orf12, causes a distinct clinical subtype of neurodegeneration with brain iron accumulation. Am. J. Hum. Genet. 89, 543–550 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Panteghini, C. et al.C19orf12 and FA2H mutations are rare in Italian patients with neurodegeneration with brain iron accumulation. Semin. Pediatr. Neurol. 19, 75–81 (2012).

    Article  PubMed  Google Scholar 

  115. Kruer, M. C. et al. Defective FA2H leads to a novel form of neurodegeneration with brain iron accumulation (NBIA). Ann. Neurol. 68, 611–618 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Pierson, T. M. et al. Exome sequencing and SNP analysis detect novel compound heterozygosity in fatty acid hydroxylase-associated neurodegeneration. Eur. J. Hum. Genet. 20, 476–479 (2012).

    Article  CAS  PubMed  Google Scholar 

  117. Dan, P., Edvardson, S., Bielawski, J., Hama, H. & Saada, A. 2-Hydroxylated sphingomyelin profiles in cells from patients with mutated fatty acid 2-hydroxylase. Lipids Health Dis. 10, 84 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hama, H. Fatty acid 2-Hydroxylation in mammalian sphingolipid biology. Biochim. Biophys. Acta 1801, 405–414 (2010).

    Article  CAS  PubMed  Google Scholar 

  119. Potter, K. A. et al. Central nervous system dysfunction in a mouse model of Fa2h deficiency. Glia 59, 1009–1021 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Martelli, A., Napierala, M. & Puccio, H. Understanding the genetic and molecular pathogenesis of Friedreich's ataxia through animal and cellular models. Dis. Model. Mech. 5, 165–176 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Pandolfo, M. Friedreich ataxia: the clinical picture. J. Neurol. 256 (Suppl. 1), 3–8 (2009).

    Article  PubMed  Google Scholar 

  122. Waldvogel, D., van Gelderen, P. & Hallett, M. Increased iron in the dentate nucleus of patients with Friedrich's ataxia. Ann. Neurol. 46, 123–125 (1999).

    Article  CAS  PubMed  Google Scholar 

  123. Koeppen, A. H. Friedreich's ataxia: pathology, pathogenesis, and molecular genetics. J. Neurol. Sci. 303, 1–12 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Koeppen, A. H., Morral, J. A., McComb, R. D. & Feustel, P. J. The neuropathology of late-onset Friedreich's ataxia. Cerebellum 10, 96–103 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Zhang, P. et al. Electron tomography of degenerating neurons in mice with abnormal regulation of iron metabolism. J. Struct. Biol. 150, 144–153 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kwan, J. Y. et al. Iron accumulation in deep cortical layers accounts for MRI signal abnormalities in ALS: correlating 7 Tesla MRI and pathology. PLoS ONE 7, e35241 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Jeong, S. Y. et al. Iron insufficiency compromises motor neurons and their mitochondrial function in Irp2-null mice. PLoS ONE 6, e25404 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. LaVaute, T. et al. Targeted deletion of the gene encoding iron regulatory protein-2 causes misregulation of iron metabolism and neurodegenerative disease in mice. Nature Genet. 27, 209–214 (2001).

    Article  CAS  PubMed  Google Scholar 

  129. Grabill, C., Silva, A. C., Smith, S. S., Koretsky, A. P. & Rouault, T. A. MRI detection of ferritin iron overload and associated neuronal pathology in iron regulatory protein-2 knockout mice. Brain Res. 971, 95–106 (2003).

    Article  CAS  PubMed  Google Scholar 

  130. Galy, B. et al. Iron homeostasis in the brain: complete iron regulatory protein 2 deficiency without symptomatic neurodegeneration in the mouse. Nature Genet. 38, 967–969 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Rouault, T. A. & Tong, W. H. Iron-sulfur cluster biogenesis and human disease. Trends Genet. 24, 398–407 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kaneko, Y., Kitamoto, T., Tateishi, J. & Yamaguchi, K. Ferritin immunohistochemistry as a marker for microglia. Acta Neuropathol. 79, 129–136 (1989).

    Article  CAS  PubMed  Google Scholar 

  133. Foroutan, P. et al. Progressive supranuclear palsy: high-field-strength MR microscopy in the human substantia nigra and globus pallidus. Radiology 266, 280–288 (2012).

    Article  PubMed  Google Scholar 

  134. Zorzi, G., Zibordi, F., Chiapparini, L. & Nardocci, N. Therapeutic advances in neurodegeneration with brain iron accumulation. Semin. Pediatr. Neurol. 19, 82–86 (2012).

    Article  PubMed  Google Scholar 

  135. Badrick, A. C. & Jones, C. E. Reorganizing metals: the use of chelating compounds as potential therapies for metal-related neurodegenerative disease. Curr. Top. Med. Chem. 11, 543–552 (2011).

    Article  CAS  PubMed  Google Scholar 

  136. Hardy, P. A. et al. Correlation of R2 with total iron concentration in the brains of rhesus monkeys. J. Magn. Reson. Imaging 21, 118–127 (2005).

    Article  PubMed  Google Scholar 

  137. Nguyen-Legros, J., Bizot, J., Bolesse, M. & Pulicani, J. P. “Diaminobenzidine black” as a new histochemical demonstration of exogenous iron (author's transl). Histochemistry 66, 239–244 (1980) (in French).

    Article  CAS  PubMed  Google Scholar 

  138. Kurian, M. A. et al. Phenotypic spectrum of neurodegeneration associated with mutations in the PLA2G6 gene (PLAN). Neurology 70, 1623–1629 (2008).

    Article  CAS  PubMed  Google Scholar 

  139. Chien, H. F., Bonifati, V. & Barbosa, E. R. ATP13A2-related neurodegeneration (PARK9) without evidence of brain iron accumulation. Mov. Disord. 26, 1364–1365 (2011).

    Article  PubMed  Google Scholar 

  140. Schneider, S. A. & Bhatia, K. P. Syndromes of neurodegeneration with brain iron accumulation. Semin. Pediatr. Neurol. 19, 57–66 (2012).

    Article  PubMed  Google Scholar 

  141. Alazami, A. M. et al. C2orf37 mutational spectrum in Woodhouse–Sakati syndrome patients. Clin. Genet. 78, 585–590 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks S. Hayflick and R. Vidal for generously sharing images. The author gratefully acknowledges that the intramural programme of the Eunice Kennedy Shriver National Institute of Child Health and Human Development supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tracey A. Rouault.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rouault, T. Iron metabolism in the CNS: implications for neurodegenerative diseases. Nat Rev Neurosci 14, 551–564 (2013). https://doi.org/10.1038/nrn3453

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3453

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing