Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Control of central auditory processing by a brain-generated oestrogen

Abstract

Recent discoveries show that behaviourally relevant sensory experience drives the production of oestradiol — the classic sex steroid oestrogen — in auditory neurons in the adult brain of both males and females. This brain-generated oestrogen markedly enhances the efficiency of the neural coding of acoustic cues and shapes auditory-based behaviours on a timescale that is relevant for sensory processing and congruent with the action of rapid neuromodulators. These findings are re-shaping our current understanding of the mechanistic framework that supports sensory processing and the functional roles of hormones in the brain, and have implications for multiple health issues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Oestradiol rapidly enhances sound-driven neural responses and mutual information rates in the awake songbird brain.
Figure 2: Current mechanistic understanding of oestradiol's modulation of auditory neuronal physiology.

Similar content being viewed by others

References

  1. Miranda, J. A. & Liu, R. C. Dissecting natural sensory plasticity: hormones and experience in a maternal context. Hear. Res. 252, 21–28 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Penton-Voak, I. S. et al. Menstrual cycle alters face preference. Nature 399, 741–742 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Mazzocco, M. M., Singh Bhatia, N. & Lesniak-Karpiak, K. Visuospatial skills and their association with math performance in girls with fragile X or Turner syndrome. Child Neuropsychol. 12, 87–110 (2006).

    Article  PubMed  Google Scholar 

  4. Arch, V. S. & Narins, P. M. Sexual hearing: the influence of sex hormones on acoustic communication in frogs. Hear. Res. 252, 15–20 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gentner, T. Q. Neural systems for individual song recognition in adult birds. Ann. NY Acad. Sci. 1016, 282–302 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Nowicki, S. & Searcy, W. A. Song function and the evolution of female preferences: why birds sing, why brains matter. Ann. NY Acad. Sci. 1016, 704–723 (2004).

    Article  PubMed  Google Scholar 

  7. Pinaud, R., Fortes, A. F., Lovell, P. & Mello, C. V. Calbindin-positive neurons reveal a sexual dimorphism within the songbird analogue of the mammalian auditory cortex. J. Neurobiol. 66, 182–195 (2006).

    Article  PubMed  Google Scholar 

  8. Saldanha, C. J. et al. Distribution and regulation of telencephalic aromatase expression in the zebra finch revealed with a specific antibody. J. Comp. Neurol. 423, 619–630 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Tremere, L. A., Jeong, J. K. & Pinaud, R. Estradiol shapes auditory processing in the adult brain by regulating inhibitory transmission and plasticity-associated gene expression. J. Neurosci. 29, 5949–5963 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jeong, J. K., Burrows, K., Tremere, L. A. & Pinaud, R. Neurochemical organization and experience-dependent activation of estrogen-associated circuits in the songbird auditory forebrain. Eur. J. Neurosci. 34, 283–291 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Jacobs, E. C., Arnold, A. P. & Campagnoni, A. T. Zebra finch estrogen receptor cDNA: cloning and mRNA expression. J. Steroid Biochem. Mol. Biol. 59, 135–145 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Metzdorf, R., Gahr, M. & Fusani, L. Distribution of aromatase, estrogen receptor, and androgen receptor mRNA in the forebrain of songbirds and nonsongbirds. J. Comp. Neurol. 407, 115–129 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Saldanha, C. J. & Coomaralingam, L. Overlap and co-expression of estrogen synthetic and responsive neurons in the songbird brain — a double-label immunocytochemical study. Gen. Comp. Endocrinol. 141, 66–75 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Remage-Healey, L., Maidment, N. T. & Schlinger, B. A. Forebrain steroid levels fluctuate rapidly during social interactions. Nature Neurosci. 11, 1327–1334 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Tremere, L. A., Burrows, K., Jeong, J. K. & Pinaud, R. Organization of estrogen-associated circuits in the mouse primary auditory cortex. J. Exp. Neurosci. 5, 45–60 (2011).

    Google Scholar 

  16. Yague, J. G. et al. Aromatase distribution in the monkey temporal neocortex and hippocampus. Brain Res. 1209, 115–127 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yague, J. G. et al. Aromatase expression in the human temporal cortex. Neuroscience 138, 389–401 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Azcoitia, I., Yague, J. G. & Garcia-Segura, L. M. Estradiol synthesis within the human brain. Neuroscience 191, 139–147 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Tremere, L. A. & Pinaud, R. Brain-generated estradiol drives long-term optimization of auditory coding to enhance the discrimination of communication signals. J. Neurosci. 31, 3271–3289 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Remage-Healey, L., Coleman, M. J., Oyama, R. K. & Schlinger, B. A. Brain estrogens rapidly strengthen auditory encoding and guide song preference in a songbird. Proc. Natl Acad. Sci. USA 107, 3852–3857 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Remage-Healey, L., Dong, S. M., Chao, A. & Schlinger, B. A. Sex-specific, rapid neuroestrogen fluctuations and neurophysiological actions in the songbird auditory forebrain. J. Neurophysiol. 107, 1627–1631 (2012).

    Article  Google Scholar 

  22. Vicario, D. S., Naqvi, N. H. & Raksin, J. N. Sex differences in discrimination of vocal communication signals in a songbird. Anim. Behav. 61, 805–817 (2001).

    Article  Google Scholar 

  23. Gobes, S. M. & Bolhuis, J. J. Birdsong memory: a neural dissociation between song recognition and production. Curr. Biol. 17, 789–793 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Woolley, C. S. Acute effects of estrogen on neuronal physiology. Annu. Rev. Pharmacol. Toxicol. 47, 657–680 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Pinaud, R. et al. Inhibitory network interactions shape the auditory processing of natural communication signals in the songbird auditory forebrain. J. Neurophysiol. 100, 441–455 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mello, C. V., Velho, T. A. & Pinaud, R. Song-induced gene expression: a window on song auditory processing and perception. Ann. NY Acad. Sci. 1016, 263–281 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. London, S. E. & Clayton, D. F. Functional identification of sensory mechanisms required for developmental song learning. Nature Neurosci. 11, 579–586 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Mello, C. V. & Pinaud, R. in Immediate Early Genes in Sensory Processing, Cognitive Performance and Neurological Disorders (eds Pinaud, R. & Tremere, L. A.) 35–56 (Springer, 2006).

    Book  Google Scholar 

  29. Hultcrantz, M. & Sylven, L. Turner's syndrome and hearing disorders in women aged 16–34. Hear. Res. 103, 69–74 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Jerger, J. & Hall, J. Effects of age and sex on auditory brainstem response. Arch. Otolaryngol. 106, 387–391 (1980).

    Article  CAS  PubMed  Google Scholar 

  31. Davis, M. J. & Ahroon, W. A. Fluctuations in susceptibility to noise-induced temporary threshold shift as influenced by the menstrual cycle. J. Aud. Res. 22, 173–187 (1982).

    CAS  PubMed  Google Scholar 

  32. Walpurger, V., Pietrowsky, R., Kirschbaum, C. & Wolf, O. T. Effects of the menstrual cycle on auditory event-related potentials. Horm. Behav. 46, 600–606 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Golub, M. S., Germann, S. L. & Hogrefe, C. E. Endocrine disruption and cognitive function in adolescent female rhesus monkeys. Neurotoxicol. Teratol. 26, 799–809 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Coleman, J. R., Campbell, D., Cooper, W. A., Welsh, M. G. & Moyer, J. Auditory brainstem responses after ovariectomy and estrogen replacement in rat. Hear. Res. 80, 209–215 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Kim, S. H., Kang, B. M., Chae, H. D. & Kim, C. H. The association between serum estradiol level and hearing sensitivity in postmenopausal women. Obstet. Gynecol. 99, 726–730 (2002).

    CAS  PubMed  Google Scholar 

  36. Maney, D. L., Cho, E. & Goode, C. T. Estrogen-dependent selectivity of genomic responses to birdsong. Eur. J. Neurosci. 23, 1523–1529 (2006).

    Article  PubMed  Google Scholar 

  37. Sanford, S. E., Lange, H. S. & Maney, D. L. Topography of estradiol-modulated genomic responses in the songbird auditory forebrain. Dev. Neurobiol. 70, 73–86 (2010).

    CAS  PubMed  Google Scholar 

  38. Balthazart, J. & Ball, G. F. Is brain estradiol a hormone or a neurotransmitter? Trends Neurosci. 29, 241–249 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Saldanha, C. J., Remage-Healey, L. & Schlinger, B. A. Synaptocrine signaling: steroid synthesis and action at the synapse. Endocr. Rev. 32, 532–549 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cornil, C. A. et al. Acute and specific modulation of presynaptic aromatization in the vertebrate brain. Endocrinology 153, 2562–2567 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Remage-Healey, L., Dong, S., Maidment, N. T. & Schlinger, B. A. Presynaptic control of rapid estrogen fluctuations in the songbird auditory forebrain. J. Neurosci. 31, 10034–10038 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jeong, J. K., Tremere, L. A., Burrows, K., Majewska, A. K. & Pinaud, R. The mouse primary visual cortex is a site of production and sensitivity to estrogens. PLoS ONE 6, e20400 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Joels, M. & de Kloet, E. R. Effects of glucocorticoids and norepinephrine on the excitability in the hippocampus. Science 245, 1502–1505 (1989).

    Article  CAS  PubMed  Google Scholar 

  44. Karst, H. & Joels, M. Corticosterone slowly enhances miniature excitatory postsynaptic current amplitude in mice CA1 hippocampal cells. J. Neurophysiol. 94, 3479–3486 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Krugers, H. J., Hoogenraad, C. C. & Groc, L. Stress hormones and AMPA receptor trafficking in synaptic plasticity and memory. Nature Rev. Neurosci. 11, 675–681 (2010).

    Article  CAS  Google Scholar 

  46. Peters, M., Simmons, L. W. & Rhodes, G. Preferences across the menstrual cycle for masculinity and symmetry in photographs of male faces and bodies. PLoS ONE 4, e4138 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Little, A. C., Jones, B. C. & Burriss, R. P. Preferences for masculinity in male bodies change across the menstrual cycle. Horm. Behav. 51, 633–639 (2007).

    Article  PubMed  Google Scholar 

  48. Phillips, S. M. & Sherwin, B. B. Variations in memory function and sex steroid hormones across the menstrual cycle. Psychoneuroendocrinology 17, 497–506 (1992).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to authors whose papers were not discussed here owing to the short format. We thank C. Woolley, D. Ferster (Northwestern University, Illinois, USA) and G. DeAngelis (University of Rochester, New York, USA) for comments on the manuscript and valuable discussions. The authors' work is supported by the US National Institutes of Health (grant R01-DC-010181), the US National Science Foundation (grant 1064684) and the Searle Leadership Fund (grant to R.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphael Pinaud.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Raphael Pinaud's homepage

Glossary

Rate coding

A neural coding scheme in which stimulus information is coded through changes in neuronal spiking frequency.

Response gain

Sensitivity of a neuronal response to a constant set of inputs.

Temporal coding

Multiple definitions of temporal coding exist, but here the term refers to a neural coding scheme in which information is coded through the precision in the timing of action potentials.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinaud, R., Tremere, L. Control of central auditory processing by a brain-generated oestrogen. Nat Rev Neurosci 13, 521–527 (2012). https://doi.org/10.1038/nrn3291

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3291

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing