Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Sleep and the single neuron: the role of global slow oscillations in individual cell rest

Abstract

Sleep is universal in animals, but its specific functions remain elusive. We propose that sleep's primary function is to allow individual neurons to perform prophylactic cellular maintenance. Just as muscle cells must rest after strenuous exercise to prevent long-term damage, brain cells must rest after intense synaptic activity. We suggest that periods of reduced synaptic input ('off periods' or 'down states') are necessary for such maintenance. This in turn requires a state of globally synchronized neuronal activity, reduced sensory input and behavioural immobility — the well-known manifestations of sleep.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Active and inactive states at the network and neuronal level.
Figure 2: Transient network silences (off periods) allow cellular rest at a single-neuron level.
Figure 3: Global behavioural sleep provides conditions for single-cell rest by allowing sustained uninterrupted down states.

Similar content being viewed by others

References

  1. Cirelli, C. & Tononi, G. Is sleep essential? PLoS Biol. 6, e216 (2008).

    PubMed  PubMed Central  Google Scholar 

  2. Tobler, I. in Principles and Practice of Sleep Medicine (eds Kryger, M. H., Roth, T. & Dement, W. C.) 77–90 (Saunders, 2005).

    Google Scholar 

  3. Van Dongen, H. P., Maislin, G., Mullington, J. M. & Dinges, D. F. The cumulative cost of additional wakefulness: dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation. Sleep 26, 117–126 (2003).

    PubMed  Google Scholar 

  4. Killgore, W. D. Effects of sleep deprivation on cognition. Prog. Brain Res. 185, 105–129 (2010).

    PubMed  Google Scholar 

  5. McCoy, J. G. & Strecker, R. E. The cognitive cost of sleep lost. Neurobiol. Learn. Mem. 96, 564–582 (2011).

    PubMed  PubMed Central  Google Scholar 

  6. Lo, J. C. et al. Effects of partial and acute total sleep deprivation on performance across cognitive domains, individuals and circadian phase. PLoS ONE 7, e45987 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Siegel, J. M. Clues to the functions of mammalian sleep. Nature 437, 1264–1271 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Vassalli, A. & Dijk, D. J. Sleep function: current questions and new approaches. Eur. J. Neurosci. 29, 1830–1841 (2009).

    PubMed  Google Scholar 

  9. Steriade, M., Timofeev, I. & Grenier, F. Natural waking and sleep states: a view from inside neocortical neurons. J. Neurophysiol. 85, 1969–1985 (2001).

    CAS  PubMed  Google Scholar 

  10. Hobson, J. A. & McCarley, R. W. Cortical unit activity in sleep and waking. Electroencephalogr. Clin. Neurophysiol. 30, 97–112 (1971).

    CAS  PubMed  Google Scholar 

  11. Buzsáki, G. Rhythms of the Brain (Oxford Univ. Press, 2006).

    Google Scholar 

  12. Vyazovskiy, V. V. et al. Cortical firing and sleep homeostasis. Neuron 63, 865–878 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Verzeano, M. & Negishi, K. Neuronal activity in cortical and thalamic networks. J. Gen. Physiol. 43, 177–195 (1960).

    PubMed  PubMed Central  Google Scholar 

  14. Noda, H. & Adey, W. R. Firing of neuron pairs in cat association cortex during sleep and wakefulness. J. Neurophysiol. 33, 672–684 (1970).

    CAS  PubMed  Google Scholar 

  15. Burns, B. D., Stean, J. P. & Webb, A. C. The effects of sleep on neurons in isolated cerebral cortex. Proc. R. Soc. Lond. B 206, 281–291 (1979).

    CAS  PubMed  Google Scholar 

  16. Harris, K. D. & Thiele, A. Cortical state and attention. Nature Rev. Neurosci. 12, 509–523 (2011).

    CAS  Google Scholar 

  17. Crunelli, V. & Hughes, S. W. The slow (<1 Hz) rhythm of non-REM sleep: a dialogue between three cardinal oscillators. Nature Neurosci. 13, 9–17 (2009).

    PubMed  Google Scholar 

  18. Massimini, M., Huber, R., Ferrarelli, F., Hill, S. & Tononi, G. The sleep slow oscillation as a traveling wave. J. Neurosci. 24, 6862–6870 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Nir, Y. et al. Regional slow waves and spindles in human sleep. Neuron 70, 153–169 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Buzsaki, G., Anastassiou, C. A. & Koch, C. The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes. Nature Rev. Neurosci. 13, 407–420 (2012).

    CAS  Google Scholar 

  21. Chauvette, S., Volgushev, M. & Timofeev, I. Origin of active states in local neocortical networks during slow sleep oscillation. Cereb. Cortex 20, 2660–2674 (2010).

    PubMed  PubMed Central  Google Scholar 

  22. Poulet, J. F. & Petersen, C. C. Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice. Nature 454, 881–885 (2008).

    CAS  PubMed  Google Scholar 

  23. Saleem, A. B., Chadderton, P., Apergis-Schoute, J., Harris, K. D. & Schultz, S. R. Methods for predicting cortical UP and DOWN states from the phase of deep layer local field potentials. J. Comput. Neurosci. 29, 49–62 (2010).

    PubMed  PubMed Central  Google Scholar 

  24. Okun, M. & Lampl, I. Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities. Nature Neurosci. 11, 535–537 (2008).

    CAS  PubMed  Google Scholar 

  25. Mackiewicz, M. et al. Macromolecule biosynthesis: a key function of sleep. Physiol. Genomics 31, 441–457 (2007).

    CAS  PubMed  Google Scholar 

  26. Reimund, E. The free radical flux theory of sleep. Med. Hypotheses 43, 231–233 (1994).

    CAS  PubMed  Google Scholar 

  27. Inoue, S., Honda, K. & Komoda, Y. Sleep as neuronal detoxification and restitution. Behav. Brain Res. 69, 91–96 (1995).

    CAS  PubMed  Google Scholar 

  28. Benington, J. H. & Heller, H. C. Restoration of brain energy metabolism as the function of sleep. Prog. Neurobiol. 45, 347–360 (1995).

    CAS  PubMed  Google Scholar 

  29. Scharf, M. T., Naidoo, N., Zimmerman, J. E. & Pack, A. I. The energy hypothesis of sleep revisited. Prog. Neurobiol. 86, 264–280 (2008).

    PubMed  PubMed Central  Google Scholar 

  30. Buzsaki, G. Memory consolidation during sleep: a neurophysiological perspective. J. Sleep Res. 7, 17–23 (1998).

    PubMed  Google Scholar 

  31. Sejnowski, T. J. & Destexhe, A. Why do we sleep? Brain Res. 886, 208–223 (2000).

    CAS  PubMed  Google Scholar 

  32. Born, J., Rasch, B. & Gais, S. Sleep to remember. Neuroscientist 12, 410–424 (2006).

    PubMed  Google Scholar 

  33. Tononi, G. & Cirelli, C. Time to be SHY? Some comments on sleep and synaptic homeostasis. Neural Plast. 2012, 415250 (2012).

    PubMed  PubMed Central  Google Scholar 

  34. Hernandez, P. J. & Abel, T. A molecular basis for interactions between sleep and memory. Sleep Med. Clin. 6, 71–84 (2011).

    PubMed  PubMed Central  Google Scholar 

  35. Yoo, S. S., Hu, P. T., Gujar, N., Jolesz, F. A. & Walker, M. P. A deficit in the ability to form new human memories without sleep. Nature Neurosci. 10, 385–392 (2007).

    CAS  PubMed  Google Scholar 

  36. Krueger, J. M. & Tononi, G. Local use-dependent sleep; synthesis of the new paradigm. Curr. Top. Med. Chem. 11, 2490–2492 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Tononi, G. & Cirelli, C. Sleep function and synaptic homeostasis. Sleep Med. Rev. 10, 49–62 (2006).

    PubMed  Google Scholar 

  38. Frank, M. G. The mystery of sleep function: current perspectives and future directions. Rev. Neurosci. 17, 375–392 (2006).

    CAS  PubMed  Google Scholar 

  39. Wilson, M. A. & McNaughton, B. L. Reactivation of hippocampal ensemble memories during sleep. Science 265, 676–679 (1994).

    CAS  PubMed  Google Scholar 

  40. Ji, D. & Wilson, M. A. Coordinated memory replay in the visual cortex and hippocampus during sleep. Nature Neurosci. 10, 100–107 (2007).

    CAS  PubMed  Google Scholar 

  41. Fujisawa, S. & Buzsaki, G. A. 4 Hz oscillation adaptively synchronizes prefrontal, VTA, and hippocampal activities. Neuron 72, 153–165 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Tononi, G., Massimini, M. & Riedner, B. A. Sleepy dialogues between cortex and hippocampus: who talks to whom? Neuron 52, 748–749 (2006).

    CAS  PubMed  Google Scholar 

  43. Molle, M. & Born, J. Slow oscillations orchestrating fast oscillations and memory consolidation. Prog. Brain Res. 193, 93–110 (2011).

    PubMed  Google Scholar 

  44. Logothetis, N. K. et al. Hippocampal–cortical interaction during periods of subcortical silence. Nature 491, 547–553 (2012).

    CAS  PubMed  Google Scholar 

  45. Frank, M. G. Erasing synapses in sleep: is it time to be SHY? Neural Plast. 2012, 264378 (2012).

    PubMed  PubMed Central  Google Scholar 

  46. Diekelmann, S. & Born, J. The memory function of sleep. Nature Rev. Neurosci. 11, 114–126 (2010).

    CAS  Google Scholar 

  47. Goel, N., Rao, H., Durmer, J. S. & Dinges, D. F. Neurocognitive consequences of sleep deprivation. Semin. Neurol. 29, 320–339 (2009).

    PubMed  PubMed Central  Google Scholar 

  48. Doran, S. M., Van Dongen, H. P. & Dinges, D. F. Sustained attention performance during sleep deprivation: evidence of state instability. Arch. Ital. Biol. 139, 253–267 (2001).

    CAS  PubMed  Google Scholar 

  49. Van Dongen, H. P., Belenky, G. & Krueger, J. M. A local, bottom-up perspective on sleep deprivation and neurobehavioral performance. Curr. Top. Med. Chem. 11, 2414–2422 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Piantoni, G. et al. Individual differences in white matter diffusion affect sleep oscillations. J. Neurosci. 33, 227–233 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Vyazovskiy, V. V. et al. Local sleep in awake rats. Nature 472, 443–447 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Leger, J. F., Stern, E. A., Aertsen, A. & Heck, D. Synaptic integration in rat frontal cortex shaped by network activity. J. Neurophysiol. 93, 281–293 (2005).

    PubMed  Google Scholar 

  53. Petersen, C. C., Hahn, T. T., Mehta, M., Grinvald, A. & Sakmann, B. Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex. Proc. Natl Acad. Sci. USA 100, 13638–13643 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Constantinople, C. M. & Bruno, R. M. Effects and mechanisms of wakefulness on local cortical networks. Neuron 69, 1061–1068 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Krueger, J. M. et al. Sleep as a fundamental property of neuronal assemblies. Nature Rev. Neurosci. 9, 910–919 (2008).

    CAS  Google Scholar 

  56. Rattenborg, N. C., Lima, S. L. & Lesku, J. A. Sleep locally, act globally. Neuroscientist 18, 533–546 (2012).

    PubMed  Google Scholar 

  57. Borbely, A. A. A two process model of sleep regulation. Hum. Neurobiol. 1, 195–204 (1982).

    CAS  PubMed  Google Scholar 

  58. Borbély, A. A. & Achermann, P. in Principles and Practice of Sleep Medicine (eds Kryger, M. H., Roth, T. & Dement, W. C.) 405–417 (Saunders, 2005).

    Google Scholar 

  59. Ferrara, M., De Gennaro, L., Casagrande, M. & Bertini, M. Auditory arousal thresholds after selective slow-wave sleep deprivation. Clin. Neurophysiol. 110, 2148–2152 (1999).

    CAS  PubMed  Google Scholar 

  60. Daan, S., Beersma, D. G. & Borbely, A. A. Timing of human sleep: recovery process gated by a circadian pacemaker. Am. J. Physiol. 246, R161–R183 (1984).

    CAS  PubMed  Google Scholar 

  61. Achermann, P., Dijk, D. J., Brunner, D. P. & Borbely, A. A. A model of human sleep homeostasis based on EEG slow-wave activity: quantitative comparison of data and simulations. Brain Res. Bull. 31, 97–113 (1993).

    CAS  PubMed  Google Scholar 

  62. Franken, P., Chollet, D. & Tafti, M. The homeostatic regulation of sleep need is under genetic control. J. Neurosci. 21, 2610–2621 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Tobler, I. & Borbely, A. A. Sleep EEG in the rat as a function of prior waking. Electroencephalogr. Clin. Neurophysiol. 64, 74–76 (1986).

    CAS  PubMed  Google Scholar 

  64. Vyazovskiy, V. V., Achermann, P. & Tobler, I. Sleep homeostasis in the rat in the light and dark period. Brain Res. Bull. 74, 37–44 (2007).

    CAS  PubMed  Google Scholar 

  65. Vyazovskiy, V., Borbely, A. A. & Tobler, I. Unilateral vibrissae stimulation during waking induces interhemispheric EEG asymmetry during subsequent sleep in the rat. J. Sleep Res. 9, 367–371 (2000).

    CAS  PubMed  Google Scholar 

  66. Kristiansen, K. & Courtois, G. Rhythmic electrical activity from isolated cerebral cortex. Electroencephalogr. Clin. Neurophysiol. 1, 265–272 (1949).

    CAS  PubMed  Google Scholar 

  67. Krueger, J. M. & Obal, F. A neuronal group theory of sleep function. J. Sleep Res. 2, 63–69 (1993).

    CAS  PubMed  Google Scholar 

  68. Pigarev, I. N., Nothdurft, H. C. & Kastner, S. Evidence for asynchronous development of sleep in cortical areas. Neuroreport 8, 2557–2560 (1997).

    CAS  PubMed  Google Scholar 

  69. Mukhametov, L. M., Supin, A. Y. & Polyakova, I. G. Interhemispheric asymmetry of the electroencephalographic sleep patterns in dolphins. Brain Res. 134, 581–584 (1977).

    CAS  PubMed  Google Scholar 

  70. Lyamin, O. I., Pavlova, I. F., Kosenko, P. O., Mukhametov, L. M. & Siegel, J. M. Regional differences in cortical electroencephalogram (EEG) slow wave activity and interhemispheric EEG asymmetry in the fur seal. J. Sleep Res. 21, 603–611 (2012).

    PubMed  Google Scholar 

  71. Werth, E., Achermann, P. & Borbely, A. A. Brain topography of the human sleep EEG: antero-posterior shifts of spectral power. Neuroreport 8, 123–127 (1996).

    CAS  PubMed  Google Scholar 

  72. Cajochen, C., Foy, R. & Dijk, D. J. Frontal predominance of a relative increase in sleep delta and theta EEG activity after sleep loss in humans. Sleep Res. Online 2, 65–69 (1999).

    CAS  PubMed  Google Scholar 

  73. Huber, R., Deboer, T. & Tobler, I. Topography of EEG dynamics after sleep deprivation in mice. J. Neurophysiol. 84, 1888–1893 (2000).

    CAS  PubMed  Google Scholar 

  74. Vyazovskiy, V. V. & Tobler, I. Regional differences in NREM sleep slow-wave activity in mice with congenital callosal dysgenesis. J. Sleep Res. 14, 299–304 (2005).

    PubMed  Google Scholar 

  75. Vyazovskiy, V. V., Borbely, A. A. & Tobler, I. Interhemispheric sleep EEG asymmetry in the rat is enhanced by sleep deprivation. J. Neurophysiol. 88, 2280–2286 (2002).

    PubMed  Google Scholar 

  76. Achermann, P., Finelli, L. A. & Borbely, A. A. Unihemispheric enhancement of delta power in human frontal sleep EEG by prolonged wakefulness. Brain Res. 913, 220–223 (2001).

    CAS  PubMed  Google Scholar 

  77. Destexhe, A., Contreras, D. & Steriade, M. Spatiotemporal analysis of local field potentials and unit discharges in cat cerebral cortex during natural wake and sleep states. J. Neurosci. 19, 4595–4608 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Volgushev, M., Chauvette, S., Mukovski, M. & Timofeev, I. Precise long-range synchronization of activity and silence in neocortical neurons during slow-wave oscillations [corrected]. J. Neurosci. 26, 5665–5672 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Luczak, A., Bartho, P., Marguet, S. L., Buzsaki, G. & Harris, K. D. Sequential structure of neocortical spontaneous activity in vivo. Proc. Natl Acad. Sci. USA 104, 347–352 (2007).

    CAS  PubMed  Google Scholar 

  80. Mohajerani, M. H., McVea, D. A., Fingas, M. & Murphy, T. H. Mirrored bilateral slow-wave cortical activity within local circuits revealed by fast bihemispheric voltage-sensitive dye imaging in anesthetized and awake mice. J. Neurosci. 30, 3745–3751 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Sirota, A. & Buzsaki, G. Interaction between neocortical and hippocampal networks via slow oscillations. Thalamus Relat. Syst. 3, 245–259 (2005).

    PubMed  PubMed Central  Google Scholar 

  82. Vyazovskiy, V. V., Faraguna, U., Cirelli, C. & Tononi, G. Triggering slow waves during NREM sleep in the rat by intracortical electrical stimulation: effects of sleep/wake history and background activity. J. Neurophysiol. 101, 1921–1931 (2009).

    PubMed  PubMed Central  Google Scholar 

  83. Kattler, H., Dijk, D. J. & Borbely, A. A. Effect of unilateral somatosensory stimulation prior to sleep on the sleep EEG in humans. J. Sleep Res. 3, 159–164 (1994).

    CAS  PubMed  Google Scholar 

  84. Vyazovskiy, V. V., Welker, E., Fritschy, J. M. & Tobler, I. Regional pattern of metabolic activation is reflected in the sleep EEG after sleep deprivation combined with unilateral whisker stimulation in mice. Eur. J. Neurosci. 20, 1363–1370 (2004).

    PubMed  Google Scholar 

  85. Huber, R., Ghilardi, M. F., Massimini, M. & Tononi, G. Local sleep and learning. Nature 430, 78–81 (2004).

    CAS  PubMed  Google Scholar 

  86. Vyazovskiy, V. V. & Tobler, I. Handedness leads to interhemispheric EEG asymmetry during sleep in the rat. J. Neurophysiol. 99, 969–975 (2008).

    CAS  PubMed  Google Scholar 

  87. Miyamoto, H., Katagiri, H. & Hensch, T. Experience-dependent slow-wave sleep development. Nature Neurosci. 6, 553–554 (2003).

    CAS  PubMed  Google Scholar 

  88. Dang-Vu, T. T. et al. Neuroimaging in sleep medicine. Sleep Med. 8, 349–372 (2007).

    PubMed  Google Scholar 

  89. Hofle, N. et al. Regional cerebral blood flow changes as a function of delta and spindle activity during slow wave sleep in humans. J. Neurosci. 17, 4800–4808 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Vyazovskiy, V., Achermann, P., Borbely, A. A. & Tobler, I. Interhemispheric coherence of the sleep electroencephalogram in mice with congenital callosal dysgenesis. Neuroscience 124, 481–488 (2004).

    CAS  PubMed  Google Scholar 

  91. Riedner, B. A. et al. Sleep homeostasis and cortical synchronization: III. A high-density EEG study of sleep slow waves in humans. Sleep 30, 1643–1657 (2007).

    PubMed  PubMed Central  Google Scholar 

  92. Kultz, D. Molecular and evolutionary basis of the cellular stress response. Annu. Rev. Physiol. 67, 225–257 (2005).

    PubMed  Google Scholar 

  93. Kourtis, N. & Tavernarakis, N. Cellular stress response pathways and ageing: intricate molecular relationships. EMBO J. 30, 2520–2531 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Martindale, J. L. & Holbrook, N. J. Cellular response to oxidative stress: signaling for suicide and survival. J. Cell. Physiol. 192, 1–15 (2002).

    CAS  PubMed  Google Scholar 

  95. Richter, K., Haslbeck, M. & Buchner, J. The heat shock response: life on the verge of death. Mol. Cell 40, 253–266 (2010).

    CAS  PubMed  Google Scholar 

  96. Walter, P. & Ron, D. The unfolded protein response: from stress pathway to homeostatic regulation. Science 334, 1081–1086 (2011).

    CAS  PubMed  Google Scholar 

  97. Groenendyk, J. Sreenivasaiah, P. K., Kim do, H., Agellon, L. B. & Michalak, M. Biology of endoplasmic reticulum stress in the heart. Circ. Res. 107, 1185–1197 (2010).

    CAS  PubMed  Google Scholar 

  98. Doyle, K. M. et al. Unfolded proteins and endoplasmic reticulum stress in neurodegenerative disorders. J. Cell. Mol. Med. 15, 2025–2039 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Allen, D. G., Lamb, G. D. & Westerblad, H. Skeletal muscle fatigue: cellular mechanisms. Physiol. Rev. 88, 287–332 (2008).

    CAS  PubMed  Google Scholar 

  100. Garland, S. J. & Gossen, E. R. The muscular wisdom hypothesis in human muscle fatigue. Exerc. Sport Sci. Rev. 30, 45–49 (2002).

    PubMed  Google Scholar 

  101. Powers, S. K. & Jackson, M. J. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol. Rev. 88, 1243–1276 (2008).

    CAS  PubMed  Google Scholar 

  102. Westerblad, H. & Allen, D. G. Emerging roles of ROS/RNS in muscle function and fatigue. Antioxid. Redox Signal. 15, 2487–2499 (2011).

    CAS  PubMed  Google Scholar 

  103. Keyser, R. E. Peripheral fatigue: high-energy phosphates and hydrogen ions. PM R 2, 347–358 (2010).

    PubMed  Google Scholar 

  104. Fitts, R. H. The cross-bridge cycle and skeletal muscle fatigue. J. Appl. Physiol. 104, 551–558 (2008).

    CAS  PubMed  Google Scholar 

  105. Debold, E. P. Recent insights into muscle fatigue at the cross-bridge level. Front. Physiol. 3, 151 (2012).

    PubMed  PubMed Central  Google Scholar 

  106. Salo, D. C., Donovan, C. M. & Davies, K. J. HSP70 and other possible heat shock or oxidative stress proteins are induced in skeletal muscle, heart, and liver during exercise. Free Radic. Biol. Med. 11, 239–246 (1991).

    CAS  PubMed  Google Scholar 

  107. MacIntosh, B. R., Holash, R. J. & Renaud, J. M. Skeletal muscle fatigue-regulation of excitation-contraction coupling to avoid metabolic catastrophe. J. Cell Sci. 125, 2105–2114 (2012).

    CAS  PubMed  Google Scholar 

  108. Wu, J. et al. The unfolded protein response mediates adaptation to exercise in skeletal muscle through a PGC-1α/ATF6α complex. Cell Metab. 13, 160–169 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Cirelli, C., Gutierrez, C. M. & Tononi, G. Extensive and divergent effects of sleep and wakefulness on brain gene expression. Neuron 41, 35–43 (2004).

    CAS  PubMed  Google Scholar 

  110. Naidoo, N., Giang, W., Galante, R. J. & Pack, A. I. Sleep deprivation induces the unfolded protein response in mouse cerebral cortex. J. Neurochem. 92, 1150–1157 (2005).

    CAS  PubMed  Google Scholar 

  111. Terao, A. et al. Differential increase in the expression of heat shock protein family members during sleep deprivation and during sleep. Neuroscience 116, 187–200 (2003).

    CAS  PubMed  Google Scholar 

  112. Shaw, P. J., Tononi, G., Greenspan, R. J. & Robinson, D. F. Stress response genes protect against lethal effects of sleep deprivation in Drosophila. Nature 417, 287–291 (2002).

    CAS  PubMed  Google Scholar 

  113. Franken, P., Dijk, D. J., Tobler, I. & Borbely, A. A. Sleep deprivation in rats: effects on EEG power spectra, vigilance states, and cortical temperature. Am. J. Physiol. 261, R198–R208 (1991).

    CAS  PubMed  Google Scholar 

  114. Nikonova, E. V. et al. Changes in components of energy regulation in mouse cortex with increases in wakefulness. Sleep 33, 889–900 (2010).

    PubMed  PubMed Central  Google Scholar 

  115. Denker, A. & Rizzoli, S. O. Synaptic vesicle pools: an update. Front. Synaptic Neurosci. 2, 135 (2010).

    PubMed  PubMed Central  Google Scholar 

  116. Esposito, G., Ana Clara, F. & Verstreken, P. Synaptic vesicle trafficking and Parkinson's disease. Dev. Neurobiol. 72, 134–144 (2011).

    Google Scholar 

  117. Vanden Berghe, P. & Klingauf, J. Synaptic vesicles in rat hippocampal boutons recycle to different pools in a use-dependent fashion. J. Physiol. 572, 707–720 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Burre, J. et al. α-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 329, 1663–1667 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Attwell, D. & Gibb, A. Neuroenergetics and the kinetic design of excitatory synapses. Nature Rev. Neurosci. 6, 841–849 (2005).

    CAS  Google Scholar 

  120. Hinard, V. et al. Key electrophysiological, molecular, and metabolic signatures of sleep and wakefulness revealed in primary cortical cultures. J. Neurosci. 32, 12506–12517 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Cirelli, C., Shaw, P. J., Rechtschaffen, A. & Tononi, G. No evidence of brain cell degeneration after long-term sleep deprivation in rats. Brain Res. 840, 184–193 (1999).

    CAS  PubMed  Google Scholar 

  122. Gopalakrishnan, A., Ji, L. L. & Cirelli, C. Sleep deprivation and cellular responses to oxidative stress. Sleep 27, 27–35 (2004).

    PubMed  Google Scholar 

  123. Vyazovskiy, V. V. & Tobler, I. Theta activity in the waking EEG is a marker of sleep propensity in the rat. Brain Res. 1050, 64–71 (2005).

    CAS  PubMed  Google Scholar 

  124. Okun, M., Naim, A. & Lampl, I. The subthreshold relation between cortical local field potential and neuronal firing unveiled by intracellular recordings in awake rats. J. Neurosci. 30, 4440–4448 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Cajochen, C., Wyatt, J. K., Czeisler, C. A. & Dijk, D. J. Separation of circadian and wake duration-dependent modulation of EEG activation during wakefulness. Neuroscience 114, 1047–1060 (2002).

    CAS  PubMed  Google Scholar 

  126. Finelli, L. A., Baumann, H., Borbely, A. A. & Achermann, P. Dual electroencephalogram markers of human sleep homeostasis: correlation between theta activity in waking and slow-wave activity in sleep. Neuroscience 101, 523–529 (2000).

    CAS  PubMed  Google Scholar 

  127. Landolt, H. P. et al. Caffeine attenuates waking and sleep electroencephalographic markers of sleep homeostasis in humans. Neuropsychopharmacology 29, 1933–1939 (2004).

    CAS  PubMed  Google Scholar 

  128. Leemburg, S. et al. Sleep homeostasis in the rat is preserved during chronic sleep restriction. Proc. Natl Acad. Sci. USA 107, 15939–15944 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Hung, C. S. et al. Local experience-dependent changes in the wake EEG after prolonged wakefulness. Sleep 36, 59–72 (2013).

    PubMed  PubMed Central  Google Scholar 

  130. Crochet, S. & Petersen, C. C. Correlating whisker behavior with membrane potential in barrel cortex of awake mice. Nature Neurosci. 9, 608–610 (2006).

    CAS  PubMed  Google Scholar 

  131. Haider, B., Duque, A., Hasenstaub, A. R., Yu, Y. & McCormick, D. A. Enhancement of visual responsiveness by spontaneous local network activity in vivo. J. Neurophysiol. 97, 4186–4202 (2007).

    PubMed  Google Scholar 

  132. Hasenstaub, A., Sachdev, R. N. & McCormick, D. A. State changes rapidly modulate cortical neuronal responsiveness. J. Neurosci. 27, 9607–9622 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Sachdev, R. N., Ebner, F. F. & Wilson, C. J. Effect of subthreshold up and down states on the whisker-evoked response in somatosensory cortex. J. Neurophysiol. 92, 3511–3521 (2004).

    PubMed  Google Scholar 

  134. Vyazovskiy, V. V., Olcese, U., Cirelli, C. & Tononi, G. Prolonged wakefulness alters neuronal responsiveness to local electrical stimulation of the neocortex in awake rats. J. Sleep Res. 21 Nov 2012 (doi:10.1111/jsr.12009).

    Google Scholar 

  135. Luczak, A., Bartho, P. & Harris, K. D. Gating of sensory input by spontaneous cortical activity. J. Neurosci. 33, 1684–1695 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Goard, M. & Dan, Y. Basal forebrain activation enhances cortical coding of natural scenes. Nature Neurosci. 12, 1444–1449 (2009).

    CAS  PubMed  Google Scholar 

  137. Marguet, S. L. & Harris, K. D. State-dependent representation of amplitude-modulated noise stimuli in rat auditory cortex. J. Neurosci. 31, 6414–6420 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Aeschbach, D. et al. Dynamics of the human EEG during prolonged wakefulness: evidence for frequency-specific circadian and homeostatic influences. Neurosci. Lett. 239, 121–124 (1997).

    CAS  PubMed  Google Scholar 

  139. Cajochen, C., Brunner, D. P., Krauchi, K., Graw, P. & Wirz-Justice, A. Power density in theta/α frequencies of the waking EEG progressively increases during sustained wakefulness. Sleep 18, 890–894 (1995).

    CAS  PubMed  Google Scholar 

  140. Oleksenko, A. I., Mukhametov, L. M., Polyakova, I. G., Supin, A. Y. & Kovalzon, V. M. Unihemispheric sleep deprivation in bottlenose dolphins. J. Sleep Res. 1, 40–44 (1992).

    CAS  PubMed  Google Scholar 

  141. Lyamin, O. I., Kosenko, P. O., Lapierre, J. L., Mukhametov, L. M. & Siegel, J. M. Fur seals display a strong drive for bilateral slow-wave sleep while on land. J. Neurosci. 28, 12614–12621 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Sanchez-Vives, M. V. et al. Inhibitory modulation of cortical up states. J. Neurophysiol. 104, 1314–1324 (2010).

    PubMed  Google Scholar 

  143. Chen, J. Y., Chauvette, S., Skorheim, S., Timofeev, I. & Bazhenov, M. Interneuron-mediated inhibition synchronizes neuronal activity during slow oscillation. J. Physiol. 590, 3987–4010 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Lamb, G. D. & Westerblad, H. Acute effects of reactive oxygen and nitrogen species on the contractile function of skeletal muscle. J. Physiol. 589, 2119–2127 (2011).

    CAS  PubMed  Google Scholar 

  145. Wang, T. A. et al. Circadian rhythm of redox state regulates excitability in suprachiasmatic nucleus neurons. Science 337, 839–842 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Kapas, L., Obal, F. Jr & Krueger, J. M. Humoral regulation of sleep. Int. Rev. Neurobiol. 35, 131–160 (1993).

    CAS  PubMed  Google Scholar 

  147. Obal, F. Jr & Krueger, J. M. Biochemical regulation of non-rapid-eye-movement sleep. Front. Biosci 8, d520–550 (2003).

    CAS  PubMed  Google Scholar 

  148. Porkka-Heiskanen, T. et al. Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science 276, 1265–1268 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Latini, S. & Pedata, F. Adenosine in the central nervous system: release mechanisms and extracellular concentrations. J. Neurochem. 79, 463–484 (2001).

    CAS  PubMed  Google Scholar 

  150. Krueger, J. M., Obal, F. J., Fang, J., Kubota, T. & Taishi, P. The role of cytokines in physiological sleep regulation. Ann. NY Acad. Sci. 933, 211–221 (2001).

    CAS  PubMed  Google Scholar 

  151. Kilduff, T. S., Cauli, B. & Gerashchenko, D. Activation of cortical interneurons during sleep: an anatomical link to homeostatic sleep regulation? Trends Neurosci. 34, 10–19 (2011).

    CAS  PubMed  Google Scholar 

  152. Kang, J. E. et al. Amyloid-β dynamics are regulated by orexin and the sleep-wake cycle. Science 326, 1005–1007 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Brown, R. E., Basheer, R., McKenna, J. T., Strecker, R. E. & McCarley, R. W. Control of sleep and wakefulness. Physiol. Rev. 92, 1087–1187 (2012).

    CAS  PubMed  Google Scholar 

  154. Kamenetz, F. et al. APP processing and synaptic function. Neuron 37, 925–937 (2003).

    CAS  PubMed  Google Scholar 

  155. Saper, C. B., Fuller, P. M., Pedersen, N. P., Lu, J. & Scammell, T. E. Sleep state switching. Neuron 68, 1023–1042 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Battaglia, F. P., Sutherland, G. R. & McNaughton, B. L. Hippocampal sharp wave bursts coincide with neocortical “up-state” transitions. Learn. Mem. 11, 697–704 (2004).

    PubMed  PubMed Central  Google Scholar 

  157. Sirota, A., Csicsvari, J., Buhl, D. & Buzsaki, G. Communication between neocortex and hippocampus during sleep in rodents. Proc. Natl Acad. Sci. USA 100, 2065–2069 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Isomura, Y. et al. Integration and segregation of activity in entorhinal-hippocampal subregions by neocortical slow oscillations. Neuron 52, 871–882 (2006).

    CAS  PubMed  Google Scholar 

  159. Ros, H., Sachdev, R. N., Yu, Y., Sestan, N. & McCormick, D. A. Neocortical networks entrain neuronal circuits in cerebellar cortex. J. Neurosci. 29, 10309–10320 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Timofeev, I. & Steriade, M. Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats. J. Neurophysiol. 76, 4152–4168 (1996).

    CAS  PubMed  Google Scholar 

  161. Cowan, R. L. & Wilson, C. J. Spontaneous firing patterns and axonal projections of single corticostriatal neurons in the rat medial agranular cortex. J. Neurophysiol. 71, 17–32 (1994).

    CAS  PubMed  Google Scholar 

  162. Lancel, M., van Riezen, H. & Glatt, A. Enhanced slow-wave activity within NREM sleep in the cortical and subcortical EEG of the cat after sleep deprivation. Sleep 15, 102–118 (1992).

    CAS  PubMed  Google Scholar 

  163. Khazipov, R. & Luhmann, H. J. Early patterns of electrical activity in the developing cerebral cortex of humans and rodents. Trends Neurosci. 29, 414–418 (2006).

    CAS  PubMed  Google Scholar 

  164. Nelson, A. B., Faraguna, U., Tononi, G. & Cirelli, C. Effects of anesthesia on the response to sleep deprivation. Sleep 33, 1659–1667 (2010).

    PubMed  PubMed Central  Google Scholar 

  165. Murphy, M. et al. Propofol anesthesia and sleep: a high-density EEG study. Sleep 34, 283–291 (2011).

    PubMed  PubMed Central  Google Scholar 

  166. Amzica, F. & Kroeger, D. Cellular mechanisms underlying EEG waveforms during coma. Epilepsia 52, 25–27 (2011).

    PubMed  Google Scholar 

  167. Marshall, L., Helgadottir, H., Molle, M. & Born, J. Boosting slow oscillations during sleep potentiates memory. Nature 444, 610–613 (2006).

    CAS  PubMed  Google Scholar 

  168. Moruzzi, G. The sleep-waking cycle. Ergeb. Physiol. 64, 1–165 (1972).

    CAS  PubMed  Google Scholar 

  169. Cirelli, C. & Tononi, G. Gene expression in the brain across the sleep-waking cycle. Brain Res. 885, 303–321 (2000).

    CAS  PubMed  Google Scholar 

  170. Vyazovskiy, V. V., Ruijgrok, G., Deboer, T. & Tobler, I. Running wheel accessibility affects the regional electroencephalogram during sleep in mice. Cereb. Cortex 16, 328–336 (2006).

    PubMed  Google Scholar 

  171. Vyazovskiy, V. V. & Tobler, I. The temporal structure of behaviour and sleep homeostasis. PLoS ONE 7, e50677 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Kim, Y., Park, M., Boghossian, S. & York, D. A. Three weeks voluntary running wheel exercise increases endoplasmic reticulum stress in the brain of mice. Brain Res. 1317, 13–23 (2010).

    CAS  PubMed  Google Scholar 

  173. Churchill, L. et al. Tumor necrosis factor α: activity dependent expression and promotion of cortical column sleep in rats. Neuroscience 156, 71–80 (2008).

    CAS  PubMed  Google Scholar 

  174. Xue, X. et al. Tumor necrosis factor α (TNFα) induces the unfolded protein response (UPR) in a reactive oxygen species (ROS)-dependent fashion, and the UPR counteracts ROS accumulation by TNFα. J. Biol. Chem. 280, 33917–33925 (2005).

    CAS  PubMed  Google Scholar 

  175. Roussel, B. D. et al. Endoplasmic reticulum dysfunction in neurological disease. Lancet Neurol. 12, 105–118 (2013).

    CAS  PubMed  Google Scholar 

  176. Gao, B. et al. Sleep disruption aggravates focal cerebral ischemia in the rat. Sleep 33, 879–887 (2010).

    PubMed  PubMed Central  Google Scholar 

  177. Du, F., Eid, T., Lothman, E. W., Kohler, C. & Schwarcz, R. Preferential neuronal loss in layer III of the medial entorhinal cortex in rat models of temporal lobe epilepsy. J. Neurosci. 15, 6301–6313 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Drexel, M., Preidt, A. P. & Sperk, G. Sequel of spontaneous seizures after kainic acid-induced status epilepticus and associated neuropathological changes in the subiculum and entorhinal cortex. Neuropharmacology 63, 806–817 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Fritsch, B. et al. Pathological alterations in GABAergic interneurons and reduced tonic inhibition in the basolateral amygdala during epileptogenesis. Neuroscience 163, 415–429 (2009).

    CAS  PubMed  Google Scholar 

  180. Arundine, M. & Tymianski, M. Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium 34, 325–337 (2003).

    CAS  PubMed  Google Scholar 

  181. Brennan, G. P. et al. Transgenic overexpression of 14-3-3 zeta protects hippocampus against endoplasmic reticulum stress and status epilepticus in vivo. PLoS ONE 8, e54491 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Murphy, N. et al. Depletion of 14-3-3 zeta elicits endoplasmic reticulum stress and cell death, and increases vulnerability to kainate-induced injury in mouse hippocampal cultures. J. Neurochem. 106, 978–988 (2008).

    CAS  PubMed  Google Scholar 

  183. Dauvilliers, Y. Insomnia in patients with neurodegenerative conditions. Sleep Med. 8, S27–S34 (2007).

    PubMed  Google Scholar 

  184. Frank, M. G. & Heller, H. C. The ontogeny of mammalian sleep: a reappraisal of alternative hypotheses. J. Sleep Res. 12, 25–34 (2003).

    PubMed  Google Scholar 

  185. Corner, M. & van der Togt, C. No phylogeny without ontogeny: a comparative and developmental search for the sources of sleep-like neural and behavioral rhythms. Neurosci. Bull. 28, 25–38 (2012).

    PubMed  PubMed Central  Google Scholar 

  186. Blumberg, M. S. Homology, correspondence, and continuity across development: the case of sleep. Dev. Psychobiol. 55, 92–100 (2013).

    PubMed  Google Scholar 

  187. Khazipov, R. et al. Early motor activity drives spindle bursts in the developing somatosensory cortex. Nature 432, 758–761 (2004).

    CAS  PubMed  Google Scholar 

  188. Dreyfus-Brisac, C. & Larroche, J. C. Discontinuous electroencephalograms in the premature newborn and at term. Electro-anatomo-clinical correlations. Rev. Electroencephalogr. Neurophysiol. Clin. 1, 95–99 (1971) (in French).

    CAS  PubMed  Google Scholar 

  189. Andre, M. et al. Electroencephalography in premature and full-term infants. Developmental features and glossary. Neurophysiol. Clin. 40, 59–124 (2010).

    CAS  PubMed  Google Scholar 

  190. Kroeger, D. & Amzica, F. Hypersensitivity of the anesthesia-induced comatose brain. J. Neurosci. 27, 10597–10607 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Katz, L. C. & Shatz, C. J. Synaptic activity and the construction of cortical circuits. Science 274, 1133–1138 (1996).

    CAS  PubMed  Google Scholar 

  192. Frank, M. G. & Heller, H. C. Development of diurnal organization of EEG slow-wave activity and slow-wave sleep in the rat. Am. J. Physiol. 273, R472–R478 (1997).

    CAS  PubMed  Google Scholar 

  193. Alfoldi, P., Tobler, I. & Borbely, A. A. Sleep regulation in rats during early development. Am. J. Physiol. 258, R634–R644 (1990).

    CAS  PubMed  Google Scholar 

  194. Kurth, S. et al. Characteristics of sleep slow waves in children and adolescents. Sleep 33, 475–480 (2010).

    PubMed  PubMed Central  Google Scholar 

  195. Kurth, S. et al. Mapping of cortical activity in the first two decades of life: a high-density sleep electroencephalogram study. J. Neurosci. 30, 13211–13219 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Jenni, O. G. & Carskadon, M. A. Spectral analysis of the sleep electroencephalogram during adolescence. Sleep 27, 774–783 (2004).

    PubMed  Google Scholar 

  197. Ohayon, M. M., Carskadon, M. A., Guilleminault, C. & Vitiello, M. V. Meta-analysis of quantitative sleep parameters from childhood to old age in healthy individuals: developing normative sleep values across the human lifespan. Sleep 27, 1255–1273 (2004).

    PubMed  Google Scholar 

  198. Maret, S., Faraguna, U., Nelson, A. B., Cirelli, C. & Tononi, G. Sleep and waking modulate spine turnover in the adolescent mouse cortex. Nature Neurosci. 14, 1418–1420 (2011).

    CAS  PubMed  Google Scholar 

  199. Shahbazian, F. M., Jacobs, M. & Lajtha, A. Regional and cellular differences in rat brain protein synthesis in vivo and in slices during development. Int. J. Dev. Neurosci. 4, 209–215 (1986).

    CAS  PubMed  Google Scholar 

  200. Sun, Y. et al. Rates of local cerebral protein synthesis in the rat during normal postnatal development. Am. J. Physiol. 268, R549–R561 (1995).

    CAS  PubMed  Google Scholar 

  201. Giuffrida, A. M. et al. Mitochondrial DNA, RNA, and protein synthesis in different regions of developing rat brain. Neurochem. Res. 4, 37–52 (1979).

    CAS  PubMed  Google Scholar 

  202. Lerner, M. P. & Johnson, T. C. Regulation of protein synthesis in developing mouse brain tissue. Alteration in ribosomal activity. J. Biol. Chem. 245, 1388–1393 (1970).

    CAS  PubMed  Google Scholar 

  203. Zhang, X., Szabo, E., Michalak, M. & Opas, M. Endoplasmic reticulum stress during the embryonic development of the central nervous system in the mouse. Int. J. Dev. Neurosci. 25, 455–463 (2007).

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank G. Buzsáki, A. A. Borbély and I. Tobler for valuable comments on the manuscript. The authors are supported by FP7-PEOPLE-CIG SleepNeed, PCIG11-GA-2012-322050 (to V.V.V.), US National Institutes of Health grant (R01DC009947), EPSRC (EP/I005102) and a Wellcome Trust Investigator award (to K.D.H.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vladyslav V. Vyazovskiy or Kenneth D. Harris.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vyazovskiy, V., Harris, K. Sleep and the single neuron: the role of global slow oscillations in individual cell rest. Nat Rev Neurosci 14, 443–451 (2013). https://doi.org/10.1038/nrn3494

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3494

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing