Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Science and Society
  • Published:

Recruiting adaptive cellular stress responses for successful brain ageing

Abstract

Successful ageing is determined in part by genetic background, but also by experiential factors associated with lifestyle and culture. Dietary, behavioural and pharmacological interventions have been identified as potential means to slow brain ageing and forestall neurodegenerative disease. Many of these interventions recruit adaptive cellular stress responses to strengthen neuronal networks and enhance plasticity. In this Science and Society article, we describe several determinants of healthy and pathological brain ageing, with insights into how these processes are accelerated or prevented. We also describe the mechanisms underlying the neuroprotective actions of exercise and nutritional interventions, with the goal of recruiting these molecular targets for the treatment and prevention of neurodegenerative disease.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Intrinsic features of normal and pathological ageing.
Figure 2: Adaptive cellular stress response signalling mediates the beneficial effects of environmental challenges on neuroplasticity and vulnerability to degeneration.
Figure 3: Potential for mechanistic synergy between exercise and pharmacological treatments designed to maintain cognition in an ageing population.

References

  1. Behl, C. Oestrogen as a neuroprotective hormone. Nature Rev. Neurosci. 3, 433–442 (2002).

    Article  CAS  Google Scholar 

  2. Burns, J. M., Johnson, D. K., Watts, A., Swerdlow, R. H. & Brooks, W. M. Reduced lean mass in early Alzheimer disease and its association with brain atrophy. Arch. Neurol. 67, 428–433 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Stone, A. A., Schwartz, J. E., Broderick, J. E. & Deaton, A. A snapshot of the age distribution of psychological well-being in the United States. Proc. Natl Acad. Sci. USA 107, 9985–9990 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Albert, M. S. The ageing brain: normal and abnormal memory. Phil. Trans. R. Soc. Lond. B 352, 1703–1709 (1997).

    Article  CAS  Google Scholar 

  5. Gallagher, M., Burwell, R. & Burchinal, M. Severity of spatial learning impairment in ageing: development of a learning index for performance in the Morris water maze. Behav. Neurosci. 107, 618–626 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Robitsek, R. J., Fortin, N. J., Koh, M. T., Gallagher, M. & Eichenbaum, H. Cognitive ageing: a common decline of episodic recollection and spatial memory in rats. J. Neurosci. 28, 8945–8954 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zyzak, D. R., Otto, T., Eichenbaum, H. & Gallagher, M. Cognitive decline associated with normal ageing in rats: a neuropsychological approach. Learn. Mem. 2, 1–16 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Mattson, M. P. & Magnus, T. Ageing and neuronal vulnerability. Nature Rev. Neurosci. 7, 278–294 (2006).

    Article  CAS  Google Scholar 

  9. Floyd, R. A. & Hensley, K. Oxidative stress in brain ageing. Implications for therapeutics of neurodegenerative diseases. Neurobiol. Ageing 23, 795–807 (2002).

    Article  CAS  Google Scholar 

  10. Dei, R. et al. Lipid peroxidation and advanced glycation end products in the brain in normal ageing and in Alzheimer's disease. Acta Neuropathol. 104, 113–122 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Lovell, M. A., Ehmann, W. D., Mattson, M. P. & Markesbery, W. R. Elevated 4-hydroxynonenal in ventricular fluid in Alzheimer's disease. Neurobiol. Ageing 18, 457–461 (1997).

    Article  CAS  Google Scholar 

  12. Nicolle, M. M. et al. Signatures of hippocampal oxidative stress in aged spatial learning-impaired rodents. Neuroscience 107, 415–431 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Mattson, M. P. Modification of ion homeostasis by lipid peroxidation: roles in neuronal degeneration and adaptive plasticity. Trends Neurosci. 21, 53–57 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Guo, Q. et al. Increased vulnerability of hippocampal neurons to excitotoxic necrosis in presenilin-1 mutant knock-in mice. Nature Med. 5, 101–106 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Mattson, M. P. Roles of the lipid peroxidation product 4-hydroxynonenal in obesity, the metabolic syndrome, and associated vascular and neurodegenerative disorders. Exp. Gerontol. 44, 625–633 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kapogiannis, D. & Mattson, M. P. Disrupted energy metabolism and neuronal circuit dysfunction in cognitive impairment and Alzheimer's disease. Lancet Neurol. 10, 187–198 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Mattson, M. P., Gleichmann, M. & Cheng, A. Mitochondria in neuroplasticity and neurological disorders. Neuron 60, 748–766 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gibson, G. E., Starkov, A., Blass, J. P., Ratan, R. R. & Beal, M. F. Cause and consequence: mitochondrial dysfunction initiates and propagates neuronal dysfunction, neuronal death and behavioral abnormalities in age-associated neurodegenerative diseases. Biochim. Biophys. Acta 1802, 122–134 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Hyun, D. H., Emerson, S. S., Jo, D. G., Mattson, M. P. & de Cabo, R. Calorie restriction up-regulates the plasma membrane redox system in brain cells and suppresses oxidative stress during ageing. Proc. Natl Acad. Sci. USA 103, 19908–19912 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Weissman, L. et al. Defective DNA base excision repair in brain from individuals with Alzheimer's disease and amnestic mild cognitive impairment. Nucleic Acids Res. 35, 5545–5555 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wong, E. & Cuervo, A. M. Autophagy gone awry in neurodegenerative diseases. Nature Neurosci. 13, 805–811 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Naidoo, N., Ferber, M., Master, M., Zhu, Y. & Pack, A. I. Ageing impairs the unfolded protein response to sleep deprivation and leads to proapoptotic signaling. J. Neurosci. 28, 6539–6548 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bingol, B. & Sheng, M. Deconstruction for reconstruction: the role of proteolysis in neural plasticity and disease. Neuron 69, 22–32 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Gleichmann, M., Chow, V. W. & Mattson, M. P. Homeostatic disinhibition in the ageing brain and Alzheimer's disease. J. Alzheimers Dis. 24, 15–24 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stranahan, A. M. & Mattson, M. P. Impact of energy intake and expenditure on neuronal plasticity. Neuromolecular Med. 10, 209–218 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stranahan, A. M. et al. Diabetes impairs hippocampal function through glucocorticoid-mediated effects on new and mature neurons. Nature Neurosci. 11, 309–317 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Kanoski, S. E., Zhang, Y., Zheng, W. & Davidson, T. L. The effects of a high-energy diet on hippocampal function and blood-brain barrier integrity in the rat. J. Alzheimers Dis. 21, 207–219 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Inui, A. Ghrelin: an orexigenic and somatotrophic signal from the stomach. Nature Rev. Neurosci. 2, 551–560 (2001).

    Article  CAS  Google Scholar 

  29. Diano, S. et al. Ghrelin controls hippocampal spine synapse density and memory performance. Nature Neurosci. 9, 381–388 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Johansson, I. et al. Proliferative and protective effects of growth hormone secretagogues on adult rat hippocampal progenitor cells. Endocrinology 149, 2191–2199 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Debette, S. et al. Midlife vascular risk factor exposure accelerates structural brain ageing and cognitive decline. Neurology 77, 461–468 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sturman, M. T. et al. Body mass index and cognitive decline in a biracial community population. Neurology 70, 360–367 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Molteni, R., Barnard, R. J., Ying, Z., Roberts, C. K. & Gómez-Pinilla, F. A high-fat, refined sugar diet reduces hippocampal brain-derived neurotrophic factor, neuronal plasticity, and learning. Neuroscience 112, 803–814 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Stranahan, A. M. et al. Diet-induced insulin resistance impairs hippocampal synaptic plasticity and cognition in middle-aged rats. Hippocampus 18, 1085–1088 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  35. McNay, E. C. et al. Hippocampal memory processes are modulated by insulin and high-fat-induced insulin resistance. Neurobiol. Learn. Mem. 93, 546–553 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Morrison, C. D. et al. High fat diet increases hippocampal oxidative stress and cognitive impairment in aged mice: implications for decreased Nrf2 signaling. J. Neurochem. 114, 1581–1589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Greenwood, C. E. & Winocur, G. Learning and memory impairment in rats fed a high saturated fat diet. Behav. Neural. Biol. 53, 74–87 (1990).

    Article  CAS  PubMed  Google Scholar 

  38. Kanoski, S. E., Meisel, R. L, Mullins, A. J. & Davidson, T. L. The effects of energy-rich diets on discrimination reversal learning and on BDNF in the hippocampus and prefrontal cortex of the rat. Behav. Brain Res. 182, 57–66 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mielke, J. G. et al. Longitudinal study of the effects of a high-fat diet on glucose regulation, hippocampal function, and cerebral insulin sensitivity in C57BL/6 mice. Behav. Brain Res. 175, 374–382 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Goodrick, C. L. Effects of lifelong restricted feeding on complex maze performance in rats. Age 7, 1–2 (1984).

    Article  Google Scholar 

  41. Fontán-Lozano, A. et al. Caloric restriction increases learning consolidation and facilitates synaptic plasticity through mechanisms dependent on NR2B subunits of the NMDA receptor. J. Neurosci. 27, 10185–10195 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lee, J., Duan, W. & Mattson, M. P. Evidence that brain-derived neurotrophic factor is required for basal neurogenesis and mediates, in part, the enhancement of neurogenesis by dietary restriction in the hippocampus of adult mice. J. Neurochem. 82, 1367–1375 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Halagappa, V. K. et al. Intermittent fasting and caloric restriction ameliorate age-related behavioral deficits in the triple-transgenic mouse model of Alzheimer's disease. Neurobiol. Dis. 26, 212–220 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Wu, P. et al. Calorie restriction ameliorates neurodegenerative phenotypes in forebrain-specific presenilin-1 and presenilin-2 double knockout mice. Neurobiol. Ageing 29, 1502–1511 (2008).

    Article  CAS  Google Scholar 

  45. Duan, W. & Mattson, M. P. Dietary restriction and 2-deoxyglucose administration improve behavioral outcome and reduce degeneration of dopaminergic neurons in models of Parkinson's disease. J. Neurosci. Res. 57, 195–206 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Maswood, N. et al. Caloric restriction increases neurotrophic factor levels and attenuates neurochemical and behavioral deficits in a primate model of Parkinson's disease. Proc. Natl Acad. Sci. USA 101, 18171–18176 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Duan, W. et al. Dietary restriction normalizes glucose metabolism and BDNF levels, slows disease progression, and increases survival in huntingtin mutant mice. Proc. Natl Acad. Sci. USA 100, 2911–2916 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mattson, M. P. Hormesis defined. Ageing Res. Rev. 7, 1–7 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Arumugam, T. V. et al. Age and energy intake interact to modify cell stress pathways and stroke outcome. Ann. Neurol. 67, 41–52 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yang, J. L., Tadokoro, T., Keijzers, G., Mattson, M. P. & Bohr, V. A. Neurons efficiently repair glutamate-induced oxidative DNA damage by a process involving CREB-mediated up-regulation of apurinic endonuclease 1. J. Biol. Chem. 285, 28191–28199 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Son, T. G., Camandola, S. & Mattson, M. P. Hormetic dietary phytochemicals. Neuromolecular Med. 10, 236–246 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kanoski, S. E. & Davidson, T. L. Western diet consumption and cognitive impairment: links to hippocampal dysfunction and obesity. Physiol. Behav. 103, 59–68 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Parachikova, A., Green, K. N., Hendrix, C. & LaFerla, F. M. Formulation of a medical food cocktail for Alzheimer's disease: beneficial effects on cognition and neuropathology in a mouse model of the disease. PLoS ONE 5, e14015 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kruman, I. I. et al. Folic acid deficiency and homocysteine impair DNA repair in hippocampal neurons and sensitize them to amyloid toxicity in experimental models of Alzheimer's disease. J. Neurosci. 22, 1752–1762 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Karuppagounder, S. S. et al. Thiamine deficiency induces oxidative stress and exacerbates the plaque pathology in Alzheimer's mouse model. Neurobiol. Ageing 30, 1587–1600 (2009).

    Article  CAS  Google Scholar 

  56. Ma, Q. L. et al. β-amyloid oligomers induce phosphorylation of tau and inactivation of insulin receptor substrate via c-Jun N-terminal kinase signaling: suppression by omega-3 fatty acids and curcumin. J. Neurosci. 29, 9078–9089 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Obregon, D. F. et al. ADAM10 activation is required for green tea (–)-epigallocatechin-3-gallate-induced α-secretase cleavage of amyloid precursor protein. J. Biol. Chem. 281, 16419–16427 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Son, T. G. et al. Plumbagin, a novel Nrf2/ARE activator, protects against cerebral ischemia. J. Neurochem. 112, 1316–1326 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Vingtdeux, V. et al. AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-β peptide metabolism. J. Biol. Chem. 285, 9100–9113 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Park, S. S. et al. Cortical gene transcription response patterns to water maze training in aged mice. BMC Neurosci. 12, 63 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Stranahan, A. M. et al. Hippocampal gene expression patterns underlying the enhancement of memory by running in aged mice. Neurobiol. Ageing 31, 1937–1949 (2010).

    Article  CAS  Google Scholar 

  62. Garcia, C., Chen, M. J., Garza, A. A., Cotman, C. W. & Russo-Neustadt, A. The influence of specific noradrenergic and serotonergic lesions on the expression of hippocampal brain-derived neurotrophic factor transcripts following voluntary physical activity. Neuroscience 119, 721–732 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Heneka, M. T. et al. Locus ceruleus degeneration promotes Alzheimer pathogenesis in amyloid precursor protein 23 transgenic mice. J. Neurosci. 26, 1343–1354 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Barrientos, R. M. et al. Little exercise, big effects: reversing ageing and infection-induced memory deficits, and underlying processes. J. Neurosci. 31, 11578–11586 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lazarov, O., Mattson, M. P., Peterson, D. A., Pimplikar, S. W. & van Praag, H. When neurogenesis encounters ageing and disease. Trends Neurosci. 33, 569–579 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bremner, J. D. Stress and brain atrophy. CNS Neurol. Disord. Drug Targets. 5, 503–512 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Stranahan, A. M., Khalil, D. & Gould, E. Social isolation delays the positive effects of running on adult neurogenesis. Nature Neurosci. 9, 526–533 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Rothman, S. M. et al. 3xTgAD mice exhibit altered behavior and elevated Aβ after chronic mild social stress. Neurobiol. Ageing 19 Aug 2011 (doi:10.1016/j.neurobiolaging.2011.07.005).

    Article  CAS  Google Scholar 

  69. Lindvall, O. & Kokaia, Z. Stem cells in human neurodegenerative disorders — time for clinical translation? J. Clin. Invest. 120, 29–40 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Olanow, C. W., Kordower, J. H., Lang, A. E. & Obeso, J. A. Dopaminergic transplantation for Parkinson's disease: current status and future prospects. Ann. Neurol. 66, 591–596 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Hargus, G. et al. Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats. Proc. Natl Acad. Sci. USA 107, 15921–15926 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nagahara, A. H. & Tuszynski, M. H. Potential therapeutic uses of BDNF in neurological and psychiatric disorders. Nature Rev. Drug Discov. 10, 209–219 (2011).

    Article  CAS  Google Scholar 

  73. Moloney, A. M. et al. Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer's disease indicate possible resistance to IGF-1 and insulin signalling. Neurobiol. Ageing 31, 224–243 (2010).

    Article  CAS  Google Scholar 

  74. Massa, S. M. et al. Small molecule BDNF mimetics activate TrkB signaling and prevent neuronal degeneration in rodents. J. Clin. Invest. 120, 1774–1785 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Harvey, J. Leptin regulation of neuronal excitability and cognitive function. Curr. Opin. Pharmacol. 7, 643–647 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mirescu, C. & Gould, E. Stress and adult neurogenesis. Hippocampus 16, 233–238 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Mattson, M. P., Perry, T. & Greig, N. H. Learning from the gut. Nature Med. 9, 1113–1115 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Stranahan, A. M. et al. Voluntary exercise and caloric restriction enhance hippocampal dendritic spine density and BDNF levels in diabetic mice. Hippocampus 19, 951–961 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Witte, A. V., Fobker, M., Gellner, R., Knecht, S. & Flöel, A. Caloric restriction improves memory in elderly humans. Proc. Natl Acad. Sci. USA 106, 1255–1260 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Porter, D. W., Kerr, B. D., Flatt, P. R., Holscher, C. & Gault, V. A. Four weeks administration of Liraglutide improves memory and learning as well as glycaemic control in mice with high fat dietary-induced obesity and insulin resistance. Diabetes Obes. Metab. 12, 891–899 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. Calabrese, E. J. et al. Biological stress response terminology: integrating the concepts of adaptive response and preconditioning stress within a hormetic dose–response framework. Toxicol. Appl. Pharmacol. 222, 122–128 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Xu, X. et al. Gene expression atlas of the mouse central nervous system: impact and interactions of age, energy intake and gender. Genome Biol. 8, R234 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Calabrese, V., Cornelius, C., Dinkova-Kostova, A. T., Calabrese, E. J. & Mattson, M. P. Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid. Redox Signal. 13, 1763–1811 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kraft, A. D., Johnson, D. A. & Johnson, J. A. Nuclear factor E2-related factor 2-dependent antioxidant response element activation by tert-butylhydroquinone and sulforaphane occurring preferentially in astrocytes conditions neurons against oxidative insult. J. Neurosci. 24, 1101–1112 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kim, S. J. et al. Curcumin stimulates proliferation of embryonic neural progenitor cells and neurogenesis in the adult hippocampus. J. Biol. Chem. 283, 14497–14505 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Spencer, J. P. The impact of fruit flavonoids on memory and cognition. Br. J. Nutr. 104 (Suppl. 3), 40–47 (2010).

    Article  CAS  Google Scholar 

  87. Roriz-Cruz, M. et al. Cognitive impairment and frontal-subcortical geriatric syndrome are associated with metabolic syndrome in a stroke-free population. Neurobiol. Ageing 28, 1723–1736 (2007).

    Article  CAS  Google Scholar 

  88. Gunstad, J. et al. Elevated body mass index is associated with executive dysfunction in otherwise healthy adults. Compr. Psychiatry 48, 57–61 (2007).

    Article  PubMed  Google Scholar 

  89. van den Berg, E., Biessels, G. J., de Craen, A. J., Gussekloo, J. & Westendorp, R. G. The metabolic syndrome is associated with decelerated cognitive decline in the oldest old. Neurology 69, 979–985 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Li, Y., Dai, Q., Jackson, J. C. & Zhang, J. Overweight is associated with decreased cognitive functioning among school-age children and adolescents. Obesity (Silver Spring) 16, 1809–1815 (2008).

    Article  Google Scholar 

  91. Huizinga, M. M., Beech, B. M., Cavanaugh, K. L., Elasy, T. A. & Rothman, R. L. Low numeracy skills are associated with higher BMI. Obesity (Silver Spring) 16, 1966–1968 (2008).

    Article  PubMed Central  Google Scholar 

  92. Sabia, S., Kivimaki, M., Shipley, M. J., Marmot, M. G. & Singh-Manoux, A. Body mass index over the adult life course and cognition in late midlife: the Whitehall II Cohort Study. Am. J. Clin. Nutr. 89, 601–607 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Volkow, N. D. et al. Inverse association between BMI and prefrontal metabolic activity in healthy adults. Obesity (Silver Spring) 17, 60–65 (2009).

    Article  Google Scholar 

  94. Fergenbaum, J. H. et al. Obesity and lowered cognitive performance in a Canadian First Nations population. Obesity (Silver Spring) 17, 1957–1963 (2009).

    Article  Google Scholar 

  95. Granholm, A. C. et al. Effects of a saturated fat and high cholesterol diet on memory and hippocampal morphology in the middle-aged rat. J. Alzheimers Dis. 14, 133–145 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Intramural Research Program of the National Institute on Aging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark P. Mattson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stranahan, A., Mattson, M. Recruiting adaptive cellular stress responses for successful brain ageing. Nat Rev Neurosci 13, 209–216 (2012). https://doi.org/10.1038/nrn3151

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3151

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing