Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Getting neural circuits into shape with semaphorins

Key Points

  • The semaphorins are a family of membrane-associated and secreted proteins that mediate diverse aspects of neural circuit development, ranging from neuron migration to repulsive axon guidance and synapse formation. In neurons, semaphorins signal predominantly through receptor proteins of the plexin and neuropilin families.

  • The presentation and function of semaphorin receptors is under tight molecular control to spatiotemporally regulate the responsiveness of growth cones to semaphorins and to diversify their effects, thereby allowing semaphorins to mediate a disproportionately large number of wiring decisions.

  • Neurons can expand their semaphorin signalling capacities by regulating the subunit composition of their receptors (thus allowing semaphorins to act as neurite attractants and repellents), and by utilizing semaphorins as ligands or receptors. Expression of semaphorin receptors is controlled at multiple different levels, including at the transcriptional and post-transcriptional levels.

  • Although originally identified as growth cone-collapsing factors, semaphorins mediate a plethora of functions beyond axon pathfinding in the developing and mature nervous system. For example, during early development SEMA3A facilitates dendrite formation and inhibits axon specification through the activation of different cyclic GMP-dependent signalling pathways. Moreover, once neurons have been formed, secreted semaphorins (SEMA3s) and transmembrane semaphorins (SEMA5 and SEMA6) help to restrict neuronal processes to their targets in a topographical or lamina-specific manner.

  • Upon arrival in their synaptic target fields, axons must identify their postsynaptic partners and generate synaptic contacts, often at specific cellular domains of the postsynaptic cell. Recent work in different parts of the nervous system suggests that these processes are controlled by semaphorins.

  • Emerging evidence suggests that uncontrolled semaphorin expression and function has an important role in nervous system-related diseases and regeneration failure. Therefore, understanding the mechanistic details of semaphorin signalling and function will be crucial in the design of strategies to modulate neural injury and disease.

Abstract

Semaphorins are key players in the control of neural circuit development. Recent studies have uncovered several exciting and novel aspects of neuronal semaphorin signalling in various cellular processes — including neuronal polarization, topographical mapping and axon sorting — that are crucial for the assembly of functional neuronal connections. This progress is important for further understanding the many neuronal and non-neuronal functions of semaphorins and for gaining insight into their emerging roles in the perturbed neural connectivity that is observed in some diseases. This Review discusses recent advances in semaphorin research, focusing on novel aspects of neuronal semaphorin receptor regulation and previously unexplored cellular functions of semaphorins in the nervous system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Semaphorins and their neuronal receptor complexes.
Figure 2: Novel role for SEMA3A in dendrite specification.
Figure 3: Axon-derived SEMA3s in olfactory topographical map formation.
Figure 4: Transmembrane semaphorins control laminar neurite stratification in the retina.
Figure 5: SEMA3s determine synaptic specificity at the cellular and subcellular levels.

Similar content being viewed by others

References

  1. Goodman, C. S., Kolodkin, A. L., Luo, Y., Püschel, A. W. & Raper, J. A. Unified nomenclature for the semaphorins/collapsins. Cell 97, 551–552 (1999).

    Article  Google Scholar 

  2. Kolodkin, A. L. & Tessier-Lavigne, M. Mechanisms and molecules of neuronal wiring: a primer. Cold Spring Harb. Perspect. Biol. 3, a001727 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Koncina, E., Roth, L., Gonthier, B. & Bagnard, D. Role of semaphorins during axon growth and guidance. Adv. Exp. Med. Biol. 621, 50–64 (2007).

    Article  PubMed  Google Scholar 

  4. Kumanogoh, A. & Kikutani, H. Semaphorins and their receptors: novel features of neural guidance molecules. Proc. Jpn Acad. Ser. B Phys. Biol. Sci. 86, 611–620 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mann, F., Chauvet, S. & Rougon, G. Semaphorins in development and adult brain: implication for neurological diseases. Prog. Neurobiol. 82, 57–79 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Pasterkamp, R. J. & Giger, R. J. Semaphorin function in neural plasticity and disease. Curr. Opin. Neurobiol. 19, 263–274 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tran, T. S., Kolodkin, A. L. & Bharadwaj, R. Semaphorin regulation of cellular morphology. Annu. Rev. Cell Dev. Biol. 23, 263–292 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Yazdani, U. & Terman, J. R. The semaphorins. Genome Biol. 7, 211 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Chauvet, S. et al. Gating of Sema3E/PlexinD1 signaling by neuropilin-1 switches axonal repulsion to attraction during brain development. Neuron 56, 807–822 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Feiner, L., Koppel, A. M., Kobayashi, H. & Raper, J. A. Secreted chick semaphorins bind recombinant neuropilin with similar affinities but bind different subsets of neurons in situ. Neuron 19, 539–545 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Fujisawa, H. Discovery of semaphorin receptors, neuropilin and plexin, and their functions in neural development. J. Neurobiol. 59, 24–33 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Gu, C. et al. Semaphorin 3E and plexin-D1 control vascular pattern independently of neuropilins. Science 307, 265–268 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. He, Z. & Tessier-Lavigne, M. Neuropilin is a receptor for the axonal chemorepellent semaphorin III. Cell 90, 739–751 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Janssen, B. J. et al. Structural basis of semaphorin–plexin signalling. Nature 467, 1118–1122 (2010). Together with references 16 and 17, this study describes crystal structures and mutational analyses of several phylogenetically distinct semaphorin–plexin complexes. They provide a unique insight into semaphorin–plexin binding and signalling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kolodkin, A. L. et al. Neuropilin is a semaphorin III receptor. Cell 90, 753–762 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Liu, H. et al. Structural basis of semaphorin–plexin recognition and viral mimicry from Sema7A and A39R complexes with PlexinC1. Cell 142, 749–761 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nogi, T. et al. Structural basis for semaphorin signalling through the plexin receptor. Nature 467, 1123–1127 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Rohm, B., Ottemeyer, A., Lohrum, M. & Puschel, A. W. Plexin/neuropilin complexes mediate repulsion by the axonal guidance signal semaphorin 3A. Mech. Dev. 93, 95–104 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Takahashi, T. et al. Plexin–neuropilin-1 complexes form functional semaphorin-3A receptors. Cell 99, 59–69 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Tamagnone, L. et al. Plexins are a large family of receptors for transmembrane, secreted, and GPI-anchored semaphorins in vertebrates. Cell 99, 71–80 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Winberg, M. L. et al. Plexin A is a neuronal semaphorin receptor that controls axon guidance. Cell 95, 903–916 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Oinuma, I., Ishikawa, Y., Katoh, H. & Negishi, M. The semaphorin 4D receptor Plexin-B1 is a GTPase activating protein for R-Ras. Science 305, 862–865 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Wang, Y. et al. Plexins are GTPase-activating proteins for Rap and are activated by induced dimerization. Sci. Signal. 5, ra6 (2012).

    PubMed  PubMed Central  Google Scholar 

  24. Derijck, A. A., Van Erp, S. & Pasterkamp, R. J. Semaphorin signaling: molecular switches at the midline. Trends Cell Biol. 20, 568–576 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Franco, M. & Tamagnone, L. Tyrosine phosphorylation in semaphorin signalling: shifting into overdrive. EMBO Rep. 9, 865–871 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jackson, R. E. & Eickholt, B. J. Semaphorin signalling. Curr. Biol. 19, R504–R507 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Kruger, R. P., Aurandt, J. & Guan, K. L. Semaphorins command cells to move. Nature Rev. Mol. Cell. Biol. 6, 789–800 (2005).

    Article  CAS  Google Scholar 

  28. Pasterkamp, R. J. R-Ras fills another GAP in semaphorin signalling. Trends Cell Biol. 15, 61–64 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Pasterkamp, R. J. & Kolodkin, A. L. Semaphorin junction: making tracks toward neural connectivity. Curr. Opin. Neurobiol. 13, 79–89 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Zhou, Y., Gunput, R. A. & Pasterkamp, R. J. Semaphorin signaling: progress made and promises ahead. Trends Biochem. Sci. 33, 161–170 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Bellon, A. et al. VEGFR2 (KDR/Flk1) signaling mediates axon growth in response to semaphorin 3E in the developing brain. Neuron 66, 205–219 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Castellani, V., Chedotal, A., Schachner, M., Faivre-Sarrailh, C. & Rougon, G. Analysis of the L1-deficient mouse phenotype reveals cross-talk between Sema3A and L1 signaling pathways in axonal guidance. Neuron 27, 237–249 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Demyanenko, G. P. et al. NrCAM deletion causes topographic mistargeting of thalamocortical axons to the visual cortex and disrupts visual acuity. J. Neurosci. 31, 1545–1558 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Falk, J. et al. Dual functional activity of semaphorin 3B is required for positioning the anterior commissure. Neuron 48, 63–75 (2005).

    Article  PubMed  Google Scholar 

  35. Hernandez-Miranda, L. R. et al. Robo1 regulates semaphorin signaling to guide the migration of cortical interneurons through the ventral forebrain. J. Neurosci. 31, 6174–6187 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kantor, D. B. et al. Semaphorin 5A is a bifunctional axon guidance cue regulated by heparan and chondroitin sulfate proteoglycans. Neuron 44, 961–975 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Swiercz, J. M., Kuner, R. & Offermanns, S. Plexin-B1/RhoGEF-mediated RhoA activation involves the receptor tyrosine kinase ErbB-2. J. Cell Biol. 165, 869–880 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Winberg, M. L. et al. The transmembrane protein Off-track associates with plexins and functions downstream of semaphorin signaling during axon guidance. Neuron 32, 53–62 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Chao, M. V. Neurotrophins and their receptors: a convergence point for many signalling pathways. Nature Rev. Neurosci. 4, 299–309 (2003).

    Article  CAS  Google Scholar 

  40. Gordon, M. D. & Nusse, R. Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J. Biol. Chem. 281, 22429–22433 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Schwab, M. E. Functions of Nogo proteins and their receptors in the nervous system. Nature Rev. Neurosci. 11, 799–811 (2010).

    Article  CAS  Google Scholar 

  42. Lai Wing Sun, K., Correia, J. P. & Kennedy, T. E. Netrins: versatile extracellular cues with diverse functions. Development 138, 2153–2169 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Ayoob, J. C., Terman, J. R. & Kolodkin, A. L. Drosophila Plexin B is a Sema-2a receptor required for axon guidance. Development 133, 2125–2135 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Usui, H., Taniguchi, M., Yokomizo, T. & Shimizu, T. Plexin-A1 and plexin-B1 specifically interact at their cytoplasmic domains. Biochem. Biophys. Res. Commun. 300, 927–931 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Chen, Y., Fu, A. K. & Ip, N. Y. Bidirectional signaling of ErbB and Eph receptors at synapses. Neuron Glia Biol. 4, 211–221 (2008).

    Article  PubMed  Google Scholar 

  46. Klein, R. Bidirectional modulation of synaptic functions by Eph/ephrin signaling. Nature Neurosci. 12, 15–20 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Cafferty, P., Yu, L., Long, H. & Rao, Y. Semaphorin-1a functions as a guidance receptor in the Drosophila visual system. J. Neurosci. 26, 3999–4003 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Godenschwege, T. A., Hu, H., Shan-Crofts, X., Goodman, C. S. & Murphey, R. K. Bi-directional signaling by Semaphorin 1a during central synapse formation in Drosophila. Nature Neurosci. 5, 1294–1301 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Komiyama, T., Sweeney, L. B., Schuldiner, O., Garcia, K. C. & Luo, L. Graded expression of semaphorin-1a cell-autonomously directs dendritic targeting of olfactory projection neurons. Cell 128, 399–410 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Toyofuku, T. et al. Dual roles of Sema6D in cardiac morphogenesis through region-specific association of its receptor, Plexin-A1, with off-track and vascular endothelial growth factor receptor type 2. Genes Dev. 18, 435–447 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ohoka, Y. et al. Semaphorin 4C, a transmembrane semaphorin, [corrected] associates with a neurite-outgrowth-related protein, SFAP75. Biochem. Biophys. Res. Commun. 280, 237–243 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Inagaki, S. et al. Sema4c, a transmembrane semaphorin, interacts with a post-synaptic density protein, PSD-95. J. Biol. Chem. 276, 9174–9181 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Wang, L. H., Kalb, R. G. & Strittmatter, S. M. A. PDZ protein regulates the distribution of the transmembrane semaphorin, M-SemF. J. Biol. Chem. 274, 14137–14146 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Schultze, W. et al. Semaphorin4F interacts with the synapse-associated protein SAP90/PSD-95. J. Neurochem. 78, 482–489 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Sweeney, L. B. et al. Secreted semaphorins from degenerating larval ORN axons direct adult projection neuron dendrite targeting. Neuron 72, 734–747 (2011). This study shows that Sema-2s secreted by a population of transient olfactory axons direct dendritic targeting in the antennal lobe, and that Sema-1a may act as a Sema-2 receptor.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. O'Donnell, M., Chance, R. K. & Bashaw, G. J. Axon growth and guidance: receptor regulation and signal transduction. Annu. Rev. Neurosci. 32, 383–412 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Winckler, B. & Mellman, I. Trafficking guidance receptors. Cold Spring Harb. Perspect. Biol. 2, a001826 (2011).

    Google Scholar 

  58. Polleux, F., Ince-Dunn, G. & Ghosh, A. Transcriptional regulation of vertebrate axon guidance and synapse formation. Nature Rev. Neurosci. 8, 331–340 (2007).

    Article  CAS  Google Scholar 

  59. Tang, K., Rubenstein, J. L., Tsai, S. Y. & Tsai, M. J. COUP-TFII controls amygdala patterning by regulating neuropilin expression. Development 139, 1630–1639 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Le, T. N. et al. Dlx homeobox genes promote cortical interneuron migration from the basal forebrain by direct repression of the semaphorin receptor neuropilin-2. J. Biol. Chem. 282, 19071–19081 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Nobrega-Pereira, S. et al. Postmitotic Nkx2-1 controls the migration of telencephalic interneurons by direct repression of guidance receptors. Neuron 59, 733–745 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Baudet, M. L. et al. miR-124 acts through CoREST to control onset of Sema3A sensitivity in navigating retinal growth cones. Nature Neurosci. 15, 29–38 (2011). This study shows that miR-124 indirectly regulates NRP1 expression by targeting CoREST mRNA during chick retinal growth cone guidance.

    Article  PubMed  CAS  Google Scholar 

  63. Campbell, D. S. & Holt, C. E. Chemotropic responses of retinal growth cones mediated by rapid local protein synthesis and degradation. Neuron 32, 1013–1026 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Nawabi, H. et al. A midline switch of receptor processing regulates commissural axon guidance in vertebrates. Genes Dev. 24, 396–410 (2011).

    Article  CAS  Google Scholar 

  65. Parra, L. M. & Zou, Y. Sonic hedgehog induces response of commissural axons to semaphorin repulsion during midline crossing. Nature Neurosci. 13, 29–35 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Kolk, S. M. et al. Semaphorin 3F is a bifunctional guidance cue for dopaminergic axons and controls their fasciculation, channeling, rostral growth, and intracortical targeting. J. Neurosci. 29, 12542–12557 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schratt, G. Fine-tuning neural gene expression with microRNAs. Curr. Opin. Neurobiol. 19, 213–219 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Kurschat, P., Bielenberg, D., Rossignol-Tallandier, M., Stahl, A. & Klagsbrun, M. Neuron restrictive silencer factor NRSF/REST is a transcriptional repressor of neuropilin-1 and diminishes the ability of semaphorin 3A to inhibit keratinocyte migration. J. Biol. Chem. 281, 2721–2729 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Cui, Y. et al. MicroRNA-181b and microRNA-9 mediate arsenic-induced angiogenesis via NRP1. J. Cell. Physiol. 227, 772–783 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Lee, K. et al. An activity-regulated microRNA, miR-188, controls dendritic plasticity and synaptic transmission by downregulating neuropilin-2. J. Neurosci. 32, 5678–5687 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Qiang, R. et al. Plexin-B1 is a target of miR-214 in cervical cancer and promotes the growth and invasion of HeLa cells. Int. J. Biochem. Cell Biol. 43, 632–641 (2012).

    Article  CAS  Google Scholar 

  72. Urbich, C. et al. MicroRNA-27a/b controls endothelial cell repulsion and angiogenesis by targeting semaphorin 6A. Blood 119, 1607–1616 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. Zhang, Y. et al. microRNA-320a inhibits tumor invasion by targeting neuropilin 1 and is associated with liver metastasis in colorectal cancer. Oncol. Rep. 27, 685–694 (2012).

    CAS  PubMed  Google Scholar 

  74. Schratt, G. M. et al. A brain-specific microRNA regulates dendritic spine development. Nature 439, 283–289 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Kapsimali, M. et al. MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system. Genome Biol. 8, R173 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Yaron, A. & Sprinzak, D. The cis side of juxtacrine signaling: a new role in the development of the nervous system. Trends Neurosci. 35, 230–239 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Cheng, H. J. et al. Plexin-A3 mediates semaphorin signaling and regulates the development of hippocampal axonal projections. Neuron 32, 249–263 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Suto, F. et al. Plexin-a4 mediates axon-repulsive activities of both secreted and transmembrane semaphorins and plays roles in nerve fiber guidance. J. Neurosci. 25, 3628–3637 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Xu, X. M. et al. The transmembrane protein semaphorin 6A repels embryonic sympathetic axons. J. Neurosci. 20, 2638–2648 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Haklai-Topper, L., Mlechkovich, G., Savariego, D., Gokhman, I. & Yaron, A. Cis interaction between Semaphorin6A and Plexin-A4 modulates the repulsive response to Sema6A. EMBO J. 29, 2635–2645 (2010). The first study to demonstrate cis inhibitory interactions between transmembrane semaphorins and their receptors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Suto, F. et al. Interactions between plexin-A2, plexin-A4, and semaphorin 6A control lamina-restricted projection of hippocampal mossy fibers. Neuron 53, 535–547 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Chen, G. et al. Semaphorin-3A guides radial migration of cortical neurons during development. Nature Neurosci. 11, 36–44 (2008).

    Article  PubMed  CAS  Google Scholar 

  83. Maier, V. et al. Semaphorin 4C and 4G are ligands of Plexin-B2 required in cerebellar development. Mol. Cell. Neurosci. 46, 419–431 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Messina, A. et al. Dysregulation of Semaphorin7A/β1-integrin signaling leads to defective GnRH-1 cell migration, abnormal gonadal development and altered fertility. Hum. Mol. Genet. 20, 4759–4774 (2011). This study uncovers an intriguing role for SEMA7A during neuron migration in the developing mammalian reproductive system.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Renaud, J. et al. Plexin-A2 and its ligand, Sema6A, control nucleus–centrosome coupling in migrating granule cells. Nature Neurosci. 11, 440–449 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Bagri, A., Cheng, H. J., Yaron, A., Pleasure, S. J. & Tessier-Lavigne, M. Stereotyped pruning of long hippocampal axon branches triggered by retraction inducers of the semaphorin family. Cell 113, 285–299 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Low, L. K., Liu, X. B., Faulkner, R. L., Coble, J. & Cheng, H. J. Plexin signaling selectively regulates the stereotyped pruning of corticospinal axons from visual cortex. Proc. Natl Acad. Sci. USA 105, 8136–8141 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Carrillo, R. A., Olsen, D. P., Yoon, K. S. & Keshishian, H. Presynaptic activity and CaMKII modulate retrograde semaphorin signaling and synaptic refinement. Neuron 68, 32–44 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Leslie, J. R. et al. Ectopic myelinating oligodendrocytes in the dorsal spinal cord as a consequence of altered semaphorin 6D signaling inhibit synapse formation. Development 138, 4085–4095 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lin, X. et al. Sema4D–plexin-B1 implicated in regulation of dendritic spine density through RhoA/ROCK pathway. Neurosci. Lett. 428, 1–6 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Morita, A. et al. Regulation of dendritic branching and spine maturation by semaphorin3A–Fyn signaling. J. Neurosci. 26, 2971–2980 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Paradis, S. et al. An RNAi-based approach identifies molecules required for glutamatergic and GABAergic synapse development. Neuron 53, 217–232 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sahay, A. et al. Secreted semaphorins modulate synaptic transmission in the adult hippocampus. J. Neurosci. 25, 3613–3620 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Takeuchi, H. et al. Sequential arrival and graded secretion of Sema3F by olfactory neuron axons specify map topography at the bulb. Cell 141, 1056–1067 (2010). Together with reference 132, this study elegantly shows that early arriving olfactory axons secrete repulsive semaphorins to guide later-arriving olfactory axons in the olfactory bulb or antennal lobe.

    Article  CAS  PubMed  Google Scholar 

  95. Tran, T. S. et al. Secreted semaphorins control spine distribution and morphogenesis in the postnatal CNS. Nature 462, 1065–1069 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yamashita, N. et al. Regulation of spine development by semaphorin3A through cyclin-dependent kinase 5 phosphorylation of collapsin response mediator protein 1. J. Neurosci. 27, 12546–12554 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Schwamborn, J. C. et al. Semaphorin 3A stimulates neurite extension and regulates gene expression in PC12 cells. J. Biol. Chem. 279, 30923–30926 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Toyofuku, T. et al. Endosomal sorting by Semaphorin 4A in retinal pigment epithelium supports photoreceptor survival. Genes Dev. 26, 816–829 (2012). Elegant work showing that endosomal sorting by SEMA4A in retinal pigment epithelium supports photoreceptor survival.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Polleux, F. & Snider, W. Initiating and growing an axon. Cold Spring Harb. Perspect. Biol. 2, a001925 (2011).

    Google Scholar 

  100. Adler, C. E., Fetter, R. D. & Bargmann, C. I. UNC-6/Netrin induces neuronal asymmetry and defines the site of axon formation. Nature Neurosci. 9, 511–518 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Hilliard, M. A. & Bargmann, C. I. Wnt signals and frizzled activity orient anterior-posterior axon outgrowth in C. elegans. Dev. Cell 10, 379–390 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Prasad, B. C. & Clark, S. G. Wnt signaling establishes anteroposterior neuronal polarity and requires retromer in C. elegans. Development 133, 1757–1766 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Shelly, M., Cancedda, L., Heilshorn, S., Sumbre, G. & Poo, M. M. LKB1/STRAD promotes axon initiation during neuronal polarization. Cell 129, 565–577 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Yi, J. J., Barnes, A. P., Hand, R., Polleux, F. & Ehlers, M. D. TGF-β signaling specifies axons during brain development. Cell 142, 144–157 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Shelly, M. et al. Semaphorin3A regulates neuronal polarization by suppressing axon formation and promoting dendrite growth. Neuron 71, 433–446 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Nishiyama, M. et al. Semaphorin 3A induces CaV2.3 channel-dependent conversion of axons to dendrites. Nature Cell Biol. 13, 676–685 (2011). References 105 and 106 show that SEMA3A can act as a polarizing factor for young neurons by promoting the formation of dendrites and inhibiting axon formation.

    Article  PubMed  CAS  Google Scholar 

  107. Shelly, M. et al. Local and long-range reciprocal regulation of cAMP and cGMP in axon/dendrite formation. Science 327, 547–552 (2010).

    Article  CAS  PubMed  Google Scholar 

  108. Nishiyama, M., von Schimmelmann, M. J., Togashi, K., Findley, W. M. & Hong, K. Membrane potential shifts caused by diffusible guidance signals direct growth-cone turning. Nature Neurosci. 11, 762–771 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Polleux, F., Morrow, T. & Ghosh, A. Semaphorin 3A is a chemoattractant for cortical apical dendrites. Nature 404, 567–573 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. Barnes, A. P. et al. LKB1 and SAD kinases define a pathway required for the polarization of cortical neurons. Cell 129, 549–563 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Jiang, H., Guo, W., Liang, X. & Rao, Y. Both the establishment and the maintenance of neuronal polarity require active mechanisms: critical roles of GSK-3β and its upstream regulators. Cell 120, 123–135 (2005).

    CAS  PubMed  Google Scholar 

  112. Fenstermaker, V., Chen, Y., Ghosh, A. & Yuste, R. Regulation of dendritic length and branching by semaphorin 3A. J. Neurobiol. 58, 403–412 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. Gu, C. et al. Neuropilin-1 conveys semaphorin and VEGF signaling during neural and cardiovascular development. Dev. Cell 5, 45–57 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Polleux, F., Giger, R. J., Ginty, D. D., Kolodkin, A. L. & Gosh, A. Patterning of cortical efferent projections by semaphorin–neuropilin interactions. Science 282, 1904–1906 (1998).

    Article  CAS  PubMed  Google Scholar 

  115. Mori, K. & Sakano, H. How is the olfactory map formed and interpreted in the mammalian brain? Annu. Rev. Neurosci. 34, 467–499 (2011).

    Article  CAS  PubMed  Google Scholar 

  116. Feldheim, D. A. & O'Leary, D. D. Visual map development: bidirectional signaling, bifunctional guidance molecules, and competition. Cold Spring Harb. Perspect. Biol. 2, a001768 (2011).

    Google Scholar 

  117. Gallarda, B. W. et al. Segregation of axial motor and sensory pathways via heterotypic trans-axonal signaling. Science 320, 233–236 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Imai, T., Suzuki, M. & Sakano, H. Odorant receptor-derived cAMP signals direct axonal targeting. Science 314, 657–661 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Moret, F., Renaudot, C., Bozon, M. & Castellani, V. Semaphorin and neuropilin co-expression in motoneurons sets axon sensitivity to environmental semaphorin sources during motor axon pathfinding. Development 134, 4491–4501 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Imai, T. et al. Pre-target axon sorting establishes the neural map topography. Science 325, 585–590 (2009). An elegant study showing that SEMA3A and NRP1 regulate the sorting of axons of olfactory sensory neurons as they progress towards their synaptic target: the olfactory bulb. This mechanism is necessary for the establishment of A–P topographical olfactory connections.

    Article  CAS  PubMed  Google Scholar 

  121. Schwarting, G. A. et al. Semaphorin 3A is required for guidance of olfactory axons in mice. J. Neurosci. 20, 7691–7697 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Schwarting, G. A., Raitcheva, D., Crandall, J. E., Burkhardt, C. & Puschel, A. W. Semaphorin 3A-mediated axon guidance regulates convergence and targeting of P2 odorant receptor axons. Eur. J. Neurosci. 19, 1800–1810 (2004).

    Article  PubMed  Google Scholar 

  123. Taniguchi, M. et al. Distorted odor maps in the olfactory bulb of semaphorin 3A-deficient mice. J. Neurosci. 23, 1390–1397 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Takashi, K., Shimono, A., Kawakami, A., Kondoh, H. & Fujisawa, H. Overexpression of a membrane protein, neuropilin, in chimeric mice causes anomalies in the cardiovascular system, nervous system and limbs. Development 121, 4309–4318 (1995).

    Google Scholar 

  125. Renzi, M. J., Wexler, T. L. & Raper, J. A. Olfactory sensory axons expressing a dominant-negative semaphorin receptor enter the CNS early and overshoot their target. Neuron 28, 437–447 (2000).

    Article  CAS  PubMed  Google Scholar 

  126. Cho, J. H., Lepine, M., Andrews, W., Parnavelas, J. & Cloutier, J. F. Requirement for Slit-1 and Robo-2 in zonal segregation of olfactory sensory neuron axons in the main olfactory bulb. J. Neurosci. 27, 9094–9104 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Nguyen-Ba-Charvet, K. T., Di Meglio, T., Fouquet, C. & Chedotal, A. Robos and slits control the pathfinding and targeting of mouse olfactory sensory axons. J. Neurosci. 28, 4244–4249 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Cloutier, J. F. et al. Differential requirements for semaphorin 3F and Slit-1 in axonal targeting, fasciculation, and segregation of olfactory sensory neuron projections. J. Neurosci. 24, 9087–9096 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Norlin, E. M. et al. Evidence for gradients of gene expression correlating with zonal topography of the olfactory sensory map. Mol. Cell. Neurosci. 18, 283–295 (2001).

    Article  CAS  PubMed  Google Scholar 

  130. Cloutier, J. F. et al. Neuropilin-2 mediates axonal fasciculation, zonal segregation, but not axonal convergence, of primary accessory olfactory neurons. Neuron 33, 877–892 (2002).

    Article  CAS  PubMed  Google Scholar 

  131. Sullivan, S. L., Bohm, S., Ressler, K. J., Horowitz, L. F. & Buck, L. B. Target-independent pattern specification in the olfactory epithelium. Neuron 15, 779–789 (1995).

    Article  CAS  PubMed  Google Scholar 

  132. Sweeney, L. B. et al. Temporal target restriction of olfactory receptor neurons by Semaphorin-1a/PlexinA-mediated axon–axon interactions. Neuron 53, 185–200 (2007).

    Article  CAS  PubMed  Google Scholar 

  133. Chen, H., Chedotal, A., He, Z., Goodman, C. S. & Tessier-Lavigne, M. Neuropilin-2, a novel member of the neuropilin family, is a high affinity receptor for the semaphorins Sema E and Sema IV but not Sema III. Neuron 19, 547–559 (1997).

    Article  CAS  PubMed  Google Scholar 

  134. Giger, R. J. et al. Neuropilin-2 is a receptor for semaphorin IV: insight into the structural basis of receptor function and specificity. Neuron 21, 1079–1092 (1998).

    Article  CAS  PubMed  Google Scholar 

  135. Skaliora, I., Singer, W., Betz, H. & Puschel, A. W. Differential patterns of semaphorin expression in the developing rat brain. Eur. J. Neurosci. 10, 1215–1229 (1998).

    Article  CAS  PubMed  Google Scholar 

  136. Huettl, R. E., Soellner, H., Bianchi, E., Novitch, B. G. & Huber, A. B. Npn-1 contributes to axon–axon interactions that differentially control sensory and motor innervation of the limb. PLoS Biol. 9, e1001020 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Huberman, A. D., Clandinin, T. R. & Baier, H. Molecular and cellular mechanisms of lamina-specific axon targeting. Cold Spring Harb. Perspect. Biol. 2, a001743 (2011).

    Google Scholar 

  138. Sanes, J. R. & Zipursky, S. L. Design principles of insect and vertebrate visual systems. Neuron 66, 15–36 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Matsuoka, R. L. et al. Class 5 transmembrane semaphorins control selective mammalian retinal lamination and function. Neuron 71, 460–473 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Matsuoka, R. L. et al. Transmembrane semaphorin signalling controls laminar stratification in the mammalian retina. Nature 470, 259–263 (2011). References 139 and 140 identify a PLXNA- dependent role for SEMA5s and SEMA6A in the laminar stratification of neurites in the mouse retina.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Tawarayama, H., Yoshida, Y., Suto, F., Mitchell, K. J. & Fujisawa, H. Roles of semaphorin-6B and plexin-A2 in lamina-restricted projection of hippocampal mossy fibers. J. Neurosci. 30, 7049–7060 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Wassle, H. Parallel processing in the mammalian retina. Nature Rev. Neurosci. 5, 747–757 (2004).

    Article  CAS  Google Scholar 

  143. Viney, T. J. et al. Local retinal circuits of melanopsin-containing ganglion cells identified by transsynaptic viral tracing. Curr. Biol. 17, 981–988 (2007).

    Article  CAS  PubMed  Google Scholar 

  144. Zhang, D. Q. et al. Intraretinal signaling by ganglion cell photoreceptors to dopaminergic amacrine neurons. Proc. Natl Acad. Sci. USA 105, 14181–14186 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Yamagata, M. & Sanes, J. R. Dscam and Sidekick proteins direct lamina-specific synaptic connections in vertebrate retina. Nature 451, 465–469 (2008).

    Article  CAS  PubMed  Google Scholar 

  146. Yamagata, M., Weiner, J. A. & Sanes, J. R. Sidekicks: synaptic adhesion molecules that promote lamina-specific connectivity in the retina. Cell 110, 649–660 (2002).

    Article  CAS  PubMed  Google Scholar 

  147. Deng, S. et al. Plexin-B2, but not Plexin-B1, critically modulates neuronal migration and patterning of the developing nervous system in vivo. J. Neurosci. 27, 6333–6347 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Sanes, J. R. & Yamagata, M. Many paths to synaptic specificity. Annu. Rev. Cell Dev. Biol. 25, 161–195 (2009).

    Article  CAS  PubMed  Google Scholar 

  149. Pecho-Vrieseling, E., Sigrist, M., Yoshida, Y., Jessell, T. M. & Arber, S. Specificity of sensory-motor connections encoded by Sema3e–Plxnd1 recognition. Nature 459, 842–846 (2009). This study demonstrates that interactions between SEMA3E and PLXND1 serve to establish synaptic specificity during the development of sensory motor circuits in the spinal cord.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Ding, J. B., Oh, W. J., Sabatini, B. L. & Gu, C. Semaphorin 3E–Plexin-D1 signaling controls pathway-specific synapse formation in the striatum. Nature Neurosci. 15, 215–223 (2011). This study demonstrates that interactions between SEMA3E and PLXND1 are vital for the development of synaptic specificity in cortical–thalamic–striatal circuits.

    Article  PubMed  CAS  Google Scholar 

  151. Lohmann, C. & Bonhoeffer, T. A role for local calcium signaling in rapid synaptic partner selection by dendritic filopodia. Neuron 59, 253–260 (2008).

    Article  CAS  PubMed  Google Scholar 

  152. Johnson-Venkatesh, E. M. & Umemori, H. Secreted factors as synaptic organizers. Eur. J. Neurosci. 32, 181–190 (2011).

    Article  Google Scholar 

  153. Cohen, S. et al. A semaphorin code defines subpopulations of spinal motor neurons during mouse development. Eur. J. Neurosci. 21, 1767–1776 (2005).

    Article  PubMed  Google Scholar 

  154. Huber, A. B. et al. Distinct roles for secreted semaphorin signaling in spinal motor axon guidance. Neuron 48, 949–964 (2005).

    Article  CAS  PubMed  Google Scholar 

  155. Mauti, O., Sadhu, R., Gemayel, J., Gesemann, M. & Stoeckli, E. T. Expression patterns of plexins and neuropilins are consistent with cooperative and separate functions during neural development. BMC Dev. Biol. 6, 32 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Yoshida, Y., Han, B., Mendelsohn, M. & Jessell, T. M. PlexinA1 signaling directs the segregation of proprioceptive sensory axons in the developing spinal cord. Neuron 52, 775–788 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Zhuang, B., Su, Y. S. & Sockanathan, S. FARP1 promotes the dendritic growth of spinal motor neuron subtypes through transmembrane Semaphorin6A and PlexinA4 signaling. Neuron 61, 359–372 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Schmidt, E. R., Pasterkamp, R. J. & van den Berg, L. H. Axon guidance proteins: novel therapeutic targets for ALS? Prog. Neurobiol. 88, 286–301 (2009).

    Article  CAS  PubMed  Google Scholar 

  159. Yaron, A. & Zheng, B. Navigating their way to the clinic: emerging roles for axon guidance molecules in neurological disorders and injury. Dev. Neurobiol. 67, 1216–1231 (2007).

    Article  CAS  PubMed  Google Scholar 

  160. Kaneko, S. et al. A selective Sema3A inhibitor enhances regenerative responses and functional recovery of the injured spinal cord. Nature Med. 12, 1380–1389 (2006).

    Article  CAS  PubMed  Google Scholar 

  161. Pasterkamp, R. J., De Winter, F., Holtmaat, A. J. & Verhaagen, J. Evidence for a role of the chemorepellent semaphorin III and its receptor neuropilin-1 in the regeneration of primary olfactory axons. J. Neurosci. 18, 9962–9976 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Antipenko, A. et al. Structure of the semaphorin-3A receptor binding module. Neuron 39, 589–598 (2003).

    Article  CAS  PubMed  Google Scholar 

  163. Love, C. A. et al. The ligand-binding face of the semaphorins revealed by the high-resolution crystal structure of SEMA4D. Nature Struct. Biol. 10, 843–848 (2003).

    Article  CAS  PubMed  Google Scholar 

  164. Dent, E. W., Gupton, S. L. & Gertler, F. B. The growth cone cytoskeleton in axon outgrowth and guidance. Cold Spring Harb. Perspect. Biol. 3, a001800 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Zhou, Y., Gunput, R. A., Adolfs, Y. & Pasterkamp, R. J. MICALs in control of the cytoskeleton, exocytosis, and cell death. Cell. Mol. Life Sci. 68, 4033–4044 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Pasterkamp, R. J. et al. MICAL flavoprotein monooxygenases: expression during neural development and following spinal cord injuries in the rat. Mol. Cell. Neurosci. 31, 52–69 (2006).

    Article  CAS  PubMed  Google Scholar 

  167. Beuchle, D., Schwarz, H., Langegger, M., Koch, I. & Aberle, H. Drosophila MICAL regulates myofilament organization and synaptic structure. Mech. Dev. 124, 390–406 (2007).

    Article  CAS  PubMed  Google Scholar 

  168. Terman, J. R., Mao, T., Pasterkamp, R. J., Yu, H. H. & Kolodkin, A. L. MICALs, a family of conserved flavoprotein oxidoreductases, function in plexin-mediated axonal repulsion. Cell 109, 887–900 (2002).

    Article  CAS  PubMed  Google Scholar 

  169. Hung, R. J. et al. Mical links semaphorins to F-actin disassembly. Nature 463, 823–827 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Hung, R. J., Pak, C. W. & Terman, J. R. Direct redox regulation of F-actin assembly and disassembly by Mical. Science 334, 1710–1713 (2011). References 169 and 170 demonstrate that the plexin-interacting protein Mical can regulate actin dynamics downstream of Sema-1a and PlexA in D. melanogaster. The Mical flavoprotein monooxygenase domain binds filamentous actin and induces the disassembly of actin filaments through the oxidation of filamentous actin subunits.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Schmidt, E. F. & Strittmatter, S. M. The CRMP family of proteins and their role in Sema3A signaling. Adv. Exp. Med. Biol. 600, 1–11 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Morinaka, A. et al. Thioredoxin mediates oxidation-dependent phosphorylation of CRMP2 and growth cone collapse. Sci. Signal. 4, ra26 (2011).

    Article  PubMed  CAS  Google Scholar 

  173. Perala, N., Sariola, H. & Immonen, T. More than nervous: the emerging roles of plexins. Differentiation 83, 77–91 (2012).

    Article  PubMed  CAS  Google Scholar 

  174. Buck, L. B. The molecular architecture of odor and pheromone sensing in mammals. Cell 100, 611–618 (2000).

    Article  CAS  PubMed  Google Scholar 

  175. Ferrero, D. M. & Liberles, S. D. The secret codes of mammalian scents. Wiley Interdiscip. Rev. Syst. Biol. Med. 2, 23–33 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks A. L. Kolodkin, A. Kumanogoh and C. Siebold for valuable discussions and their critical comments on the manuscript. He also apologizes to all the investigators whose research could not be appropriately cited in the manuscript owing to space limitations.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

R. Jeroen Pasterkamp's homepage

Glossary

Growth cone

The motile tip of growing neurites that senses molecular cues in the extracellular environment.

GTPase-activating proteins

(GAPs). A family of proteins that bind and inactivate small GTP-binding proteins by increasing their rate of GTP hydrolysis.

RE1-silencing transcription factor

(REST). A member of the Kruppel-type zinc finger transcription factor family that represses gene transcription by binding the neuron-restrictive silencer element in DNA (NRSE or RE1).

Mossy fibres

In the hippocampus, mossy fibres are unmyelinated axons that project from granule cells in the dentate gyrus to pyramidal neurons in the CA3 region.

Stratum lucidum

A thin layer in the CA3 region just inwards of the stratum pyramidale (the layer containing pyramidal neurons) that contains mossy fibre axons and the proximal dendrites of CA3 pyramidal neurons.

Maxillary palps

A pair of olfactory organs in Drosophila melanogaster, and other insects, that arise from the proboscis and contain a small number of olfactory sensory neurons.

Antennal lobe

An olfactory structure in Drosophila melanogaster, and other insects, that is composed of glomeruli in which the axons of olfactory sensory neurons synapse with their postsynaptic target neurons.

Bipolar cells

Bipolar cells synapse with either rods or cones, and also receive inputs from horizontal cells. They directly or indirectly (through amacrine cells) transmit this information onto ganglion cells.

Amacrine cells

A class of interneurons that are synaptically active in the inner plexiform layer and influence retinal signal processing at the level of contact between bipolar and ganglion cells.

Horizontal cells

Horizontal cells are laterally interconnecting neurons in the outer plexiform layer of the retina. They integrate and regulate the input from multiple photoreceptor cells.

Triceps muscle

A large muscle on the back of the upper limb or forelimb of many vertebrates. It is responsible for extension of the elbow joint (and hence straightening of the limb).

Cutaneous maximus muscle

A thin subcutaneous muscle that covers the trunk and flexes the skin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pasterkamp, R. Getting neural circuits into shape with semaphorins. Nat Rev Neurosci 13, 605–618 (2012). https://doi.org/10.1038/nrn3302

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3302

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing