Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Synaptic circuit remodelling by matrix metalloproteinases in health and disease

Key Points

  • Matrix metalloproteinases (MMPs) are a large family of mostly secreted, extracellularly acting proteolytic enzymes. In the brain, they have well-described roles in slowly emerging, but long-lasting pathophysiological processes of cell loss and synaptic dysfunction associated with acute injury, ischaemia, neurodegeneration and demyelination.

  • Remodelling of synapse structure and function also underlies normal cognitive processes, such as learning and memory. This Review focuses on recent studies that indicate that MMPs have important roles in driving such synapse plasticity under non-pathological conditions that are distinct from their roles in neuropathophysiology.

  • MMPs are secreted as inactive pro-enzymes (zymogens). Under basal conditions, a large pool of mostly pro-MMPs is situated perisynaptically, poised for activation by plasticity-inducing stimuli, such as long-term potentiation (LTP).

  • Upon induction of LTP, but not other forms of short- or long-lasting plasticity, pro-MMPs are rapidly (within 15 min) converted to proteolytically active MMPs through an NMDA receptor-dependent mechanism. Such proteolytically active MMPs then signal through β1-containing integrins to promote dendritic spine enlargement and synaptic potentiation concurrently.

  • Intercellular adhesion molecule 5, which binds to and activates integrins, may be a direct target of perisynaptic MMP proteolysis during LTP. LTP-associated MMP proteolysis is probably then terminated by an increase in the activity of endogenous inhibitors called tissue inhibitors of metalloproteinases.

  • When MMP activity is blocked pharmacologically or genetically, LTP, spine enlargement and behavioural measures of cognitive function are all impaired.

  • Several psychiatric and neurological disorders, including drug addiction, neuropathic pain syndromes and fragile X syndrome, are associated with abnormal or deficient synaptic plasticity. Recent studies indicate that aberrant MMP expression, localization and function may contribute to synaptic plasticity deficits associated with such disorders.

  • A key area for future research is to elucidate how MMP activity transitions from normal, adaptive roles in local synaptic remodelling to deleterious roles that have important pathophysiological cellular and synaptic consequences. This transition probably involves abnormal regulatory mechanisms, leading to excessive, prolonged and widespread MMP activity.

Abstract

Matrix metalloproteinases (MMPs) are extracellularly acting enzymes that have long been known to have deleterious roles in brain injury and disease. In particular, widespread and protracted MMP activity can contribute to neuronal loss and synaptic dysfunction. However, recent studies show that rapid and focal MMP-mediated proteolysis proactively drives synaptic structural and functional remodelling that is crucial for ongoing cognitive processes. Deficits in synaptic remodelling are associated with psychiatric and neurological disorders, and aberrant MMP expression or function may contribute to the molecular mechanisms underlying these deficits. This Review explores the paradigm shift in our understanding of the contribution of MMPs to normal and abnormal synaptic plasticity and function.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MMP9 localization and activity in hippocampus before and after long-term potentiation.
Figure 2: A model of MMP9 activity in driving synaptic structural and functional remodelling.
Figure 3: Transition of MMP activity to pathophysiological processes.

Similar content being viewed by others

References

  1. Sternlicht, M. D. & Werb, Z. How matrix metalloproteinases regulate cell behavior. Annu. Rev. Cell Dev. Biol. 17, 463–516 (2001). This is a comprehensive review of MMP biology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Butler, G. S. & Overall, C. M. Updated biological roles for matrix metalloproteinases and new “intracellular” substrates revealed by degradomics. Biochemistry 48, 10830–10845 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Page-McCaw, A., Ewald, A. J. & Werb, Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nature Rev. Mol. Cell Biol. 8, 221–233 (2007).

    Article  CAS  Google Scholar 

  4. McFarlane, S. Metalloproteases: carving out a role in axon guidance. Neuron 37, 559–562 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Rivera, S., Khrestchatisky, M., Kaczmarek, L., Rosenberg, G. A. & Jaworski, D. M. Metzincin proteases and their inhibitors: foes or friends in nervous system physiology? J. Neurosci. 30, 15337–15357 (2010). This is an up-to-date review on the role of MMPs, ADAMs and ADAMs with thrombospondin repeats in nervous system function and pathophysiology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fu, M. & Zuo, Y. Experience-dependent structural plasticity in the cortex. Trends Neurosci. 34, 177–187 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Florence, S. L., Taub, H. B. & Kaas, J. H. Large-scale sprouting of cortical connections after peripheral injury in adult macaque monkeys. Science 282, 1117–1121 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Nudo, R. J., Wise, B. M., SiFuentes, F. & Milliken, G. W. Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science 272, 1791–1794 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Buonomano, D. V. & Merzenich, M. M. Cortical plasticity: from synapses to maps. Annu. Rev. Neurosci. 21, 149–186 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Gundelfinger, E. D., Frischknecht, R., Choquet, D. & Heine, M. Converting juvenile into adult plasticity: a role for the brain's extracellular matrix. Eur. J. Neurosci. 31, 2156–2165 (2010). This is a comprehensive review of current information about how the ECM regulates synaptic plasticity.

    Article  PubMed  Google Scholar 

  11. Dityatev, A. & Schachner, M. Extracellular matrix molecules and synaptic plasticity. Nature Rev. Neurosci. 4, 456–468 (2003).

    Article  CAS  Google Scholar 

  12. Vecil, G. G. et al. Interleukin-1 is a key regulator of matrix metalloproteinase-9 expression in human neurons in culture and following mouse brain trauma in vivo. J. Neurosci. Res. 61, 212–224 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Ulrich, R., Gerhauser, I., Seeliger, F., Baumgartner, W. & Alldinger, S. Matrix metalloproteinases and their inhibitors in the developing mouse brain and spinal cord: a reverse transcription quantitative polymerase chain reaction study. Dev. Neurosci. 27, 408–418 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Forsyth, P. A. et al. Gelatinase-A (MMP-2), gelatinase-B (MMP-9) and membrane type matrix metalloproteinase-1 (MT1-MMP) are involved in different aspects of the pathophysiology of malignant gliomas. Br. J. Cancer 79, 1828–1835 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ayoub, A. E., Cai, T. Q., Kaplan, R. A. & Luo, J. Developmental expression of matrix metalloproteinases 2 and 9 and their potential role in the histogenesis of the cerebellar cortex. J. Comp. Neurol. 481, 403–415 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Sekine-Aizawa, Y. et al. Matrix metalloproteinase (MMP) system in brain: identification and characterization of brain-specific MMP highly expressed in cerebellum. Eur. J. Neurosci. 13, 935–948 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Jaworski, D. M. Developmental regulation of membrane type-5 matrix metalloproteinase (MT5-MMP) expression in the rat nervous system. Brain Res. 860, 174–177 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Bozdagi, O., Nagy, V., Kwei, K. T. & Huntley, G. W. In vivo roles for matrix metalloproteinase-9 in mature hippocampal synaptic physiology and plasticity. J. Neurophysiol. 98, 334–344 (2007). This study demonstrates loss- and gain-of-function effects of MMP9 in adult rat hippocampal synaptic physiology in vivo , which validates the relevance of slice studies and introduces a new modification of in vivo zymography.

    Article  CAS  PubMed  Google Scholar 

  19. Szklarczyk, A., Lapinska, J., Rylski, M., McKay, R. D. & Kaczmarek, L. Matrix metalloproteinase-9 undergoes expression and activation during dendritic remodeling in adult hippocampus. J. Neurosci. 22, 920–930 (2002). This study links neural activity with MMP upregulation and activity in the context of epileptogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nagy, V., Bozdagi, O. & Huntley, G. W. The extracellular protease matrix metalloproteinase-9 is activated by inhibitory avoidance learning and required for long-term memory. Learn. Mem. 14, 655–664 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nagy, V. et al. Matrix metalloproteinase-9 is required for hippocampal late-phase long-term potentiation and memory. J. Neurosci. 26, 1923–1934 (2006). This study makes several important advances. It demonstrates that LTP increases MMP9 activity and requires MMP activity; that active MMP9 drives synaptic potentiation; and that the potentiating effects of MMP9 are integrin-mediated. It also shows the behavioural deficits in fear memory formation in Mmp9 knockout mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Meighan, S. E. et al. Effects of extracellular matrix-degrading proteases matrix metalloproteinases 3 and 9 on spatial learning and synaptic plasticity. J. Neurochem. 96, 1227–1241 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Monea, S., Jordan, B. A. Srivastava, S., DeSouza, S. & Ziff, E. B. Membrane localization of membrane type 5 matrix metalloproteinase by AMPA receptor binding protein and cleavage of cadherins. J. Neurosci. 26, 2300–2312 (2006). This study provides molecular details of synaptic regulation and trafficking of a transmembrane MMP.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bilousova, T. V. et al. Minocycline promotes dendritic spine maturation and improves behavioural performance in the fragile X mouse model. J. Med. Genet. 46, 94–102 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Wilczynski, G. M. et al. Important role of matrix metalloproteinase 9 in epileptogenesis. J. Cell Biol. 180, 1021–1035 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Restituito, S. et al. Synaptic autoregulation by metalloproteases and γ-secretase. J. Neurosci. 31, 12083–12093 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gawlak, M. et al. High resolution in situ zymography reveals matrix metalloproteinase activity at glutamatergic synapses. Neuroscience 158, 167–176 (2009). This study introduces a new method for high-resolution in situ zymography in brain tissue that can be combined with immunolocalization of synaptic proteins.

    Article  CAS  PubMed  Google Scholar 

  28. Lee, S. R., Tsuji, K. & Lo, E. H. Role of matrix metalloproteinases in delayed neuronal damage after transient global cerebral ischemia. J. Neurosci. 24, 671–678 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang, X. B. et al. Extracellular proteolysis by matrix metalloproteinase-9 drives dendritic spine enlargement and long-term potentiation coordinately. Proc. Natl Acad. Sci. USA 105, 19520–19525 (2008). This study combines whole-cell recording with simultaneous two-photon imaging to demonstrate that MMP9 acts through integrins to coordinate both synaptic potentiation and spine enlargement.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Meighan, P. C., Meighan, S. E., Davis, C. J., Wright, J. W. & Harding, J. W. Effects of matrix metalloproteinase inhibition on short- and long-term plasticity of schaffer collateral/CA1 synapses. J. Neurochem. 102, 2085–2096 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Wojtowicz, T. & Mozrzymas, J. W. Late phase of long-term potentiation in the mossy fiber-CA3 hippocampal pathway is critically dependent on metalloproteinases activity. Hippocampus 20, 917–921 (2010).

    PubMed  Google Scholar 

  32. Okulski, P. et al. TIMP-1 abolishes MMP-9-dependent long-lasting long-term potentiation in the prefrontal cortex. Biol. Psychiatry 62, 359–362 (2007). This study shows that MMPs and TIMPs regulate LTP in the PFC, indicating that the involvement of MMPs in plasticity extends beyond hippocampal synapses.

    Article  CAS  PubMed  Google Scholar 

  33. Szklarczyk, A. et al. Matrix metalloproteinase-7 modulates synaptic vesicle recycling and induces atrophy of neuronal synapses. Neuroscience 149, 87–98 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Szklarczyk, A., Oyler, G., McKay, R., Gerfen, C. & Conant, K. Cleavage of neuronal synaptosomal-associated protein of 25 kDa by exogenous matrix metalloproteinase-7. J. Neurochem. 102, 1256–1263 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Cho, R. W. et al. mGluR1/5-dependent long-term depression requires the regulated ectodomain cleavage of neuronal pentraxin NPR by TACE. Neuron 57, 858–871 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Conant, K. et al. Matrix metalloproteinase-dependent shedding of intercellular adhesion molecule-5 occurs with long-term potentiation. Neuroscience 166, 508–521 (2010). This study identifies an LTP-related, MMP proteolytic target. The MMP-cleaved ICAM5 fragment is the best candidate yet for mediating the MMP9–integrin-dependent effects on synaptic plasticity, although this remains to be tested.

    Article  CAS  PubMed  Google Scholar 

  37. Murase, S. & McKay, R. D. Matrix metalloproteinase-9 regulates survival of neurons in newborn hippocampus. J. Biol. Chem. 287, 12184–12194 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang, Y., Wang, X. B., Frerking, M. & Zhou, Q. Spine expansion and stabilization associated with long-term potentiation. J. Neurosci. 28, 5740–5751 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mortillo, S. et al. Compensatory redistribution of neuroligins and N-cadherin following deletion of synaptic β1-integrin. J. Comp. Neurol. 520, 1349–1364 (2012).

    Article  CAS  Google Scholar 

  40. Chan, C. S. et al. β1-integrins are required for hippocampal AMPA receptor-dependent synaptic transmission, synaptic plasticity, and working memory. J. Neurosci. 26, 223–232 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chun, D., Gall, C. M., Bi, X. & Lynch, G. Evidence that integrins contribute to multiple stages in the consolidation of long term potentiation in rat hippocampus. Neuroscience 105, 815–829 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Lin, B., Arai, A. C., Lynch, G. & Gall, C. M. Integrins regulate NMDA receptor-mediated synaptic currents. J. Neurophysiol. 89, 2874–2878 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Kramar, E. A., Bernard, J. A., Gall, C. M. & Lynch, G. Integrins modulate fast excitatory transmission at hippocampal synapses. J. Biol. Chem. 278, 10722–10730 (2003).

    Article  PubMed  Google Scholar 

  44. Cingolani, L. A. et al. Activity-dependent regulation of synaptic AMPA receptor composition and abundance by β3 integrins. Neuron 58, 749–762 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kramar, E. A., Lin, B., Rex, C. S., Gall, C. M. & Lynch, G. Integrin-driven actin polymerization consolidates long-term potentiation. Proc. Natl Acad. Sci. USA 103, 5579–5584 (2006). This is one of a series of papers from the Lynch and Gall laboratories that define the role of integrins in consolidation of hippocampal LTP.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lin, B. et al. Theta stimulation polymerizes actin in dendritic spines of hippocampus. J. Neurosci. 25, 2062–2069 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kopec, C. D., Li, B., Wei, W., Boehm, J. & Malinow, R. Glutamate receptor exocytosis and spine enlargement during chemically induced long-term potentiation. J. Neurosci. 26, 2000–2009 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kopec, C. D., Real, E., Kessels, H. W. & Malinow, R. GluR1 links structural and functional plasticity at excitatory synapses. J. Neurosci. 27, 13706–13718 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Michaluk, P. et al. Influence of matrix metalloproteinase MMP-9 on dendritic spine morphology. J. Cell Sci. 124, 3369–3380 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Michaluk, P. et al. Matrix metalloproteinase-9 controls NMDA receptor surface diffusion through integrin β1 signaling. J. Neurosci. 29, 6007–6012 (2009). This study shows that MMP9 signals through integrins to control surface mobility of NMDARs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gorkiewicz, T. et al. Matrix metalloproteinase-9 reversibly affects the time course of NMDA-induced currents in cultured rat hippocampal neurons. Hippocampus 20, 1105–1108 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Frischknecht, R. et al. Brain extracellular matrix affects AMPA receptor lateral mobility and short-term synaptic plasticity. Nature Neurosci. 12, 897–904 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Pozo, K. & Goda, Y. Unraveling mechanisms of homeostatic synaptic plasticity. Neuron 66, 337–351 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bilousova, T. V., Rusakov, D. A., Ethell, D. W. & Ethell, I. M. Matrix metalloproteinase-7 disrupts dendritic spines in hippocampal neurons through NMDA receptor activation. J. Neurochem. 97, 44–56 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Szklarczyk, A. et al. MMP-7 cleaves the NR1 NMDA receptor subunit and modifies NMDA receptor function. FASEB J. 22, 3757–3767 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shi, Y. & Ethell, I. M. Integrins control dendritic spine plasticity in hippocampal neurons through NMDA receptor and Ca2+/calmodulin-dependent protein kinase II-mediated actin reorganization. J. Neurosci. 26, 1813–1822 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fragkouli, A. et al. Enhanced neuronal plasticity and elevated endogenous sAPPα levels in mice over-expressing MMP9. J. Neurochem. 121, 239–251 (2011).

    Article  CAS  Google Scholar 

  58. Wiediger, R. V. & Wright, J. W. Influence of dorsal hippocampal lesions and MMP inhibitors on spontaneous recovery following a habituation/classical conditioning head-shake task. Neurobiol. Learn. Mem. 92, 504–511 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Wright, J. W. et al. Habituation-induced neural plasticity in the hippocampus and prefrontal cortex mediated by MMP-3. Behav. Brain Res. 203, 27–34 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Olson, M. L. et al. Hippocampal MMP-3 elevation is associated with passive avoidance conditioning. Regul. Pept. 146, 19–25 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Wright, J. W., Brown, T. E. & Harding, J. W. Inhibition of hippocampal matrix metalloproteinase-3 and -9 disrupts spatial memory. Neural Plast. 2007, 73813 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Izquierdo, I. et al. Sequential role of hippocampus and amygdala, entorhinal cortex and parietal cortex in formation and retrieval of memory for inhibitory avoidance in rats. Eur. J. Neurosci. 9, 786–793 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. Whitlock, J. R., Heynen, A. J., Shuler, M. G. & Bear, M. F. Learning induces long-term potentiation in the hippocampus. Science 313, 1093–1097 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Yang, G. & Gan, W. B. Sleep contributes to dendritic spine formation and elimination in the developing mouse somatosensory cortex. Dev. Neurobiol. 13 Jul 2012 (doi:10.1002/dneu.20996).

  65. Taishi, P. et al. Conditions that affect sleep alter the expression of molecules associated with synaptic plasticity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281, R839–R845 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. He, B., Peng, H., Zhao, Y., Zhou, H. & Zhao, Z. Modafinil treatment prevents REM sleep deprivation-induced brain function impairment by increasing MMP-9 expression. Brain Res. 1426, 38–42 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Spolidoro, M., Putignano, E., Munafo, C., Maffei, L. & Pizzorusso, T. Inhibition of matrix metalloproteinases prevents the potentiation of nondeprived-eye responses after monocular deprivation in juvenile rats. Cereb. Cortex 22, 725–734 (2011).

    Article  PubMed  Google Scholar 

  68. Kaliszewska, A., Bijata, M., Kaczmarek, L. & Kossut, M. Experience-dependent plasticity of the barrel cortex in mice observed with 2-DG brain mapping and c-Fos: effects of MMP-9 KO. Cereb. Cortex 22, 2160–2170 (2011).

    Article  PubMed  Google Scholar 

  69. Gu, Z. et al. S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science 297, 1186–1190 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Liu, W. T. et al. Spinal matrix metalloproteinase-9 contributes to physical dependence on morphine in mice. J. Neurosci. 30, 7613–7623 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Schuman, E. M. & Madison, D. V. A requirement for the intercellular messenger nitric oxide in long-term potentiation. Science 254, 1503–1506 (1991).

    Article  CAS  PubMed  Google Scholar 

  72. Wang, X. et al. Lipoprotein receptor-mediated induction of matrix metalloproteinase by tissue plasminogen activator. Nature Med. 9, 1313–1317 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Qian, Z., Gilbert, M. E., Colicos, M. A., Kandel, E. R. & Kuhl, D. Tissue-plasminogen activator is induced as an immediate-early gene during seizure, kindling and long-term potentiation. Nature 361, 453–457 (1993).

    Article  CAS  PubMed  Google Scholar 

  74. Lochner, J. E. et al. Activity-dependent release of tissue plasminogen activator from the dendritic spines of hippocampal neurons revealed by live-cell imaging. J. Neurobiol. 66, 564–577 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Baranes, D. et al. Tissue plasminogen activator contributes to the late phase of LTP and to synaptic growth in the hippocampal mossy fiber pathway. Neuron 21, 813–825 (1998).

    Article  CAS  PubMed  Google Scholar 

  76. Komai, S. et al. Neuropsin regulates an early phase of schaffer-collateral long-term potentiation in the murine hippocampus. Eur. J. Neurosci. 12, 1479–1486 (2000). This is one of a series of studies from the Shiosaka laboratory on the role, regulation and targets of the serine protease neuropsin in LTP.

    Article  CAS  PubMed  Google Scholar 

  77. Matsumoto-Miyai, K. et al. Coincident pre- and postsynaptic activation induces dendritic filopodia via neurotrypsin-dependent agrin cleavage. Cell 136, 1161–1171 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Konopacki, F. A. et al. Synaptic localization of seizure-induced matrix metalloproteinase-9 mRNA. Neuroscience 150, 31–39 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Rylski, M. et al. Yin Yang 1 is a critical repressor of matrix metalloproteinase-9 expression in brain neurons. J. Biol. Chem. 283, 35140–35153 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sato, H. & Seiki, M. Regulatory mechanism of 92 kDa type IV collagenase gene expression which is associated with invasiveness of tumor cells. Oncogene 8, 395–405 (1993).

    CAS  PubMed  Google Scholar 

  81. Freudenthal, R. et al. NF-κB transcription factor is required for inhibitory avoidance long-term memory in mice. Eur. J. Neurosci. 21, 2845–2852 (2005).

    Article  PubMed  Google Scholar 

  82. Rylski, M. et al. JunB is a repressor of MMP-9 transcription in depolarized rat brain neurons. Mol. Cell. Neurosci. 40, 98–110 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Jaworski, J. et al. Neuronal excitation-driven and AP-1-dependent activation of tissue inhibitor of metalloproteinases-1 gene expression in rodent hippocampus. J. Biol. Chem. 274, 28106–28112 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Konopka, W. et al. MicroRNA loss enhances learning and memory in mice. J. Neurosci. 30, 14835–14842 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Nedivi, E., Hevroni, D., Naot, D., Israeli, D. & Citri, Y. Numerous candidate plasticity-related genes revealed by differential cDNA cloning. Nature 363, 718–722 (1993). This paper provided one of the earliest indications that the MMP–TIMP system is an activity-regulated one in neurons.

    Article  CAS  PubMed  Google Scholar 

  86. Rivera, S. et al. Tissue inhibitor of metalloproteinases-1 (TIMP-1) is differentially induced in neurons and astrocytes after seizures: evidence for developmental, immediate early gene, and lesion response. J. Neurosci. 17, 4223–4235 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Jourquin, J. et al. Tissue inhibitor of metalloproteinases-1 (TIMP-1) modulates neuronal death, axonal plasticity, and learning and memory. Eur. J. Neurosci. 22, 2569–2578 (2005).

    Article  PubMed  Google Scholar 

  88. Chaillan, F. A. et al. Involvement of tissue inhibition of metalloproteinases-1 in learning and memory in mice. Behav. Brain Res. 173, 191–198 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Jaworski, D. M., Boone, J., Caterina, J., Soloway, P. & Falls, W. A. Prepulse inhibition and fear-potentiated startle are altered in tissue inhibitor of metalloproteinase-2 (TIMP-2) knockout mice. Brain Res. 1051, 81–89 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Baba, Y. et al. Timp-3 deficiency impairs cognitive function in mice. Lab. Invest. 89, 1340–1347 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gahmberg, C. G., Tian, L., Ning, L. & Nyman-Huttunen, H. ICAM-5--a novel two-facetted adhesion molecule in the mammalian brain. Immunol. Lett. 117, 131–135 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Benson, D. L., Yoshihara, Y. & Mori, K. Polarized distribution and cell-type specific localization of telencephalin, an intercellular adhesion molecule. J. Neurosci. Res. 52, 43–53 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Matsuno, H. et al. Telencephalin slows spine maturation. J. Neurosci. 26, 1776–1786 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Tian, L. et al. Activation of NMDA receptors promotes dendritic spine development through MMP-mediated ICAM-5 cleavage. J. Cell Biol. 178, 687–700 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Conant, K. et al. Methamphetamine-associated cleavage of the synaptic adhesion molecule intercellular adhesion molecule-5. J. Neurochem. 118, 521–532 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Marambaud, P. et al. A presenilin-1/γ-secretase cleavage releases the E-cadherin intracellular domain and regulates disassembly of adherens junctions. EMBO J. 21, 1948–1956 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bozdagi, O., Shan, W., Tanaka, H., Benson, D. L. & Huntley, G. W. Increasing numbers of synaptic puncta during late-phase LTP: N-cadherin is synthesized, recruited to synaptic sites, and required for potentiation. Neuron 28, 245–259 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. Bozdagi, O. et al. Persistence of coordinated long-term potentiation and dendritic spine enlargement at mature hippocampal CA1 synapses requires N-cadherin. J. Neurosci. 30, 9984–9989 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Tang, L., Hung, C. P. & Schuman, E. M. A role for the cadherin family of cell adhesion molecules in hippocampal long-term potentiation. Neuron 20, 1165–1175 (1998).

    Article  CAS  PubMed  Google Scholar 

  100. Michaluk, P. et al. β-dystroglycan as a target for MMP-9, in response to enhanced neuronal activity. J. Biol. Chem. 282, 16036–16041 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Higginson, J. R. & Winder, S. J. Dystroglycan: a multifunctional adaptor protein. Biochem. Soc. Trans. 33, 1254–1255 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. McGee, A. W., Yang, Y., Fischer, Q. S., Daw, N. W. & Strittmatter, S. M. Experience-driven plasticity of visual cortex limited by myelin and Nogo receptor. Science 309, 2222–2226 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lee, H. et al. Synaptic function for the Nogo-66 receptor NgR1: regulation of dendritic spine morphology and activity-dependent synaptic strength. J. Neurosci. 28, 2753–2765 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Milward, E. et al. Cleavage of myelin associated glycoprotein by matrix metalloproteinases. J. Neuroimmunol. 193, 140–148 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Ferraro, G. B., Morrison, C. J., Overall, C. M., Strittmatter, S. M. & Fournier, A. E. Membrane-type matrix metalloproteinase-3 regulates neuronal responsiveness to myelin through Nogo-66 receptor 1 cleavage. J. Biol. Chem. 286, 31418–31424 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Alberini, C. M. & Chen, D. Y. Memory enhancement: consolidation, reconsolidation and insulin-like growth factor 2. Trends Neurosci. 35, 274–283 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Chen, D. Y. et al. A critical role for IGF-II in memory consolidation and enhancement. Nature 469, 491–497 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Rajaram, S., Baylink, D. J. & Mohan, S. Insulin-like growth factor-binding proteins in serum and other biological fluids: regulation and functions. Endocr. Rev. 18, 801–831 (1997).

    CAS  PubMed  Google Scholar 

  109. Rorive, S. et al. Matrix metalloproteinase-9 interplays with the IGFBP2–IGFII complex to promote cell growth and motility in astrocytomas. Glia 56, 1679–1690 (2008).

    Article  PubMed  Google Scholar 

  110. Ethell, I. M. & Ethell, D. W. Matrix metalloproteinases in brain development and remodeling: synaptic functions and targets. J. Neurosci. Res. 85, 2813–2823 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Kauer, J. A. & Malenka, R. C. Synaptic plasticity and addiction. Nature Rev. Neurosci. 8, 844–858 (2007).

    Article  CAS  Google Scholar 

  112. Russo, S. J. et al. The addicted synapse: mechanisms of synaptic and structural plasticity in nucleus accumbens. Trends Neurosci. 33, 267–276 (2011).

    Article  CAS  Google Scholar 

  113. Costigan, M., Scholz, J. & Woolf, C. J. Neuropathic pain: a maladaptive response of the nervous system to damage. Annu. Rev. Neurosci. 32, 1–32 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Christoffel, D. J., Golden, S. A. & Russo, S. J. Structural and synaptic plasticity in stress-related disorders. Rev. Neurosci. 22, 535–549 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Arnsten, A. F. Prefrontal cortical network connections: key site of vulnerability in stress and schizophrenia. Int. J. Dev. Neurosci. 29, 215–223 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Jedynak, J. P., Uslaner, J. M., Esteban, J. A. & Robinson, T. E. Methamphetamine-induced structural plasticity in the dorsal striatum. Eur. J. Neurosci. 25, 847–853 (2007).

    Article  PubMed  Google Scholar 

  117. Swant, J., Chirwa, S., Stanwood, G. & Khoshbouei, H. Methamphetamine reduces LTP and increases baseline synaptic transmission in the CA1 region of mouse hippocampus. PLoS ONE 5, e11382 (2011).

    Article  CAS  Google Scholar 

  118. Mizoguchi, H., Yamada, K. & Nabeshima, T. Neuropsychotoxicity of abused drugs: involvement of matrix metalloproteinase-2 and -9 and tissue inhibitor of matrix metalloproteinase-2 in methamphetamine-induced behavioral sensitization and reward in rodents. J. Pharmacol. Sci. 106, 9–14 (2008).

    Article  CAS  PubMed  Google Scholar 

  119. Mizoguchi, H. et al. Reduction of methamphetamine-induced sensitization and reward in matrix metalloproteinase-2 and -9-deficient mice. J. Neurochem. 100, 1579–1588 (2007).

    CAS  PubMed  Google Scholar 

  120. Brown, T. E., Forquer, M. R., Harding, J. W., Wright, J. W. & Sorg, B. A. Increase in matrix metalloproteinase-9 levels in the rat medial prefrontal cortex after cocaine reinstatement of conditioned place preference. Synapse 62, 886–889 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Brown, T. E. et al. Role of matrix metalloproteinases in the acquisition and reconsolidation of cocaine-induced conditioned place preference. Learn. Mem. 14, 214–223 (2007). This and the preceding study make the important link between maladaptive plasticity of drug addiction and aberrant MMP regulation and activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Wiggins, A., Smith, R. J., Shen, H. W. & Kalivas, P. W. Integrins modulate relapse to cocaine-seeking. J. Neurosci. 31, 16177–16184 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kawasaki, Y. et al. Distinct roles of matrix metalloproteases in the early- and late-phase development of neuropathic pain. Nature Med. 14, 331–336 (2008).

    Article  CAS  PubMed  Google Scholar 

  124. Garber, K. B., Visootsak, J. & Warren, S. T. Fragile X syndrome. Eur. J. Hum. Genet. 16, 666–672 (2008).

    Article  CAS  PubMed  Google Scholar 

  125. Bassell, G. J. & Warren, S. T. Fragile X syndrome: loss of local mRNA regulation alters synaptic development and function. Neuron 60, 201–214 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Portera-Cailliau, C. Which comes first in fragile X syndrome, dendritic spine dysgenesis or defects in circuit plasticity? Neuroscientist 18, 28–44 (2011).

    Article  CAS  PubMed  Google Scholar 

  127. Brundula, V., Rewcastle, N. B., Metz, L. M., Bernard, C. C. & Yong, V. W. Targeting leukocyte MMPs and transmigration: minocycline as a potential therapy for multiple sclerosis. Brain 125, 1297–1308 (2002).

    Article  PubMed  Google Scholar 

  128. Siller, S. S. & Broadie, K. Neural circuit architecture defects in a Drosophila model of Fragile X syndrome are alleviated by minocycline treatment and genetic removal of matrix metalloproteinase. Dis. Model. Mech. 4, 673–685 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Yong, V. W. Metalloproteinases: mediators of pathology and regeneration in the CNS. Nature Rev. Neurosci. 6, 931–944 (2005).

    Article  CAS  Google Scholar 

  130. Kim, H. J., Fillmore, H. L., Reeves, T. M. & Phillips, L. L. Elevation of hippocampal MMP-3 expression and activity during trauma-induced synaptogenesis. Exp. Neurol. 192, 60–72 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. Pauly, T. et al. Activity-dependent shedding of the NMDA receptor glycine binding site by matrix metalloproteinase 3: a putative mechanism of postsynaptic plasticity. PLoS ONE 3, e2681 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Cybulska-Klosowicz, A. et al. Matrix metalloproteinase inhibition counteracts impairment of cortical experience-dependent plasticity after photothrombotic stroke. Eur. J. Neurosci. 33, 2238–2246 (2011).

    Article  CAS  PubMed  Google Scholar 

  133. Sieber, S. A., Niessen, S., Hoover, H. S. & Cravatt, B. F. Proteomic profiling of metalloprotease activities with cocktails of active-site probes. Nature Chem. Biol. 2, 274–281 (2006).

    Article  CAS  Google Scholar 

  134. Jessani, N., Liu, Y., Humphrey, M. & Cravatt, B. F. Enzyme activity profiles of the secreted and membrane proteome that depict cancer cell invasiveness. Proc. Natl Acad. Sci. USA 99, 10335–10340 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Sela-Passwell, N., Rosenblum, G., Shoham, T. & Sagi, I. Structural and functional bases for allosteric control of MMP activities: can it pave the path for selective inhibition? Biochim. Biophys. Acta 1803, 29–38 (2010).

    Article  CAS  PubMed  Google Scholar 

  136. Hadler-Olsen, E., Fadnes, B., Sylte, I., Uhlin-Hansen, L. & Winberg, J. O. Regulation of matrix metalloproteinase activity in health and disease. FEBS J. 278, 28–45 (2011).

    Article  CAS  PubMed  Google Scholar 

  137. Gomis-Ruth, F. X. Catalytic domain architecture of metzincin metalloproteases. J. Biol. Chem. 284, 15353–15357 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Basbaum, C. B. & Werb, Z. Focalized proteolysis: spatial and temporal regulation of extracellular matrix degradation at the cell surface. Curr. Opin. Cell Biol. 8, 731–738 (1996).

    Article  CAS  PubMed  Google Scholar 

  139. Mantuano, E. et al. The hemopexin domain of matrix metalloproteinase-9 activates cell signaling and promotes migration of schwann cells by binding to low-density lipoprotein receptor-related protein. J. Neurosci. 28, 11571–11582 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Van Wart, H. E. & Birkedal-Hansen, H. The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc. Natl Acad. Sci. USA 87, 5578–5582 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Sbai, O. et al. Differential vesicular distribution and trafficking of MMP-2, MMP-9, and their inhibitors in astrocytes. Glia 58, 344–366 (2010). This and reference 147 provide detailed information on cellular trafficking and vesicular release of MMPs and TIMPs in neurons and glia.

    PubMed  Google Scholar 

  142. Cuadrado, E. et al. Matrix metalloproteinase-13 is activated and is found in the nucleus of neural cells after cerebral ischemia. J. Cereb. Blood Flow Metab. 29, 398–410 (2009).

    Article  CAS  PubMed  Google Scholar 

  143. Eguchi, T. et al. Novel transcription-factor-like function of human matrix metalloproteinase 3 regulating the CTGF/CCN2 gene. Mol. Cell. Biol. 28, 2391–2413 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Yang, Y. et al. Increased intranuclear matrix metalloproteinase activity in neurons interferes with oxidative DNA repair in focal cerebral ischemia. J. Neurochem. 112, 134–149 (2010).

    Article  CAS  PubMed  Google Scholar 

  145. Zhang, H., Adwanikar, H., Werb, Z. & Noble-Haeusslein, L. J. Matrix metalloproteinases and neurotrauma: evolving roles in injury and reparative processes. Neuroscientist 16, 156–170 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Henley, J. M., Barker, E. A. & Glebov, O. O. Routes, destinations and delays: recent advances in AMPA receptor trafficking. Trends Neurosci. 34, 258–268 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Sbai, O. et al. Vesicular trafficking and secretion of matrix metalloproteinases-2, -9 and tissue inhibitor of metalloproteinases-1 in neuronal cells. Mol. Cell. Neurosci. 39, 549–568 (2008).

    Article  CAS  PubMed  Google Scholar 

  148. Kean, M. J. et al. VAMP3, syntaxin-13 and SNAP23 are involved in secretion of matrix metalloproteinases, degradation of the extracellular matrix and cell invasion. J. Cell Sci. 122, 4089–4098 (2009).

    Article  CAS  PubMed  Google Scholar 

  149. Neves, G., Cooke, S. F. & Bliss, T. V. Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nature Rev. Neurosci. 9, 65–75 (2008).

    Article  CAS  Google Scholar 

  150. Rioult-Pedotti, M. S., Friedman, D. & Donoghue, J. P. Learning-induced LTP in neocortex. Science 290, 533–536 (2000).

    Article  CAS  PubMed  Google Scholar 

  151. Bourne, J. N. & Harris, K. M. Coordination of size and number of excitatory and inhibitory synapses results in a balanced structural plasticity along mature hippocampal CA1 dendrites during LTP. Hippocampus 21, 354–373 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Frey, U., Krug, M., Reymann, K. G. & Matthies, H. Anisomycin, an inhibitor of protein synthesis, blocks late phases of LTP phenomena in the hippocampal CA1 region in vitro. Brain Res. 452, 57–65 (1988).

    Article  CAS  PubMed  Google Scholar 

  153. Yuste, R. & Bonhoeffer, T. Morphological changes in dendritic spines associated with long-term synaptic plasticity. Annu. Rev. Neurosci. 24, 1071–1089 (2001).

    Article  CAS  PubMed  Google Scholar 

  154. Buzsaki, G. Theta oscillations in the hippocampus. Neuron 33, 325–340 (2002).

    Article  CAS  PubMed  Google Scholar 

  155. Lynch, G., Rex, C. S. & Gall, C. M. LTP consolidation: substrates, explanatory power, and functional significance. Neuropharmacology 52, 12–23 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank. D. L Benson and V. Vialou for helpful comments on the manuscript, and V. Nagy, O. Bozdagi, P. Aujla, X. Wang and Q. Zhou for their scientific contributions to the personal work discussed in this Review. I am ever grateful to Ted Jones and Dave Colman — two prolific savants no longer with us — for their guidance and friendship over many years. My research was supported by the US National Institutes of Mental Health grant MH075783.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

George W. Huntley's homepage

Glossary

Metzincin

A clan of metalloproteinases comprising matrix metalloproteinases (MMPs), a disintegrin and metalloproteinases (ADAMs) and ADAMs with thrombospondin repeats. It is so-named by an amalgam of two structural hallmarks of the active site region: a conserved methionine-containing turn downstream of — and positioned underneath to stabilize — a conserved zinc-binding motif (HExxHxxGxxH), in which the three histidine residues are zinc-binding ligands within the catalytic site.

Dendritic spines

These are small actin-rich dendritic protrusions that harbour most of the excitatory glutamatergic synapses.

Gelatinases

Proteolytic enzymes that are capable of cleaving gelatin (denatured collagen). In the matrix metalloproteinase (MMP) lexicon, the gelatinases are MMP2 (gelatinase A) and MMP9 (gelatinase B), as gelatin is a canonical substrate for these MMPs.

Integrins

Heterodimers composed of an α- and a β-subunit. In mammals, there are 18 α- and eight β-subunits. They are canonical receptors of extracellular matrix and other proteins. In hippocampus, most integrin heterodimers contain the β1-subunit.

Cofilin

This is an actin-binding protein that is enriched in dendritic spines. Cofilin is a member of the ADF (actin-depolymerizing factor)–cofilin family and regulates the disassembly of filamentous actin. Cofilin is negatively regulated by phosphorylation at a single site (Ser3).

SNARE

Soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein (SNAP) receptor. A family of proteins comprising vesicular (v)-SNAREs and target (t)-SNAREs that mediate intracellular membrane fusion.

Miniature excitatory postsynaptic potentials

(mEPSCs). These are the postsynaptic responses to a quantum of excitatory neurotransmitter (usually glutamate).

Conditioned place preference

(CPP). A behavioural task that is used to evaluate an animal's preference for stimuli or an environment associated with positive or negative reward.

Exosites

Secondary substrate-binding sites on an enzyme that are distinct from the catalytic active site. Exosites are often important for positioning substrates for full proteolytic cleavage.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huntley, G. Synaptic circuit remodelling by matrix metalloproteinases in health and disease. Nat Rev Neurosci 13, 743–757 (2012). https://doi.org/10.1038/nrn3320

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3320

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing