Sleep and the single neuron: the role of global slow oscillations in individual cell rest

Journal name:
Nature Reviews Neuroscience
Volume:
14,
Pages:
443–451
Year published:
DOI:
doi:10.1038/nrn3494
Published online

Abstract

Sleep is universal in animals, but its specific functions remain elusive. We propose that sleep's primary function is to allow individual neurons to perform prophylactic cellular maintenance. Just as muscle cells must rest after strenuous exercise to prevent long-term damage, brain cells must rest after intense synaptic activity. We suggest that periods of reduced synaptic input ('off periods' or 'down states') are necessary for such maintenance. This in turn requires a state of globally synchronized neuronal activity, reduced sensory input and behavioural immobility — the well-known manifestations of sleep.

At a glance

Figures

  1. Active and inactive states at the network and neuronal level.
    Figure 1: Active and inactive states at the network and neuronal level.

    A schematic depiction of the local field potential (LFP) recorded from deep cortical layers during spontaneous non-rapid eye movement sleep in a rat (top row), and a raster plot of the corresponding neuronal spiking activity of five individual neurons (middle row) are shown. Note that LFP slow waves are associated with generalized population silence (off periods), which alternates with periods of raised spiking activity (on periods), each of which lasts several hundred milliseconds. The bottom row shows a schematic representation of a membrane potential expected in one individual neuron within this network. Note that LFP slow waves and extracellular off periods are associated with a prominent membrane hyperpolarization (down state), which alternate regularly with periods of depolarization, when spiking propensity is increased (up state). MUA, multi-unit activity.

  2. Transient network silences (off periods) allow cellular rest at a single-neuron level.
    Figure 2: Transient network silences (off periods) allow cellular rest at a single-neuron level.

    We propose that the intense synaptic activity that is typical of active waking eventually leads to irreversible cellular damage if it is not compensated by intermittent periods of rest. This damage could occur through multiple pathways, including the accumulation of reactive oxygen species (ROS), repeated vesicle turnover, insufficient energy substrates for synthetic processes, increased brain temperature and accumulation of misfolded proteins in the endoplasmic reticulum lumen. These challenges trigger various stress responses that allow the cell to restore homeostasis. We suggest that a key effect of these stress responses is to produce 'neuronal fatigue' that reduces electrical excitability, promoting local or global off periods of generalized neuronal silence. These in turn reduce neuronal energy expenditure and lower the need to replace structures such as synaptic vesicles, allowing cells to perform essential maintenance before damage becomes irreversible.

  3. Global behavioural sleep provides conditions for single-cell rest by allowing sustained uninterrupted down states.
    Figure 3: Global behavioural sleep provides conditions for single-cell rest by allowing sustained uninterrupted down states.

    In early waking (stage 1), neurons can fire at their full capacity. As waking time progresses (stage 2), the need for cellular maintenance builds up as a result of prolonged synaptic and spiking activity. The resulting down states are short, localized and easily interrupted by inputs arising from distal neurons during waking. Although they may fulfil the prophylactic function of preventing permanent damage, this comes at a cost of reduced cognitive performance. During early deep sleep (stage 3), sustained uninterrupted down states occur across large cortical neuronal populations, efficiently providing cellular rest to a large number of neurons. Synchronized occurrence of down states results in the high-amplitude electroencephalogram (EEG) slow waves that are typical of early non-rapid eye movement sleep. As individual neurons obtain the necessary amount of rest (stage 4) they resume firing, and progressively smaller neuronal populations engage in synchronized down states. This results in the low-amplitude EEG slow waves that are typical of later sleep.

References

  1. Cirelli, C. & Tononi, G. Is sleep essential? PLoS Biol. 6, e216 (2008).
  2. Tobler, I. in Principles and Practice of Sleep Medicine (eds Kryger, M. H., Roth, T. & Dement, W. C.) 7790 (Saunders, 2005).
  3. Van Dongen, H. P., Maislin, G., Mullington, J. M. & Dinges, D. F. The cumulative cost of additional wakefulness: dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation. Sleep 26, 117126 (2003).
  4. Killgore, W. D. Effects of sleep deprivation on cognition. Prog. Brain Res. 185, 105129 (2010).
  5. McCoy, J. G. & Strecker, R. E. The cognitive cost of sleep lost. Neurobiol. Learn. Mem. 96, 564582 (2011).
  6. Lo, J. C. et al. Effects of partial and acute total sleep deprivation on performance across cognitive domains, individuals and circadian phase. PLoS ONE 7, e45987 (2012).
  7. Siegel, J. M. Clues to the functions of mammalian sleep. Nature 437, 12641271 (2005).
  8. Vassalli, A. & Dijk, D. J. Sleep function: current questions and new approaches. Eur. J. Neurosci. 29, 18301841 (2009).
  9. Steriade, M., Timofeev, I. & Grenier, F. Natural waking and sleep states: a view from inside neocortical neurons. J. Neurophysiol. 85, 19691985 (2001).
  10. Hobson, J. A. & McCarley, R. W. Cortical unit activity in sleep and waking. Electroencephalogr. Clin. Neurophysiol. 30, 97112 (1971).
  11. Buzsáki, G. Rhythms of the Brain (Oxford Univ. Press, 2006).
  12. Vyazovskiy, V. V. et al. Cortical firing and sleep homeostasis. Neuron 63, 865878 (2009).
  13. Verzeano, M. & Negishi, K. Neuronal activity in cortical and thalamic networks. J. Gen. Physiol. 43, 177195 (1960).
  14. Noda, H. & Adey, W. R. Firing of neuron pairs in cat association cortex during sleep and wakefulness. J. Neurophysiol. 33, 672684 (1970).
  15. Burns, B. D., Stean, J. P. & Webb, A. C. The effects of sleep on neurons in isolated cerebral cortex. Proc. R. Soc. Lond. B 206, 281291 (1979).
  16. Harris, K. D. & Thiele, A. Cortical state and attention. Nature Rev. Neurosci. 12, 509523 (2011).
  17. Crunelli, V. & Hughes, S. W. The slow (<1 Hz) rhythm of non-REM sleep: a dialogue between three cardinal oscillators. Nature Neurosci. 13, 917 (2009).
  18. Massimini, M., Huber, R., Ferrarelli, F., Hill, S. & Tononi, G. The sleep slow oscillation as a traveling wave. J. Neurosci. 24, 68626870 (2004).
  19. Nir, Y. et al. Regional slow waves and spindles in human sleep. Neuron 70, 153169 (2011).
  20. Buzsaki, G., Anastassiou, C. A. & Koch, C. The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes. Nature Rev. Neurosci. 13, 407420 (2012).
  21. Chauvette, S., Volgushev, M. & Timofeev, I. Origin of active states in local neocortical networks during slow sleep oscillation. Cereb. Cortex 20, 26602674 (2010).
  22. Poulet, J. F. & Petersen, C. C. Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice. Nature 454, 881885 (2008).
  23. Saleem, A. B., Chadderton, P., Apergis-Schoute, J., Harris, K. D. & Schultz, S. R. Methods for predicting cortical UP and DOWN states from the phase of deep layer local field potentials. J. Comput. Neurosci. 29, 4962 (2010).
  24. Okun, M. & Lampl, I. Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities. Nature Neurosci. 11, 535537 (2008).
  25. Mackiewicz, M. et al. Macromolecule biosynthesis: a key function of sleep. Physiol. Genomics 31, 441457 (2007).
  26. Reimund, E. The free radical flux theory of sleep. Med. Hypotheses 43, 231233 (1994).
  27. Inoue, S., Honda, K. & Komoda, Y. Sleep as neuronal detoxification and restitution. Behav. Brain Res. 69, 9196 (1995).
  28. Benington, J. H. & Heller, H. C. Restoration of brain energy metabolism as the function of sleep. Prog. Neurobiol. 45, 347360 (1995).
  29. Scharf, M. T., Naidoo, N., Zimmerman, J. E. & Pack, A. I. The energy hypothesis of sleep revisited. Prog. Neurobiol. 86, 264280 (2008).
  30. Buzsaki, G. Memory consolidation during sleep: a neurophysiological perspective. J. Sleep Res. 7, 1723 (1998).
  31. Sejnowski, T. J. & Destexhe, A. Why do we sleep? Brain Res. 886, 208223 (2000).
  32. Born, J., Rasch, B. & Gais, S. Sleep to remember. Neuroscientist 12, 410424 (2006).
  33. Tononi, G. & Cirelli, C. Time to be SHY? Some comments on sleep and synaptic homeostasis. Neural Plast. 2012, 415250 (2012).
  34. Hernandez, P. J. & Abel, T. A molecular basis for interactions between sleep and memory. Sleep Med. Clin. 6, 7184 (2011).
  35. Yoo, S. S., Hu, P. T., Gujar, N., Jolesz, F. A. & Walker, M. P. A deficit in the ability to form new human memories without sleep. Nature Neurosci. 10, 385392 (2007).
  36. Krueger, J. M. & Tononi, G. Local use-dependent sleep; synthesis of the new paradigm. Curr. Top. Med. Chem. 11, 24902492 (2011).
  37. Tononi, G. & Cirelli, C. Sleep function and synaptic homeostasis. Sleep Med. Rev. 10, 4962 (2006).
  38. Frank, M. G. The mystery of sleep function: current perspectives and future directions. Rev. Neurosci. 17, 375392 (2006).
  39. Wilson, M. A. & McNaughton, B. L. Reactivation of hippocampal ensemble memories during sleep. Science 265, 676679 (1994).
  40. Ji, D. & Wilson, M. A. Coordinated memory replay in the visual cortex and hippocampus during sleep. Nature Neurosci. 10, 100107 (2007).
  41. Fujisawa, S. & Buzsaki, G. A. 4 Hz oscillation adaptively synchronizes prefrontal, VTA, and hippocampal activities. Neuron 72, 153165 (2011).
  42. Tononi, G., Massimini, M. & Riedner, B. A. Sleepy dialogues between cortex and hippocampus: who talks to whom? Neuron 52, 748749 (2006).
  43. Molle, M. & Born, J. Slow oscillations orchestrating fast oscillations and memory consolidation. Prog. Brain Res. 193, 93110 (2011).
  44. Logothetis, N. K. et al. Hippocampal–cortical interaction during periods of subcortical silence. Nature 491, 547553 (2012).
  45. Frank, M. G. Erasing synapses in sleep: is it time to be SHY? Neural Plast. 2012, 264378 (2012).
  46. Diekelmann, S. & Born, J. The memory function of sleep. Nature Rev. Neurosci. 11, 114126 (2010).
  47. Goel, N., Rao, H., Durmer, J. S. & Dinges, D. F. Neurocognitive consequences of sleep deprivation. Semin. Neurol. 29, 320339 (2009).
  48. Doran, S. M., Van Dongen, H. P. & Dinges, D. F. Sustained attention performance during sleep deprivation: evidence of state instability. Arch. Ital. Biol. 139, 253267 (2001).
  49. Van Dongen, H. P., Belenky, G. & Krueger, J. M. A local, bottom-up perspective on sleep deprivation and neurobehavioral performance. Curr. Top. Med. Chem. 11, 24142422 (2011).
  50. Piantoni, G. et al. Individual differences in white matter diffusion affect sleep oscillations. J. Neurosci. 33, 227233 (2013).
  51. Vyazovskiy, V. V. et al. Local sleep in awake rats. Nature 472, 443447 (2011).
  52. Leger, J. F., Stern, E. A., Aertsen, A. & Heck, D. Synaptic integration in rat frontal cortex shaped by network activity. J. Neurophysiol. 93, 281293 (2005).
  53. Petersen, C. C., Hahn, T. T., Mehta, M., Grinvald, A. & Sakmann, B. Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex. Proc. Natl Acad. Sci. USA 100, 1363813643 (2003).
  54. Constantinople, C. M. & Bruno, R. M. Effects and mechanisms of wakefulness on local cortical networks. Neuron 69, 10611068 (2011).
  55. Krueger, J. M. et al. Sleep as a fundamental property of neuronal assemblies. Nature Rev. Neurosci. 9, 910919 (2008).
  56. Rattenborg, N. C., Lima, S. L. & Lesku, J. A. Sleep locally, act globally. Neuroscientist 18, 533546 (2012).
  57. Borbely, A. A. A two process model of sleep regulation. Hum. Neurobiol. 1, 195204 (1982).
  58. Borbély, A. A. & Achermann, P. in Principles and Practice of Sleep Medicine (eds Kryger, M. H., Roth, T. & Dement, W. C.) 405417 (Saunders, 2005).
  59. Ferrara, M., De Gennaro, L., Casagrande, M. & Bertini, M. Auditory arousal thresholds after selective slow-wave sleep deprivation. Clin. Neurophysiol. 110, 21482152 (1999).
  60. Daan, S., Beersma, D. G. & Borbely, A. A. Timing of human sleep: recovery process gated by a circadian pacemaker. Am. J. Physiol. 246, R161R183 (1984).
  61. Achermann, P., Dijk, D. J., Brunner, D. P. & Borbely, A. A. A model of human sleep homeostasis based on EEG slow-wave activity: quantitative comparison of data and simulations. Brain Res. Bull. 31, 97113 (1993).
  62. Franken, P., Chollet, D. & Tafti, M. The homeostatic regulation of sleep need is under genetic control. J. Neurosci. 21, 26102621 (2001).
  63. Tobler, I. & Borbely, A. A. Sleep EEG in the rat as a function of prior waking. Electroencephalogr. Clin. Neurophysiol. 64, 7476 (1986).
  64. Vyazovskiy, V. V., Achermann, P. & Tobler, I. Sleep homeostasis in the rat in the light and dark period. Brain Res. Bull. 74, 3744 (2007).
  65. Vyazovskiy, V., Borbely, A. A. & Tobler, I. Unilateral vibrissae stimulation during waking induces interhemispheric EEG asymmetry during subsequent sleep in the rat. J. Sleep Res. 9, 367371 (2000).
  66. Kristiansen, K. & Courtois, G. Rhythmic electrical activity from isolated cerebral cortex. Electroencephalogr. Clin. Neurophysiol. 1, 265272 (1949).
  67. Krueger, J. M. & Obal, F. A neuronal group theory of sleep function. J. Sleep Res. 2, 6369 (1993).
  68. Pigarev, I. N., Nothdurft, H. C. & Kastner, S. Evidence for asynchronous development of sleep in cortical areas. Neuroreport 8, 25572560 (1997).
  69. Mukhametov, L. M., Supin, A. Y. & Polyakova, I. G. Interhemispheric asymmetry of the electroencephalographic sleep patterns in dolphins. Brain Res. 134, 581584 (1977).
  70. Lyamin, O. I., Pavlova, I. F., Kosenko, P. O., Mukhametov, L. M. & Siegel, J. M. Regional differences in cortical electroencephalogram (EEG) slow wave activity and interhemispheric EEG asymmetry in the fur seal. J. Sleep Res. 21, 603611 (2012).
  71. Werth, E., Achermann, P. & Borbely, A. A. Brain topography of the human sleep EEG: antero-posterior shifts of spectral power. Neuroreport 8, 123127 (1996).
  72. Cajochen, C., Foy, R. & Dijk, D. J. Frontal predominance of a relative increase in sleep delta and theta EEG activity after sleep loss in humans. Sleep Res. Online 2, 6569 (1999).
  73. Huber, R., Deboer, T. & Tobler, I. Topography of EEG dynamics after sleep deprivation in mice. J. Neurophysiol. 84, 18881893 (2000).
  74. Vyazovskiy, V. V. & Tobler, I. Regional differences in NREM sleep slow-wave activity in mice with congenital callosal dysgenesis. J. Sleep Res. 14, 299304 (2005).
  75. Vyazovskiy, V. V., Borbely, A. A. & Tobler, I. Interhemispheric sleep EEG asymmetry in the rat is enhanced by sleep deprivation. J. Neurophysiol. 88, 22802286 (2002).
  76. Achermann, P., Finelli, L. A. & Borbely, A. A. Unihemispheric enhancement of delta power in human frontal sleep EEG by prolonged wakefulness. Brain Res. 913, 220223 (2001).
  77. Destexhe, A., Contreras, D. & Steriade, M. Spatiotemporal analysis of local field potentials and unit discharges in cat cerebral cortex during natural wake and sleep states. J. Neurosci. 19, 45954608 (1999).
  78. Volgushev, M., Chauvette, S., Mukovski, M. & Timofeev, I. Precise long-range synchronization of activity and silence in neocortical neurons during slow-wave oscillations [corrected]. J. Neurosci. 26, 56655672 (2006).
  79. Luczak, A., Bartho, P., Marguet, S. L., Buzsaki, G. & Harris, K. D. Sequential structure of neocortical spontaneous activity in vivo. Proc. Natl Acad. Sci. USA 104, 347352 (2007).
  80. Mohajerani, M. H., McVea, D. A., Fingas, M. & Murphy, T. H. Mirrored bilateral slow-wave cortical activity within local circuits revealed by fast bihemispheric voltage-sensitive dye imaging in anesthetized and awake mice. J. Neurosci. 30, 37453751 (2010).
  81. Sirota, A. & Buzsaki, G. Interaction between neocortical and hippocampal networks via slow oscillations. Thalamus Relat. Syst. 3, 245259 (2005).
  82. Vyazovskiy, V. V., Faraguna, U., Cirelli, C. & Tononi, G. Triggering slow waves during NREM sleep in the rat by intracortical electrical stimulation: effects of sleep/wake history and background activity. J. Neurophysiol. 101, 19211931 (2009).
  83. Kattler, H., Dijk, D. J. & Borbely, A. A. Effect of unilateral somatosensory stimulation prior to sleep on the sleep EEG in humans. J. Sleep Res. 3, 159164 (1994).
  84. Vyazovskiy, V. V., Welker, E., Fritschy, J. M. & Tobler, I. Regional pattern of metabolic activation is reflected in the sleep EEG after sleep deprivation combined with unilateral whisker stimulation in mice. Eur. J. Neurosci. 20, 13631370 (2004).
  85. Huber, R., Ghilardi, M. F., Massimini, M. & Tononi, G. Local sleep and learning. Nature 430, 7881 (2004).
  86. Vyazovskiy, V. V. & Tobler, I. Handedness leads to interhemispheric EEG asymmetry during sleep in the rat. J. Neurophysiol. 99, 969975 (2008).
  87. Miyamoto, H., Katagiri, H. & Hensch, T. Experience-dependent slow-wave sleep development. Nature Neurosci. 6, 553554 (2003).
  88. Dang-Vu, T. T. et al. Neuroimaging in sleep medicine. Sleep Med. 8, 349372 (2007).
  89. Hofle, N. et al. Regional cerebral blood flow changes as a function of delta and spindle activity during slow wave sleep in humans. J. Neurosci. 17, 48004808 (1997).
  90. Vyazovskiy, V., Achermann, P., Borbely, A. A. & Tobler, I. Interhemispheric coherence of the sleep electroencephalogram in mice with congenital callosal dysgenesis. Neuroscience 124, 481488 (2004).
  91. Riedner, B. A. et al. Sleep homeostasis and cortical synchronization: III. A high-density EEG study of sleep slow waves in humans. Sleep 30, 16431657 (2007).
  92. Kultz, D. Molecular and evolutionary basis of the cellular stress response. Annu. Rev. Physiol. 67, 225257 (2005).
  93. Kourtis, N. & Tavernarakis, N. Cellular stress response pathways and ageing: intricate molecular relationships. EMBO J. 30, 25202531 (2011).
  94. Martindale, J. L. & Holbrook, N. J. Cellular response to oxidative stress: signaling for suicide and survival. J. Cell. Physiol. 192, 115 (2002).
  95. Richter, K., Haslbeck, M. & Buchner, J. The heat shock response: life on the verge of death. Mol. Cell 40, 253266 (2010).
  96. Walter, P. & Ron, D. The unfolded protein response: from stress pathway to homeostatic regulation. Science 334, 10811086 (2011).
  97. Groenendyk, J. Sreenivasaiah, P. K., Kim do, H., Agellon, L. B. & Michalak, M. Biology of endoplasmic reticulum stress in the heart. Circ. Res. 107, 11851197 (2010).
  98. Doyle, K. M. et al. Unfolded proteins and endoplasmic reticulum stress in neurodegenerative disorders. J. Cell. Mol. Med. 15, 20252039 (2011).
  99. Allen, D. G., Lamb, G. D. & Westerblad, H. Skeletal muscle fatigue: cellular mechanisms. Physiol. Rev. 88, 287332 (2008).
  100. Garland, S. J. & Gossen, E. R. The muscular wisdom hypothesis in human muscle fatigue. Exerc. Sport Sci. Rev. 30, 4549 (2002).
  101. Powers, S. K. & Jackson, M. J. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol. Rev. 88, 12431276 (2008).
  102. Westerblad, H. & Allen, D. G. Emerging roles of ROS/RNS in muscle function and fatigue. Antioxid. Redox Signal. 15, 24872499 (2011).
  103. Keyser, R. E. Peripheral fatigue: high-energy phosphates and hydrogen ions. PM R 2, 347358 (2010).
  104. Fitts, R. H. The cross-bridge cycle and skeletal muscle fatigue. J. Appl. Physiol. 104, 551558 (2008).
  105. Debold, E. P. Recent insights into muscle fatigue at the cross-bridge level. Front. Physiol. 3, 151 (2012).
  106. Salo, D. C., Donovan, C. M. & Davies, K. J. HSP70 and other possible heat shock or oxidative stress proteins are induced in skeletal muscle, heart, and liver during exercise. Free Radic. Biol. Med. 11, 239246 (1991).
  107. MacIntosh, B. R., Holash, R. J. & Renaud, J. M. Skeletal muscle fatigue-regulation of excitation-contraction coupling to avoid metabolic catastrophe. J. Cell Sci. 125, 21052114 (2012).
  108. Wu, J. et al. The unfolded protein response mediates adaptation to exercise in skeletal muscle through a PGC-1α/ATF6α complex. Cell Metab. 13, 160169 (2011).
  109. Cirelli, C., Gutierrez, C. M. & Tononi, G. Extensive and divergent effects of sleep and wakefulness on brain gene expression. Neuron 41, 3543 (2004).
  110. Naidoo, N., Giang, W., Galante, R. J. & Pack, A. I. Sleep deprivation induces the unfolded protein response in mouse cerebral cortex. J. Neurochem. 92, 11501157 (2005).
  111. Terao, A. et al. Differential increase in the expression of heat shock protein family members during sleep deprivation and during sleep. Neuroscience 116, 187200 (2003).
  112. Shaw, P. J., Tononi, G., Greenspan, R. J. & Robinson, D. F. Stress response genes protect against lethal effects of sleep deprivation in Drosophila. Nature 417, 287291 (2002).
  113. Franken, P., Dijk, D. J., Tobler, I. & Borbely, A. A. Sleep deprivation in rats: effects on EEG power spectra, vigilance states, and cortical temperature. Am. J. Physiol. 261, R198R208 (1991).
  114. Nikonova, E. V. et al. Changes in components of energy regulation in mouse cortex with increases in wakefulness. Sleep 33, 889900 (2010).
  115. Denker, A. & Rizzoli, S. O. Synaptic vesicle pools: an update. Front. Synaptic Neurosci. 2, 135 (2010).
  116. Esposito, G., Ana Clara, F. & Verstreken, P. Synaptic vesicle trafficking and Parkinson's disease. Dev. Neurobiol. 72, 134144 (2011).
  117. Vanden Berghe, P. & Klingauf, J. Synaptic vesicles in rat hippocampal boutons recycle to different pools in a use-dependent fashion. J. Physiol. 572, 707720 (2006).
  118. Burre, J. et al. α-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 329, 16631667 (2010).
  119. Attwell, D. & Gibb, A. Neuroenergetics and the kinetic design of excitatory synapses. Nature Rev. Neurosci. 6, 841849 (2005).
  120. Hinard, V. et al. Key electrophysiological, molecular, and metabolic signatures of sleep and wakefulness revealed in primary cortical cultures. J. Neurosci. 32, 1250612517 (2012).
  121. Cirelli, C., Shaw, P. J., Rechtschaffen, A. & Tononi, G. No evidence of brain cell degeneration after long-term sleep deprivation in rats. Brain Res. 840, 184193 (1999).
  122. Gopalakrishnan, A., Ji, L. L. & Cirelli, C. Sleep deprivation and cellular responses to oxidative stress. Sleep 27, 2735 (2004).
  123. Vyazovskiy, V. V. & Tobler, I. Theta activity in the waking EEG is a marker of sleep propensity in the rat. Brain Res. 1050, 6471 (2005).
  124. Okun, M., Naim, A. & Lampl, I. The subthreshold relation between cortical local field potential and neuronal firing unveiled by intracellular recordings in awake rats. J. Neurosci. 30, 44404448 (2010).
  125. Cajochen, C., Wyatt, J. K., Czeisler, C. A. & Dijk, D. J. Separation of circadian and wake duration-dependent modulation of EEG activation during wakefulness. Neuroscience 114, 10471060 (2002).
  126. Finelli, L. A., Baumann, H., Borbely, A. A. & Achermann, P. Dual electroencephalogram markers of human sleep homeostasis: correlation between theta activity in waking and slow-wave activity in sleep. Neuroscience 101, 523529 (2000).
  127. Landolt, H. P. et al. Caffeine attenuates waking and sleep electroencephalographic markers of sleep homeostasis in humans. Neuropsychopharmacology 29, 19331939 (2004).
  128. Leemburg, S. et al. Sleep homeostasis in the rat is preserved during chronic sleep restriction. Proc. Natl Acad. Sci. USA 107, 1593915944 (2010).
  129. Hung, C. S. et al. Local experience-dependent changes in the wake EEG after prolonged wakefulness. Sleep 36, 5972 (2013).
  130. Crochet, S. & Petersen, C. C. Correlating whisker behavior with membrane potential in barrel cortex of awake mice. Nature Neurosci. 9, 608610 (2006).
  131. Haider, B., Duque, A., Hasenstaub, A. R., Yu, Y. & McCormick, D. A. Enhancement of visual responsiveness by spontaneous local network activity in vivo. J. Neurophysiol. 97, 41864202 (2007).
  132. Hasenstaub, A., Sachdev, R. N. & McCormick, D. A. State changes rapidly modulate cortical neuronal responsiveness. J. Neurosci. 27, 96079622 (2007).
  133. Sachdev, R. N., Ebner, F. F. & Wilson, C. J. Effect of subthreshold up and down states on the whisker-evoked response in somatosensory cortex. J. Neurophysiol. 92, 35113521 (2004).
  134. Vyazovskiy, V. V., Olcese, U., Cirelli, C. & Tononi, G. Prolonged wakefulness alters neuronal responsiveness to local electrical stimulation of the neocortex in awake rats. J. Sleep Res. 21 Nov 2012 (doi:doi:10.1111/jsr.12009).
  135. Luczak, A., Bartho, P. & Harris, K. D. Gating of sensory input by spontaneous cortical activity. J. Neurosci. 33, 16841695 (2013).
  136. Goard, M. & Dan, Y. Basal forebrain activation enhances cortical coding of natural scenes. Nature Neurosci. 12, 14441449 (2009).
  137. Marguet, S. L. & Harris, K. D. State-dependent representation of amplitude-modulated noise stimuli in rat auditory cortex. J. Neurosci. 31, 64146420 (2011).
  138. Aeschbach, D. et al. Dynamics of the human EEG during prolonged wakefulness: evidence for frequency-specific circadian and homeostatic influences. Neurosci. Lett. 239, 121124 (1997).
  139. Cajochen, C., Brunner, D. P., Krauchi, K., Graw, P. & Wirz-Justice, A. Power density in theta/α frequencies of the waking EEG progressively increases during sustained wakefulness. Sleep 18, 890894 (1995).
  140. Oleksenko, A. I., Mukhametov, L. M., Polyakova, I. G., Supin, A. Y. & Kovalzon, V. M. Unihemispheric sleep deprivation in bottlenose dolphins. J. Sleep Res. 1, 4044 (1992).
  141. Lyamin, O. I., Kosenko, P. O., Lapierre, J. L., Mukhametov, L. M. & Siegel, J. M. Fur seals display a strong drive for bilateral slow-wave sleep while on land. J. Neurosci. 28, 1261412621 (2008).
  142. Sanchez-Vives, M. V. et al. Inhibitory modulation of cortical up states. J. Neurophysiol. 104, 13141324 (2010).
  143. Chen, J. Y., Chauvette, S., Skorheim, S., Timofeev, I. & Bazhenov, M. Interneuron-mediated inhibition synchronizes neuronal activity during slow oscillation. J. Physiol. 590, 39874010 (2012).
  144. Lamb, G. D. & Westerblad, H. Acute effects of reactive oxygen and nitrogen species on the contractile function of skeletal muscle. J. Physiol. 589, 21192127 (2011).
  145. Wang, T. A. et al. Circadian rhythm of redox state regulates excitability in suprachiasmatic nucleus neurons. Science 337, 839842 (2012).
  146. Kapas, L., Obal, F.Jr & Krueger, J. M. Humoral regulation of sleep. Int. Rev. Neurobiol. 35, 131160 (1993).
  147. Obal, F.Jr & Krueger, J. M. Biochemical regulation of non-rapid-eye-movement sleep. Front. Biosci 8, d520550 (2003).
  148. Porkka-Heiskanen, T. et al. Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science 276, 12651268 (1997).
  149. Latini, S. & Pedata, F. Adenosine in the central nervous system: release mechanisms and extracellular concentrations. J. Neurochem. 79, 463484 (2001).
  150. Krueger, J. M., Obal, F. J., Fang, J., Kubota, T. & Taishi, P. The role of cytokines in physiological sleep regulation. Ann. NY Acad. Sci. 933, 211221 (2001).
  151. Kilduff, T. S., Cauli, B. & Gerashchenko, D. Activation of cortical interneurons during sleep: an anatomical link to homeostatic sleep regulation? Trends Neurosci. 34, 1019 (2011).
  152. Kang, J. E. et al. Amyloid-β dynamics are regulated by orexin and the sleep-wake cycle. Science 326, 10051007 (2009).
  153. Brown, R. E., Basheer, R., McKenna, J. T., Strecker, R. E. & McCarley, R. W. Control of sleep and wakefulness. Physiol. Rev. 92, 10871187 (2012).
  154. Kamenetz, F. et al. APP processing and synaptic function. Neuron 37, 925937 (2003).
  155. Saper, C. B., Fuller, P. M., Pedersen, N. P., Lu, J. & Scammell, T. E. Sleep state switching. Neuron 68, 10231042 (2010).
  156. Battaglia, F. P., Sutherland, G. R. & McNaughton, B. L. Hippocampal sharp wave bursts coincide with neocortical “up-state” transitions. Learn. Mem. 11, 697704 (2004).
  157. Sirota, A., Csicsvari, J., Buhl, D. & Buzsaki, G. Communication between neocortex and hippocampus during sleep in rodents. Proc. Natl Acad. Sci. USA 100, 20652069 (2003).
  158. Isomura, Y. et al. Integration and segregation of activity in entorhinal-hippocampal subregions by neocortical slow oscillations. Neuron 52, 871882 (2006).
  159. Ros, H., Sachdev, R. N., Yu, Y., Sestan, N. & McCormick, D. A. Neocortical networks entrain neuronal circuits in cerebellar cortex. J. Neurosci. 29, 1030910320 (2009).
  160. Timofeev, I. & Steriade, M. Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats. J. Neurophysiol. 76, 41524168 (1996).
  161. Cowan, R. L. & Wilson, C. J. Spontaneous firing patterns and axonal projections of single corticostriatal neurons in the rat medial agranular cortex. J. Neurophysiol. 71, 1732 (1994).
  162. Lancel, M., van Riezen, H. & Glatt, A. Enhanced slow-wave activity within NREM sleep in the cortical and subcortical EEG of the cat after sleep deprivation. Sleep 15, 102118 (1992).
  163. Khazipov, R. & Luhmann, H. J. Early patterns of electrical activity in the developing cerebral cortex of humans and rodents. Trends Neurosci. 29, 414418 (2006).
  164. Nelson, A. B., Faraguna, U., Tononi, G. & Cirelli, C. Effects of anesthesia on the response to sleep deprivation. Sleep 33, 16591667 (2010).
  165. Murphy, M. et al. Propofol anesthesia and sleep: a high-density EEG study. Sleep 34, 283291 (2011).
  166. Amzica, F. & Kroeger, D. Cellular mechanisms underlying EEG waveforms during coma. Epilepsia 52, 2527 (2011).
  167. Marshall, L., Helgadottir, H., Molle, M. & Born, J. Boosting slow oscillations during sleep potentiates memory. Nature 444, 610613 (2006).
  168. Moruzzi, G. The sleep-waking cycle. Ergeb. Physiol. 64, 1165 (1972).
  169. Cirelli, C. & Tononi, G. Gene expression in the brain across the sleep-waking cycle. Brain Res. 885, 303321 (2000).
  170. Vyazovskiy, V. V., Ruijgrok, G., Deboer, T. & Tobler, I. Running wheel accessibility affects the regional electroencephalogram during sleep in mice. Cereb. Cortex 16, 328336 (2006).
  171. Vyazovskiy, V. V. & Tobler, I. The temporal structure of behaviour and sleep homeostasis. PLoS ONE 7, e50677 (2012).
  172. Kim, Y., Park, M., Boghossian, S. & York, D. A. Three weeks voluntary running wheel exercise increases endoplasmic reticulum stress in the brain of mice. Brain Res. 1317, 1323 (2010).
  173. Churchill, L. et al. Tumor necrosis factor α: activity dependent expression and promotion of cortical column sleep in rats. Neuroscience 156, 7180 (2008).
  174. Xue, X. et al. Tumor necrosis factor α (TNFα) induces the unfolded protein response (UPR) in a reactive oxygen species (ROS)-dependent fashion, and the UPR counteracts ROS accumulation by TNFα. J. Biol. Chem. 280, 3391733925 (2005).
  175. Roussel, B. D. et al. Endoplasmic reticulum dysfunction in neurological disease. Lancet Neurol. 12, 105118 (2013).
  176. Gao, B. et al. Sleep disruption aggravates focal cerebral ischemia in the rat. Sleep 33, 879887 (2010).
  177. Du, F., Eid, T., Lothman, E. W., Kohler, C. & Schwarcz, R. Preferential neuronal loss in layer III of the medial entorhinal cortex in rat models of temporal lobe epilepsy. J. Neurosci. 15, 63016313 (1995).
  178. Drexel, M., Preidt, A. P. & Sperk, G. Sequel of spontaneous seizures after kainic acid-induced status epilepticus and associated neuropathological changes in the subiculum and entorhinal cortex. Neuropharmacology 63, 806817 (2012).
  179. Fritsch, B. et al. Pathological alterations in GABAergic interneurons and reduced tonic inhibition in the basolateral amygdala during epileptogenesis. Neuroscience 163, 415429 (2009).
  180. Arundine, M. & Tymianski, M. Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium 34, 325337 (2003).
  181. Brennan, G. P. et al. Transgenic overexpression of 14-3-3 zeta protects hippocampus against endoplasmic reticulum stress and status epilepticus in vivo. PLoS ONE 8, e54491 (2013).
  182. Murphy, N. et al. Depletion of 14-3-3 zeta elicits endoplasmic reticulum stress and cell death, and increases vulnerability to kainate-induced injury in mouse hippocampal cultures. J. Neurochem. 106, 978988 (2008).
  183. Dauvilliers, Y. Insomnia in patients with neurodegenerative conditions. Sleep Med. 8, S27S34 (2007).
  184. Frank, M. G. & Heller, H. C. The ontogeny of mammalian sleep: a reappraisal of alternative hypotheses. J. Sleep Res. 12, 2534 (2003).
  185. Corner, M. & van der Togt, C. No phylogeny without ontogeny: a comparative and developmental search for the sources of sleep-like neural and behavioral rhythms. Neurosci. Bull. 28, 2538 (2012).
  186. Blumberg, M. S. Homology, correspondence, and continuity across development: the case of sleep. Dev. Psychobiol. 55, 92100 (2013).
  187. Khazipov, R. et al. Early motor activity drives spindle bursts in the developing somatosensory cortex. Nature 432, 758761 (2004).
  188. Dreyfus-Brisac, C. & Larroche, J. C. Discontinuous electroencephalograms in the premature newborn and at term. Electro-anatomo-clinical correlations. Rev. Electroencephalogr. Neurophysiol. Clin. 1, 9599 (1971) (in French).
  189. Andre, M. et al. Electroencephalography in premature and full-term infants. Developmental features and glossary. Neurophysiol. Clin. 40, 59124 (2010).
  190. Kroeger, D. & Amzica, F. Hypersensitivity of the anesthesia-induced comatose brain. J. Neurosci. 27, 1059710607 (2007).
  191. Katz, L. C. & Shatz, C. J. Synaptic activity and the construction of cortical circuits. Science 274, 11331138 (1996).
  192. Frank, M. G. & Heller, H. C. Development of diurnal organization of EEG slow-wave activity and slow-wave sleep in the rat. Am. J. Physiol. 273, R472R478 (1997).
  193. Alfoldi, P., Tobler, I. & Borbely, A. A. Sleep regulation in rats during early development. Am. J. Physiol. 258, R634R644 (1990).
  194. Kurth, S. et al. Characteristics of sleep slow waves in children and adolescents. Sleep 33, 475480 (2010).
  195. Kurth, S. et al. Mapping of cortical activity in the first two decades of life: a high-density sleep electroencephalogram study. J. Neurosci. 30, 1321113219 (2010).
  196. Jenni, O. G. & Carskadon, M. A. Spectral analysis of the sleep electroencephalogram during adolescence. Sleep 27, 774783 (2004).
  197. Ohayon, M. M., Carskadon, M. A., Guilleminault, C. & Vitiello, M. V. Meta-analysis of quantitative sleep parameters from childhood to old age in healthy individuals: developing normative sleep values across the human lifespan. Sleep 27, 12551273 (2004).
  198. Maret, S., Faraguna, U., Nelson, A. B., Cirelli, C. & Tononi, G. Sleep and waking modulate spine turnover in the adolescent mouse cortex. Nature Neurosci. 14, 14181420 (2011).
  199. Shahbazian, F. M., Jacobs, M. & Lajtha, A. Regional and cellular differences in rat brain protein synthesis in vivo and in slices during development. Int. J. Dev. Neurosci. 4, 209215 (1986).
  200. Sun, Y. et al. Rates of local cerebral protein synthesis in the rat during normal postnatal development. Am. J. Physiol. 268, R549R561 (1995).
  201. Giuffrida, A. M. et al. Mitochondrial DNA, RNA, and protein synthesis in different regions of developing rat brain. Neurochem. Res. 4, 3752 (1979).
  202. Lerner, M. P. & Johnson, T. C. Regulation of protein synthesis in developing mouse brain tissue. Alteration in ribosomal activity. J. Biol. Chem. 245, 13881393 (1970).
  203. Zhang, X., Szabo, E., Michalak, M. & Opas, M. Endoplasmic reticulum stress during the embryonic development of the central nervous system in the mouse. Int. J. Dev. Neurosci. 25, 455463 (2007).

Download references

Author information

Affiliations

  1. Vladyslav V. Vyazovskiy is at the University of Surrey, Faculty of Health and Medical Sciences, Department of Biochemistry and Physiology, Guildford, GU2 7XH, UK.

  2. Kenneth D. Harris is at the University College London (UCL) Institute of Neurology, UCL Department of Neuroscience, Physiology, and Pharmacology, London, WC1E 6DE, UK.

Competing interests statement

The authors declare no competing interests.

Corresponding authors

Correspondence to:

Author details

  • Vladyslav V. Vyazovskiy

    Vladyslav V. Vyazovskiy earned an M.Sc. in physiology from Kharkov National University, Kharkiv, Ukraine, and acquired a Ph.D. degree from the University of Zurich, Switzerland. Between 2005–2011, he was a postdoctoral researcher and then Assistant and Associate Scientist at the University of Wisconsin–Madison, Wisconsin, USA. He is now a lecturer in Sleep and Chronobiology at the Department of Biochemistry and Physiology, Faculty of Health and Medical Sciences of the University of Surrey, Guildford, UK. His research is devoted to studying spatiotemporal organization of brain activity during waking and sleep.

  • Kenneth D. Harris

    Kenneth D. Harris obtained a B.A. in mathematics from the University of Cambridge, UK, and a Ph.D. from University College London, UK. He conducted postdoctoral and faculty work at Rutgers University, Newark, New Jersey, USA, and Imperial College London, UK, and is now a professor at University College London, where he studies information processing by cortical populations.

Additional data