Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Optogenetic investigation of neural circuits underlying brain disease in animal models

Key Points

  • 'Optogenetic' approaches (the use of light-sensitive genetically encodable tools to manipulate cellular activity) in neuroscience have matured beyond the proof-of-principle phase and have grown into a widely used set of techniques for dissecting the circuits underlying behaviour.

  • Recent technological advances include the integration of optogenetics with established techniques in electrophysiology and pharmacology, as well as the expansion of the optogenetic toolbox to include new opsin variants and new transgenic rodent lines.

  • Optogenetic approaches provide new advantages such as precise cellular targeting and greater temporal control, but also bring new limitations that are important to consider, such as heating artefacts and problems with light delivery and overexpression toxicity.

  • Optogenetic approaches have led to the dissection of microcircuits in the amygdala underlying fear and anxiety and to the discovery of unexpectedly broad temporal regimes in which the hippocampus is involved in recalling remote memories.

  • The use of optogenetics to target a specific projection or specific cell type in transgenic Cre recombinase rodents has advanced our understanding of the circuits underlying reward-related learning relevant to addiction.

  • Manipulating parvalbumin neurons, rhythmic oscillations and the balance of excitation and inhibition in neocortex using optogenetic tools has advanced our understanding of schizophrenia- and autism-related phenomena.

  • The use of optogenetic methods has advanced our understanding of neurological disorders and treatments, clarifying our understanding of deep brain stimulation and striatal circuits in the context of Parkinson's disease.

Abstract

Optogenetic tools have provided a new way to establish causal relationships between brain activity and behaviour in health and disease. Although no animal model captures human disease precisely, behaviours that recapitulate disease symptoms may be elicited and modulated by optogenetic methods, including behaviours that are relevant to anxiety, fear, depression, addiction, autism and parkinsonism. The rapid proliferation of optogenetic reagents together with the swift advancement of strategies for implementation has created new opportunities for causal and precise dissection of the circuits underlying brain diseases in animal models.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optogenetic tools.
Figure 2: Targeting strategies with optogenetic tools in vivo.
Figure 3: Functional dissection of amygdala microcircuitry using an integrated approach involving optogenetic tools.
Figure 4: Optogenetic dissection of limbic circuits in the context of reward-seeking behaviour.
Figure 5: Functional mapping of basal ganglia circuitry using optogenetics in the context of Parkinson's disease.

References

  1. Deisseroth, K. Optogenetics. Nature Methods 8, 26–29 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Deisseroth, K. et al. Next-generation optical technologies for illuminating genetically targeted brain circuits. J. Neurosci. 26, 10380–10386 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang, F. et al. The microbial opsin family of optogenetic tools. Cell 147, 1446–1457 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Airan, R. D., Thompson, K. R., Fenno, L. E., Bernstein, H. & Deisseroth, K. Temporally precise in vivo control of intracellular signalling. Nature 458, 1025–1029 (2009). This study developed the OptoXRs (photosensitive G protein-coupled receptors based on vertebrate opsin genes) for mammalian in vivo use and showed that light-activated intracellular signalling cascades could support conditioned place preference.

    Article  CAS  PubMed  Google Scholar 

  5. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nature Neurosci. 8, 1263–1268 (2005). The initial demonstration of single-component optogenetics using a microbial opsin gene (in this case, a channelrhodopsin).

    Article  CAS  PubMed  Google Scholar 

  6. Yizhar, O., Fenno, L. E., Davidson, T. J., Mogri, M. & Deisseroth, K. Optogenetics in neural systems. Neuron 71, 9–34 (2011). A comprehensive practical overview describing the implementation of optogenetic tools in neural systems.

    Article  CAS  PubMed  Google Scholar 

  7. Fenno, L., Yizhar, O. & Deisseroth, K. The development and application of optogenetics. Annu. Rev. Neurosci. 34, 389–412 (2010).

    Article  CAS  Google Scholar 

  8. Carter, M. E. & de Lecea, L. Optogenetic investigation of neural circuits in vivo. Trends Mol. Med. 17, 197–206 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Aravanis, A. M. et al. An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J. Neural Eng. 4, S143–S156 (2007).

    Article  PubMed  Google Scholar 

  10. Kravitz, A. V. & Kreitzer, A. C. Optogenetic manipulation of neural circuitry in vivo. Curr. Opin. Neurobiol. 21, 433–439 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lima, S. Q. & Miesenböck, G. Remote control of behavior through genetically targeted photostimulation of neurons. Cell 121, 141–152 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Nagel, G. et al. Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296, 2395–2398 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Nagel, G. et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl Acad. Sci. USA 100, 13940–13945 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang, F. et al. Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri. Nature Neurosci. 11, 631–633 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Berndt, A. et al. High-efficiency channelrhodopsins for fast neuronal stimulation at low light levels. Proc. Natl Acad. Sci. USA 108, 7595–7600 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gradinaru, V. et al. Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141, 154–165 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Berndt, A., Yizhar, O., Gunaydin, L. A., Hegemann, P. & Deisseroth, K. Bi-stable neural state switches. Nature Neurosci. 12, 229–234 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, F. et al. Multimodal fast optical interrogation of neural circuitry. Nature 446, 633–639 (2007). The first behavioural loss-of-function using optogenetics; achieved here with the inhibitory optogenetic tool NpHR.

    Article  CAS  PubMed  Google Scholar 

  19. Chow, B. Y. et al. High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463, 98–102 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gunaydin, L. A. et al. Ultrafast optogenetic control. Nature Neurosci. 13, 387–392 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Mattis, J. et al. Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins. Nature Methods 9, 159–172 (2011). An empirical comparison of most existing microbial opsin-derived optogenetic tools under matched conditions, including the development of several new opsin variants.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Iwai, Y., Honda, S., Ozeki, H., Hashimoto, M. & Hirase, H. A simple head-mountable LED device for chronic stimulation of optogenetic molecules in freely moving mice. Neurosci. Res. 70, 124–127 (2011).

    Article  PubMed  Google Scholar 

  23. Schneider, M. B., Gradinaru, V., Zhang, F. & Deisseroth, K. Controlling neuronal activity. Am. J. Psychiatry 165, 562 (2008).

    Article  PubMed  Google Scholar 

  24. Diester, I. et al. An optogenetic toolbox designed for primates. Nature Neurosci. 14, 387–397 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Adamantidis, A. R., Zhang, F., Aravanis, A. M., Deisseroth, K. & de Lecea, L. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450, 420–424 (2007). The first application of a microbial opsin to show a behavioural change in a mammal (gain of function, using a channelrhodopsin).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Grossman, N. et al. Multi-site optical excitation using ChR2 and micro-LED array. J. Neural Eng. 7, 016004 (2010).

    Article  Google Scholar 

  27. Bernstein, J. G. et al. Prosthetic systems for therapeutic optical activation and silencing of genetically-targeted neurons. Proc. Soc. Photo Opt. Instrum. Eng. 6854, 68540H (2008).

    Google Scholar 

  28. Sparta, D. R. et al. Construction of implantable optical fibers for long-term optogenetic manipulation of neural circuits. Nature Protoc. 7, 68512–68523 (2011).

    Google Scholar 

  29. Atasoy, D., Aponte, Y., Su, H. H. & Sternson, S. M. A FLEX switch targets Channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. J. Neurosci. 28, 7025–7030 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kuhlman, S. J. & Huang, Z. J. High-resolution labeling and functional manipulation of specific neuron types in mouse brain by Cre-activated viral gene expression. PLoS ONE 3, e2005 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tsai, H.-C. et al. Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science 324, 1080–1084 (2009). The initial behavioural application of the double-floxed inverted open reading frame tool enabling selective opsin expression in neurons positive for Cre recombinase. This is used in the TH::Cre mouse to demonstrate the hedonic properties of phasic dopamine neuron firing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Arenkiel, B. R. et al. In vivo light-induced activation of neural circuitry in transgenic mice expressing Channelrhodopsin-2. Neuron 54, 205–218 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhao, S. et al. Cell type-specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function. Nature Methods 8, 745–752 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Taniguchi, H. et al. A resource of cre driver lines for genetic targeting of GABAergic neurons in cerebral cortex. Neuron 71, 995–1013 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Anikeeva, P. et al. Optetrode: a multichannel readout for optogenetic control in freely moving mice. Nature Neurosci. 15, 163–170 (2012).

    Article  CAS  Google Scholar 

  36. Wang, J. et al. Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications. J. Neural Eng. 9, 016001 (2012).

    Article  PubMed  Google Scholar 

  37. Witten, I. B. et al. Recombinase-driver rat lines: tools, techniques, and optogenetic application to dopamine-mediated reinforcement. Neuron 72, 721–733 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lee, J. H. et al. Global and local fMRI signals driven by neurons defined optogenetically by type and wiring. Nature 465, 788–792 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Peterlin, Z. A., Kozloski, J., Mao, B.-Q., Tsiola, A. & Yuste, R. Optical probing of neuronal circuits with calcium indicators. Proc. Natl Acad. Sci. USA 97, 3619–3624 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shoham, S. Optogenetics meets optical wavefront shaping. Nature Methods 7, 798–799 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Petreanu, L., Huber, D., Sobczyk, A. & Svoboda, K. Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections. Nature Neurosci. 10, 663–668 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Petreanu, L., Mao, T., Sternson, S. M. & Svoboda, K. The subcellular organization of neocortical excitatory connections. Nature 457, 1142–1145 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Adesnik, H. & Scanziani, M. Lateral competition for cortical space by layer-specific horizontal circuits. Nature 464, 1155–1160 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Han, X. & Boyden, E. S. Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution. PLoS ONE 2, e299 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zhao, S. et al. Improved expression of halorhodopsin for light-induced silencing of neuronal activity. Brain Cell Biol. 36, 141–154 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gradinaru, V., Thompson, K. R. & Deisseroth, K. eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biol. 36, 129–139 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lin, J. Y., Lin, M. Z., Steinbach, P. & Tsien, R. Y. Characterization of engineered channelrhodopsin variants with improved properties and kinetics. Biophys. J. 96, 1803–1814 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yizhar, O. et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477, 171–178 (2011). The introduction of two new opsin variants, C1V1 and SSFO, for combinatorial optogenetic excitation in vivo . The study showed the importance of altered excitation/inhibition ratios to social behaviour and cognition.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Berglund, K., Kuner, T., Feng, G. & Augustine, G. J. Imaging synaptic inhibition with the genetically encoded chloride indicator clomeleon. Cold Spring Harb. Protoc. 2011, 1492–1497 (2011).

    Article  PubMed  Google Scholar 

  50. Witten, I. B. et al. Cholinergic interneurons control local circuit activity and cocaine conditioning. Science 330, 1677–1681 (2010). The first behavioural loss-of-function in mammals achieved using optogenetics. This study involved the introduction of an inhibitory opsin into cholinergic interneurons using the double-floxed inverted open reading frame tool in a choline acetyltransferase (ChAT)::Cre mouse to demonstrate the role of cholinergic neurons in mediating cocaine-conditioned place preference.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kravitz, A. V. et al. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466, 622–626 (2010). This study used optogenetics to provide empirical evidence of the long-proposed effects of the direct and indirect pathways in the striatum on movement.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Adamantidis, A. R. et al. Optogenetic interrogation of dopaminergic modulation of the multiple phases of reward-seeking behavior. J. Neurosci. 31, 10829–10835 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sohal, V. S., Zhang, F., Yizhar, O. & Deisseroth, K. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459, 698–702 (2009). Together with reference 54, this study used optogenetic tools to link parvalbumin cells to gamma rhythms, information transmission and processing in the neocortex.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cardin, J. A. et al. Driving fast-spiking cells induces γ rhythm and controls sensory responses. Nature 459, 663–667 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gradinaru, V., Mogri, M., Thompson, K. R., Henderson, J. M. & Deisseroth, K. Optical deconstruction of parkinsonian neural circuitry. Science 324, 354–359 (2009). This study provided a mechanistic explanation for how DBS alleviates parkinsonian symptoms using optogenetic techniques in animal models.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tye, K. M. et al. Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature 471, 358–362 (2011). The first optogenetic projection-specific targeting study of behaviour, showing that acute activation of neuron axon terminals can produce an opposite effect on anxiety to that produced by activating neuron somata. Itwas also the first study to show axon-terminal specific inhibition using optogenetics in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Aponte, Y., Atasoy, D. & Sternson, S. M. AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nature Neurosci. 14, 351–355 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Hägglund, M., Borgius, L., Dougherty, K. J. & Kiehn, O. Activation of groups of excitatory neurons in the mammalian spinal cord or hindbrain evokes locomotion. Nature Neurosci. 13, 246–252 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Choi, J., Young, J. A. T. & Callaway, E. M. Selective viral vector transduction of ErbB4 expressing cortical interneurons in vivo with a viral receptor-ligand bridge protein. Proc. Natl Acad. Sci. USA 107, 16703–16708 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Li, F., Ryu, B. Y., Krueger, R. L., Heldt, S. A. & Albritton, L. M. Targeted entry via somatostatin receptors using a novel modified retrovirus glycoprotein that delivers genes at levels comparable to wild type viral glycoproteins. J. Virol. 86, 373–381 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Stuber, G. D. et al. Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. Nature 475, 377–380 (2011). This study showed that amygdalar projections to the NAc, but not cortical projections, mediate ICSS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zorzos, A. N., Boyden, E. S. & Fonstad, C. G. Multiwaveguide implantable probe for light delivery to sets of distributed brain targets. Opt. Lett. 35, 4133–4135 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Wentz, C. T. et al. A wirelessly powered and controlled device for optical neural control of freely-behaving animals. J. Neural Eng. 8, 046021 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kessler, R. C. et al. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch. Gen. Psychiatry 62, 593–602 (2005).

    Article  PubMed  Google Scholar 

  65. Lieb, R. Anxiety disorders: clinical presentation and epidemiology. Handb. Exp. Pharmacol. 405–432 (2005).

  66. Baldwin, D., Woods, R., Lawson, R. & Taylor, D. Efficacy of drug treatments for generalised anxiety disorder: systematic review and meta-analysis. BMJ 342, d1199 (2011).

    Article  PubMed  Google Scholar 

  67. Beck, A. T., Emery, G. & Greenberg, R. L. Anxiety Disorders and Phobias: A Cognitive Perspective (Basic Books, 2005).

    Google Scholar 

  68. Woods, J. H., Katz, J. L. & Winger, G. Benzodiazepines: use, abuse, and consequences. Pharmacol. Rev. 44, 151–347 (1992).

    CAS  PubMed  Google Scholar 

  69. Johansen, J. P. et al. Optical activation of lateral amygdala pyramidal cells instructs associative fear learning. Proc. Natl Acad. Sci. USA 107, 12692–12697 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Adolphs, R., Tranel, D., Damasio, H. & Damasio, A. Fear and the human amygdala. J. Neurosci. 15, 5879–5891 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Davis, M. The role of the amygdala in fear and anxiety. Annu. Rev. Neurosci. 15, 353–375 (1992).

    Article  CAS  PubMed  Google Scholar 

  72. LeDoux, J. E. Emotion: clues from the brain. Annu. Rev. Psychology 46, 209–235 (1995).

    Article  CAS  Google Scholar 

  73. Fanselow, M. S. & Gale, G. D. The amygdala, fear, and memory. Ann. NY Acad. Sci. 985, 125–134 (2003).

    Article  PubMed  Google Scholar 

  74. Maren, S. Synaptic mechanisms of associative memory in the amygdala. Neuron 47, 783–786 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Jüngling, K. et al. Neuropeptide S-mediated control of fear expression and extinction: role of intercalated GABAergic neurons in the amygdala. Neuron 59, 298–310 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. LeDoux, J., Cicchetti, P., Xagoraris, A. & Romanski, L. The lateral amygdaloid nucleus: sensory interface of the amygdala in fear conditioning. J. Neurosci. 10, 1062–1069 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Miserendino, M. J. D., Sananes, C. B., Melia, K. R. & Davis, M. Blocking of acquisition but not expression of conditioned fear-potentiated startle by NMDA antagonists in the amygdala. Nature 345, 716–718 (1990).

    Article  CAS  PubMed  Google Scholar 

  78. Paré, D., Quirk, G. J. & Ledoux, J. E. New vistas on amygdala networks in conditioned fear. J. Neurophysiol. 92, 1–9 (2004).

    Article  PubMed  Google Scholar 

  79. Rodrigues, S. M., Schafe, G. E. & LeDoux, J. E. Intra-amygdala blockade of the NR2B subunit of the NMDA receptor disrupts the acquisition but not the expression of fear conditioning. J. Neurosci. 21, 6889–6896 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wilensky, A. E., Schafe, G. E., Kristensen, M. P. & LeDoux, J. E. Rethinking the fear circuit: the central nucleus of the amygdala is required for the acquisition, consolidation, and expression of pavlovian fear conditioning. J. Neurosci. 26, 12387–12396 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Han, J.-H. et al. Selective erasure of a fear memory. Science 323, 1492–1496 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Haubensak, W. et al. Genetic dissection of an amygdala microcircuit that gates conditioned fear. Nature 468, 270–276 (2010). Together with reference 83, this study identified a new population of neurons, and identified functional specificity in PKCδ-expressing neurons in a multisynaptic circuit in the context of conditioned fear expression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ciocchi, S. et al. Encoding of conditioned fear in central amygdala inhibitory circuits. Nature 468, 277–282 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Yehuda, R. Post-traumatic stress disorder. N. Engl. J. Med. 346, 108–114 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Charney, D. S., Deutch, A. Y., Krystal, J. H., Southwick, S. M. & Davis, M. Psychobiologic mechanisms of posttraumatic stress disorder. Arch. Gen. Psychiatry 50, 295–305 (1993).

    CAS  PubMed  Google Scholar 

  86. Rauch, S. L., Shin, L. M. & Phelps, E. A. Neurocircuitry models of posttraumatic stress disorder and extinction: human neuroimaging research–past, present, and future. Biol. Psychiatry 60, 376–382 (2006).

    Article  PubMed  Google Scholar 

  87. Milad, M. R., Rauch, S. L., Pitman, R. K. & Quirk, G. J. Fear extinction in rats: implications for human brain imaging and anxiety disorders. Biol. Psychology 73, 61–71 (2006).

    Article  Google Scholar 

  88. Rudy, J. W. & O'Reilly, R. C. Contextual fear conditioning, conjunctive representations, pattern completion, and the hippocampus. Behav. Neurosci. 113, 867–880 (1999).

    Article  CAS  PubMed  Google Scholar 

  89. Fanselow, M. S. Contextual fear, gestalt memories, and the hippocampus. Behav. Brain Res. 110, 73–81 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Phillips, R. & LeDoux, J. Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav. Neurosci. 106, 274–285 (1992).

    Article  CAS  PubMed  Google Scholar 

  91. Kim, J. J., Rison, R. A. & Fanselow, M. S. Effects of amygdala, hippocampus, and periaqueductal gray lesions on short-and long-term contextual fear. Behav. Neurosci. 107, 1093–1098 (1993).

    Article  CAS  PubMed  Google Scholar 

  92. McGaugh, J. L. Memory—a century of consolidation. Science 287, 248–251 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Frankland, P. W. et al. Consolidation of CS and US representations in associative fear conditioning. Hippocampus 14, 557–569 (2004).

    Article  PubMed  Google Scholar 

  94. Frankland, P. W. & Bontempi, B. The organization of recent and remote memories. Nature Rev. Neuroscience 6, 119–130 (2005).

    Article  CAS  Google Scholar 

  95. Wiltgen, B. J., Brown, R. A. M., Talton, L. E. & Silva, A. J. New circuits for old memories: the role of the neocortex in consolidation. Neuron 44, 101–108 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Lee, J. L. C., Everitt, B. J. & Thomas, K. L. Independent cellular processes for hippocampal memory consolidation and reconsolidation. Science 304, 839–843 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Goshen, I. et al. Dynamics of retrieval strategies for remote memories. Cell 147, 678–689 (2011). This study showed that remote memory recall is dependent on hippocampal activity, using fast-acting optogenetic methods.

    Article  CAS  PubMed  Google Scholar 

  98. Koob, G. F. Drugs of abuse: anatomy, pharmacology and function of reward pathways. Trends Pharmacol. Sci. 13, 177–184 (1992).

    Article  CAS  PubMed  Google Scholar 

  99. Wise, R. A. Drug-activation of brain reward pathways. Drug Alcohol Depend. 51, 13–22 (1998).

    Article  CAS  PubMed  Google Scholar 

  100. Everitt, B. J. & Robbins, T. W. Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nature Neurosci. 8, 1481 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Robinson, T. E. & Berridge, K. C. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res. Rev. 18, 247–291 (1993).

    Article  CAS  PubMed  Google Scholar 

  102. Kelley, A. E. & Berridge, K. C. The neuroscience of natural rewards: relevance to addictive drugs. J. Neurosci. 22, 3306–3311 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and reward. Science 275, 1593–1599 (1997).

    Article  CAS  PubMed  Google Scholar 

  104. Spanagel, R. & Weiss, F. The dopamine hypothesis of reward: past and current status. Trends Neurosci. 22, 521–527 (1999).

    Article  CAS  PubMed  Google Scholar 

  105. Berridge, K. C. & Robinson, T. E. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res. Rev. 28, 309–369 (1998).

    Article  CAS  PubMed  Google Scholar 

  106. Ikemoto, S. & Panksepp, J. The role of nucleus accumbens dopamine in motivated behavior: a unifying interpretation with special reference to reward-seeking. Brain Res. Rev. 31, 6–41 (1999).

    Article  CAS  PubMed  Google Scholar 

  107. Kalivas, P. W. & Stewart, J. Dopamine transmission in the initiation and expression of drug-and stress-induced sensitization of motor activity. Brain Res. Rev. 16, 223–244 (1991).

    Article  CAS  PubMed  Google Scholar 

  108. Ambroggi, F., Ishikawa, A., Fields, H. L. & Nicola, S. M. Basolateral amygdala neurons facilitate reward-seeking behavior by exciting nucleus accumbens neurons. Neuron 59, 648–661 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Cardinal, R. N., Parkinson, J. A., Hall, J. & Everitt, B. J. Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci. Biobehav. Rev. 26, 321–352 (2002).

    Article  PubMed  Google Scholar 

  110. Nicola, S. M., Yun, I. A., Wakabayashi, K. T. & Fields, H. L. Firing of nucleus accumbens neurons during the consummatory phase of a discriminative stimulus task depends on previous reward predictive cues. J. Neurophysiol. 91, 1866–1882 (2004).

    Article  PubMed  Google Scholar 

  111. Carr, G. D., Fibiger, H. C. & Phillips, A. G. Conditioned place preference as a measure of drug reward. in The Neuropharmacological Basis of Reward (Topics in Experimental Psychopharmacology) Vol. 1 (eds Liebman, J. M. & Cooper, S. J.) 264–319 (Oxford Univ. Press, 1989).

    Google Scholar 

  112. Tzschentke, T. M. Measuring reward with the conditioned place preference paradigm: a comprehensive review of drug effects, recent progress and new issues. Prog. Neurobiol. 56, 613–672 (1998).

    Article  CAS  PubMed  Google Scholar 

  113. Lobo, M. K. et al. Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science 330, 385–390 (2010). This study showed that D1 and D2 neurons in the NAc have distinctly different effects on cocaine-conditioned place preference.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Olds, J. & Milner, P. Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J. Comp. Physiol. Psychol. 47, 419–427 (1954).

    Article  CAS  PubMed  Google Scholar 

  115. Lüscher, C. & Malenka, R. C. Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling. Neuron 69, 650–663 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Schoenbaum, G., Chiba, A. A. & Gallagher, M. Orbitofrontal cortex and basolateral amygdala encode expected outcomes during learning. Nature Neurosci. 1, 155–159 (1998).

    Article  CAS  PubMed  Google Scholar 

  117. Schoenbaum, G. & Roesch, M. Orbitofrontal cortex, associative learning, and expectancies. Neuron 47, 633–636 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Tye, K. M., Stuber, G. D., de Ridder, B., Bonci, A. & Janak, P. H. Rapid strengthening of thalamo-amygdala synapses mediates cue-reward learning. Nature 453, 1253–1257 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Tye, K. M. et al. Methylphenidate facilitates learning-induced amygdala plasticity. Nature Neurosci. 13, 475–481 (2010).

    Article  CAS  PubMed  Google Scholar 

  120. Carelli, R. M. & Deadwyler, S. A comparison of nucleus accumbens neuronal firing patterns during cocaine self-administration and water reinforcement in rats. J. Neurosci. 14, 7735–4776 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Carelli, R. M., Ijames, S. G. & Crumling, A. J. Evidence that separate neural circuits in the nucleus accumbens encode cocaine versus “natural” (water and food) reward. J. Neurosci. 20, 4255–4266 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Wakabayashi, K. T., Fields, H. L. & Nicola, S. M. Dissociation of the role of nucleus accumbens dopamine in responding to reward-predictive cues and waiting for reward. Behav. Brain Res. 154, 19–30 (2004).

    Article  CAS  PubMed  Google Scholar 

  123. Peters, Y. M., O'Donnell, P. & Carelli, R. M. Prefrontal cortical cell firing during maintenance, extinction, and reinstatement of goal-directed behavior for natural reward. Synapse 56, 74–83 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Tye, K. M., Cone, J. J., Schairer, W. W. & Janak, P. H. Amygdala neural encoding of the absence of reward during extinction. J. Neurosci. 30, 116–125 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Tye, K. M. & Janak, P. H. Amygdala neurons differentially encode motivation and reinforcement. J. Neurosci. 27, 3937–3945 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Phillips, P. E. M., Stuber, G. D., Heien, M., Wightman, R. M. & Carelli, R. M. Subsecond dopamine release promotes cocaine seeking. Nature 422, 614–618 (2003).

    Article  CAS  PubMed  Google Scholar 

  127. Alsiö, J. et al. Enhanced sucrose and cocaine self-administration and cue-induced drug seeking after loss of VGLUT2 in midbrain dopamine neurons in mice. J. Neurosci. 31, 12593–12603 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Blazer, D., Kessler, R., McGonagle, K. & Swartz, M. The prevalence and distribution of major depression in a national community sample: the National Comorbidity Survey. Am. J. Psychiatry 151, 979–986 (1994).

    Article  CAS  PubMed  Google Scholar 

  129. Nierenberg, A. A. & Dececco, L. M. Definitions of antidepressant treatment response, remission, nonresponse, partial response, and other relevant outcomes: a focus on treatment-resistant depression. J. Clin. Psychiatry 62 (Suppl. 16), 5–9 (2001).

    CAS  PubMed  Google Scholar 

  130. Dailly, E., Chenu, F., Renard, C. E. & Bourin, M. Dopamine, depression and antidepressants. Fundam. Clin. Pharmacol. 18, 601–607 (2004).

    Article  CAS  PubMed  Google Scholar 

  131. Maddox, J. C., Levi, M. & Thompson, C. The compliance with antidepressants in general practice. J. Psychopharmacol. 8, 48–52 (1994).

    Article  CAS  PubMed  Google Scholar 

  132. Melfi, C. A. et al. The effects of adherence to antidepressant treatment guidelines on relapse and recurrence of depression. Arch. Gen. Psychiatry 55, 1128–1132 (1998).

    Article  CAS  PubMed  Google Scholar 

  133. Mayberg, H. S. et al. Deep brain stimulation for treatment-resistant depression. Neuron 45, 651–660 (2005). A seminal study showing that DBS can show acute and long-lasting antidepressant effects, inviting reverse translational studies using optogenetics to provide a mechanistic explanation.

    Article  CAS  PubMed  Google Scholar 

  134. Mayberg, H. Modulating limbic-cortical circuits in depression: targets of antidepressant treatments. Semin. Clin. Neuropsychiatry 7, 255–268 (2002).

    Article  PubMed  Google Scholar 

  135. Covington, H. E. et al. Antidepressant effect of optogenetic stimulation of the medial prefrontal cortex. J. Neurosci. 30, 16082–16090 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Bach-Mizrachi, H. et al. Neuronal tryptophan hydroxylase mRNA expression in the human dorsal and median raphe nuclei: major depression and suicide. Neuropsychopharmacology 31, 814–824 (2005).

    Article  CAS  Google Scholar 

  137. Greenwood, B. N. et al. Freewheel running prevents learned helplessness/behavioral depression: role of dorsal raphe serotonergic neurons. J. Neurosci. 23, 2889–2898 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Lira, A. et al. Altered depression-related behaviors and functional changes in the dorsal raphe nucleus of serotonin transporter-deficient mice. Biol. Psychiatry 54, 960–971 (2003).

    Article  CAS  PubMed  Google Scholar 

  139. Airan, R. D. et al. High-speed imaging reveals neurophysiological links to behavior in an animal model of depression. Science 317, 819–823 (2007).

    Article  CAS  PubMed  Google Scholar 

  140. Bremner, J. D. et al. Hippocampal volume reduction in major depression. Am. J. Psychiatry 157, 115–118 (2000).

    Article  CAS  PubMed  Google Scholar 

  141. Sahay, A. & Hen, R. Adult hippocampal neurogenesis in depression. Nature Neurosci. 10, 1110–1115 (2007).

    Article  CAS  PubMed  Google Scholar 

  142. Sapolsky, R. M. The possibility of neurotoxicity in the hippocampus in major depression: a primer on neuron death. Biol. Psychiatry 48, 755–765 (2000).

    Article  CAS  PubMed  Google Scholar 

  143. Mervaala, E. et al. Quantitative MRI of the hippocampus and amygdala in severe depression. Psychol. Med. 30, 117–125 (2000).

    Article  CAS  PubMed  Google Scholar 

  144. Sheline, Y. I., Gado, M. H. & Price, J. L. Amygdala core nuclei volumes are decreased in recurrent major depression. Neuroreport 9, 2023–2028 (1998).

    Article  CAS  PubMed  Google Scholar 

  145. Sheline, Y. I. et al. Increased amygdala response to masked emotional faces in depressed subjects resolves with antidepressant treatment: an fMRI study. Biol. Psychiatry 50, 651–658 (2001).

    Article  CAS  PubMed  Google Scholar 

  146. Siegle, G. J., Thompson, W., Carter, C. S., Steinhauer, S. R. & Thase, M. E. Increased amygdala and decreased dorsolateral prefrontal BOLD responses in unipolar depression: related and independent features. Biol. Psychiatry 61, 198–209 (2007).

    Article  PubMed  Google Scholar 

  147. Larisch, R. et al. In vivo evidence for the involvement of dopamine-D2 receptors in striatum and anterior cingulate gyrus in major depression. Neuroimage 5, 251–260 (1997).

    Article  CAS  PubMed  Google Scholar 

  148. Zhu, X., Peng, S., Zhang, S. & Zhang, X. Stress-induced depressive behaviors are correlated with Par-4 and DRD2 expression in rat striatum. Behav. Brain Res. 223, 329–335 (2011).

    Article  CAS  PubMed  Google Scholar 

  149. Meyer, J. H. et al. Lower dopamine transporter binding potential in striatum during depression. Neuroreport 12, 4121–4125 (2001).

    Article  CAS  PubMed  Google Scholar 

  150. Binfaré, R. W., Mantovani, M., Budni, J., Santos, A. R. S. & Rodrigues, A. L. S. Involvement of dopamine receptors in the antidepressant-like effect of melatonin in the tail suspension test. Eur. J. Pharmacol. 638, 78–83 (2010).

    Article  CAS  PubMed  Google Scholar 

  151. Willner, P. Dopamine and depression: a review of recent evidence. II. Theoretical approaches. Brain Res. Rev. 6, 225–236 (1983).

    Article  CAS  Google Scholar 

  152. Malone, D. A. Jr et al. Deep brain stimulation of the ventral capsule/ventral striatum for treatment-resistant depression. Biol. Psychiatry 65, 267–275 (2009).

    Article  PubMed  Google Scholar 

  153. Aghajanian, G. K., Graham, A. W. & Sheard, M. H. Serotonin-containing neurons in brain: depression of firing by monoamine oxidase inhibitors. Science 169, 1100–1102 (1970).

    Article  CAS  PubMed  Google Scholar 

  154. Arango, V., Underwood, M. D. & Mann, J. J. Serotonin brain circuits involved in major depression and suicide. Prog. Brain Res. 136, 443–453 (2002).

    Article  CAS  PubMed  Google Scholar 

  155. Weiss, J. M. et al. Behavioral depression produced by an uncontrollable stressor: relationship to norepinephrine, dopamine, and serotonin levels in various regions of rat brain. Brain Res. Rev. 3, 167–205 (1981).

    Article  CAS  Google Scholar 

  156. Swerdlow, N. R. & Koob, G. F. Dopamine, schizophrenia, mania, and depression: toward a unified hypothesis of cortico-striato-pallido-thalamic function. Behav. Brain Sci. 10, 197–245 (1987).

    Article  Google Scholar 

  157. Li, X., Frye, M. A. & Shelton, R. C. Review of pharmacological treatment in mood disorders and future directions for drug development. Neuropsychopharmacology 37, 77–101 (2012).

    Article  CAS  PubMed  Google Scholar 

  158. Gillott, A., Furniss, F. & Walter, A. Anxiety in high-functioning children with autism. Autism 5, 277–286 (2001).

    Article  CAS  PubMed  Google Scholar 

  159. Howlin, P. & Moorf, A. Diagnosis in autism. Autism 1, 135–162 (1997).

    Article  Google Scholar 

  160. Phetrasuwan, S., Miles, M. S., Mesibov, G. B. & Robinson, C. Defining autism spectrum disorders. J. Spec. Pediatr. Nurs. 14, 206–209 (2009).

    Article  PubMed  Google Scholar 

  161. Crow, T. J. Molecular pathology of schizophrenia: more than one disease process? Br. Med. J. 280, 66–68 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Endicott, J. & Spitzer, R. L. A diagnostic interview: the schedule for affective disorders and schizophrenia. Arch. Gen. Psychiatry 35, 837–844 (1978).

    Article  CAS  PubMed  Google Scholar 

  163. Kay, S. R., Flszbein, A. & Opfer, L. A. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr. Bull. 13, 261–276 (1987).

    Article  CAS  PubMed  Google Scholar 

  164. Kehrer, C., Maziashvili, N., Dugladze, T. & Gloveli, T. Altered excitatory-inhibitory balance in the NMDA-hypofunction model of schizophrenia. Front. Mol. Neurosci. 1, 6 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Gonzalez-Burgos, G., Hashimoto, T. & Lewis, D. A. Alterations of cortical GABA neurons and network oscillations in schizophrenia. Curr. Psychiatry Rep. 12, 335–344 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Lewis, D. A. & Gonzalez-Burgos, G. Pathophysiologically based treatment interventions in schizophrenia. Nature Med. 12, 1016–1022 (2006).

    Article  CAS  PubMed  Google Scholar 

  167. Lord, C. & Bishop, S. L. Social Policy Report 24. Autism Spectrum Disorders: Diagnosis, Prevalence, and Services for Children and Families (Society for Research in Child Development, 2010).

    Google Scholar 

  168. Tønnesen, J., Sørensen, A. T., Deisseroth, K., Lundberg, C. & Kokaia, M. Optogenetic control of epileptiform activity. Proc. Natl Acad. Sci. USA 106, 12162–12167 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Paz, J. T. et al. A new mode of corticothalamic transmission revealed in the Gria4−/− model of absence epilepsy. Nature Neurosci. 14, 1167–1173 (2011).

    Article  CAS  PubMed  Google Scholar 

  170. Kim, J. A., Szatmari, P., Bryson, S. E., Streiner, D. L. & Wilson, F. J. The prevalence of anxiety and mood problems among children with autism and Asperger syndrome. Autism 4, 117–132 (2000).

    Article  Google Scholar 

  171. Markram, K. & Markram, H. The intense world theory—a unifying theory of the neurobiology of autism. Front. Hum. Neurosci. 4, 224 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Vattikuti, S. & Chow, C. C. A computational model for cerebral cortical dysfunction in autism spectrum disorders. Biol. Psychiatry 67, 672–678 (2010).

    Article  PubMed  Google Scholar 

  173. Rubenstein, J. & Merzenich, M. Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav. 2, 255–267 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Orekhova, E. V. et al. Excess of high frequency electroencephalogram oscillations in boys with autism. Biol. Psychiatry 62, 1022–1029 (2007).

    Article  PubMed  Google Scholar 

  175. Kalivas, P. W. & Volkow, N. D. The neural basis of addiction: a pathology of motivation and choice. Am. J. Psychiatry 162, 1403–1413 (2005).

    Article  PubMed  Google Scholar 

  176. Batel, P. Addiction and schizophrenia. Eur. Psychiatry 15, 115–122 (2000).

    Article  CAS  PubMed  Google Scholar 

  177. Huppert, J. D., Weiss, K. A., Lim, R., Pratt, S. & Smith, T. E. Quality of life in schizophrenia: contributions of anxiety and depression. Schizophr. Res. 51, 171–180 (2001).

    Article  CAS  PubMed  Google Scholar 

  178. Rasmussen, K. CCK, schizophrenia, and anxiety. Ann. NY Acad. Sci. 713, 300–311 (1994).

    Article  CAS  PubMed  Google Scholar 

  179. Busskamp, V. et al. Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science 329, 413–417 (2010).

    Article  CAS  PubMed  Google Scholar 

  180. Busskamp, V. & Roska, B. Optogenetic approaches to restoring visual function in retinitis pigmentosa. Curr. Opin. Neurobiol. 21, 942–946 (2011).

    Article  CAS  PubMed  Google Scholar 

  181. Pagliardini, S. et al. Active expiration induced by excitation of ventral medulla in adult anesthetized rats. J. Neurosci. 31, 2895–2905 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Gourine, A. V. et al. Astrocytes control breathing through pH-dependent release of ATP. Science 329, 571–575 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Alexander, G. E. & Crutcher, M. D. Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci. 13, 266–271 (1990).

    Article  CAS  PubMed  Google Scholar 

  184. Gurney, K., Prescott, T. & Redgrave, P. A computational model of action selection in the basal ganglia. I. A new functional anatomy. Biol. Cybern. 84, 401–410 (2001).

    Article  CAS  PubMed  Google Scholar 

  185. Smith, Y., Bevan, M., Shink, E. & Bolam, J. Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience 86, 353–387 (1998).

    Article  CAS  PubMed  Google Scholar 

  186. Hughes, A. J., Daniel, S. E., Kilford, L. & Lees, A. J. Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases. J. Neurol. Neurosurg. Psychiatry 55, 181–184 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Gelb, D. J., Oliver, E. & Gilman, S. Diagnostic criteria for parkinson disease. Arch. Neurol. 56, 33–39 (1999).

    Article  CAS  PubMed  Google Scholar 

  188. Benabid, A. L. Deep brain stimulation for Parkinson's disease. Curr. Opin. Neurobiol. 13, 696–706 (2003).

    Article  CAS  PubMed  Google Scholar 

  189. Deuschl, G. et al. A randomized trial of deep-brain stimulation for Parkinson's disease. N. Engl. J. Med. 355, 896–908 (2006).

    Article  CAS  PubMed  Google Scholar 

  190. Kumar, R. et al. Double-blind evaluation of subthalamic nucleus deep brain stimulation in advanced Parkinson's disease. Neurology 51, 850–855 (1998).

    Article  CAS  PubMed  Google Scholar 

  191. Byers, B. et al. SNCA triplication Parkinson's patient's iPSC-derived DA neurons accumulate α-synuclein and are susceptible to oxidative stress. PLoS ONE 6, e26159 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Lin, D. et al. Functional identification of an aggression locus in the mouse hypothalamus. Nature 470, 221–226 (2011). This study used optogenetic manipulation of neurons to show the causal role of this subpopulation of neurons in mediating aggressive behaviours.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Lin, S. C., Deisseroth, K. & Henderson, J. M. Optogenetics: background and concepts for neurosurgery. Neurosurgery 69, 1–3 (2011).

    Article  PubMed  Google Scholar 

  194. Han, X. et al. Millisecond-timescale optical control of neural dynamics in the nonhuman primate brain. Neuron 62, 191–198 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Berdyyeva, T. K. & Reynolds, J. H. The dawning of primate optogenetics. Neuron 62, 159–160 (2009).

    Article  CAS  PubMed  Google Scholar 

  196. Lewis, T. L., Mao, T., Svoboda, K. & Arnold, D. B. Myosin-dependent targeting of transmembrane proteins to neuronal dendrites. Nature Neurosci. 12, 568–576 (2009).

    Article  CAS  PubMed  Google Scholar 

  197. Kleinlogel, S. et al. Ultra light-sensitive and fast neuronal activation with the Ca2+-permeable channelrhodopsin CatCh. Nature Neurosci. 14, 513–518 (2011).

    Article  CAS  PubMed  Google Scholar 

  198. Kato, H. E. et al. Crystal structure of the channelrhodopsin light-gated cation channel. Nature 482, 369–374 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge E. E. Steinberg, P. H. Janak, S.-Y. Kim, L. D. Tye, O. Yizhar, A. Kreitzer, A. Kravitz and L. E. Fenno for helpful comments and discussion. We thank the Deisseroth laboratory for intellectual and scientific support. K.M.T. is supported by the US National Institute of Mental Health (NIMH) (1F32MH088010-01), the Picower Institute of Learning and Memory and the Picower Institute Innovation Funds (PIIF). K.D. is supported by the NIMH, the US National Institute on Drug Abuse, the US National Institute of Neurological Disorders and Stroke, the Howard Hughes Medical Institute, the Defense Advanced Research Projects Agency Reorganization and Plasticity to Accelerate Injury Recovery Program, the Keck Foundation, the Wiegers Family Gift Fund and the Gatsby Charitable Foundation. Full funding support is described at http://www.optogenetics.org/funding. Stanford University has filed for patent protection on technologies invented by K.M.T. and K.D., and K.D. is one of the founders of a company (Circuit Therapeutics) focused on drug screening and optogenetic therapies for bladder dysfunction. K.D. and K.M.T. have no more than 5% interest in any company and receive no research funding, royalties or consultant fees from any company. All optogenetic tools and methods are distributed and supported freely from the laboratory (http://www.optogenetics.org).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kay M. Tye or Karl Deisseroth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Kay M. Tye's homepage

Karl Deisseroth's homepage

Glossary

Opsins

Membrane-bound proteins that can incorporate small organic 'retinal' molecules to become a light receptor.

fMRI

(Functional magnetic resonance imaging). This method can use detection of blood oxygen levels as a proxy for neural activity, and offers a non-invasive method to globally assay brain activity in humans.

BOLD

(Blood oxygen level dependent). The BOLD signal is one kind of signal that fMRI can use to assess neural activity.

Channelrhodopsin

A light-driven cation channel, found in algae, that can be used to depolarize cell membranes.

Halorhodopsin

A light-driven chloride ion pump found in phylogenetically ancient archaea, known as halobacteria, that can be used to hyperpolarize cell membranes.

UP states

Sub-threshold membrane depolarization states that have been observed to spontaneously occur in vivo in some neurons and that may serve to increase the intrinsic excitability of the neuron.

Cre recombinase

DNA recombinase that excises DNA sequences flanked by loxP sequences with the same orientation, or inverts sequences flanked by loxP sites with opposite orientation. It is effective in mammalian cells in vitro and in vivo.

Vectors

Vehicles used to transfer genetic material to a target cell.

Conditioned place preference

(CPP). A behavioural test in which an unconditioned stimulus is paired with one distinctive context and a neutral event is paired with a different context. Preference is determined by allowing the animal to move between the two contexts and measuring the amount of time spent in each context.

Duty cycle

The time that a machine, system or light source spends in an active state as a fraction of the total time under consideration.

Conditioned fear responses

A fear-associated stimulus (such as a shock-predictive tone) that may evoke conditioned responses such as freezing, fear-potentiated startle or increases in blood pressure, perspiration or heart rate.

Deep brain stimulation

(DBS). Continuous therapeutic electric stimulation of subcortical areas at high frequencies ( 130 Hz) using chronically implanted electrodes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tye, K., Deisseroth, K. Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat Rev Neurosci 13, 251–266 (2012). https://doi.org/10.1038/nrn3171

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3171

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing