Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Modelling the molecular mechanisms of synaptic plasticity using systems biology approaches

Key Points

  • Activity-dependent plasticity of synaptic strength and membrane excitability are important for learning and memory. It is, however, not well understood how activation of the subcellular signalling cascades necessary for neural plasticity is controlled by ongoing neuronal activity; neither is it known how the plasticity in turn shapes neuronal network dynamics. Several computational approaches used in systems biology are of particular relevance for analysing the molecular mechanisms underlying neuronal plasticity, and for predicting which experiments would be most crucial in improving our understanding.

  • One important methodological approach is to simulate biochemical reactions using ordinary differential equations that describe how molecule concentrations change over time. Several parameters in these models correspond to experimentally measurable values such as reaction rates and affinities. Simulations of signalling networks have shown that properties emerge that are not present in individual pathways, such as the generation of distinct outputs depending on input strength and duration, threshold switches and self-sustaining feedback activation.

  • Stochastic effects need to be taken into account when simulating molecular systems in small volumes such as a dendritic spine or the postsynaptic density. Stochastic models have shown that the conclusions reached from deterministic models might be invalid for small volumes or for systems with few molecules.

  • The spatial morphology of neurons needs to be considered in modelling because, for example, diffusion of some molecules combined with local reactions or anchoring of molecules can create microdomains or concentration gradients of these molecules, which can lead to unexpected behaviour.

  • New techniques in live-cell imaging allow high-resolution data in the spatial and temporal domain to be obtained. These imaging data are important for constraining model parameters during the development of both deterministic and stochastic models.

  • In the future, novel multi-scale approaches will move the field forward. Integration of biochemical signalling cascades within multi-compartmental neuronal models of electrical activity can address how activation of signalling pathways are controlled by neuronal activity, and also how activation of subcellular kinases and phosphatases changes membrane excitability or membrane potential through the control of ion channels and receptors.

Abstract

Synaptic plasticity is thought to underlie learning and memory, but the complexity of the interactions between the ion channels, enzymes and genes that are involved in synaptic plasticity impedes a deep understanding of this phenomenon. Computer modelling has been used to investigate the information processing that is performed by the signalling pathways involved in synaptic plasticity in principal neurons of the hippocampus, striatum and cerebellum. In the past few years, new software developments that combine computational neuroscience techniques with systems biology techniques have allowed large-scale, kinetic models of the molecular mechanisms underlying long-term potentiation and long-term depression. We highlight important advancements produced by these quantitative modelling efforts and introduce promising approaches that use advancements in live-cell imaging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Signalling pathways underlying synaptic plasticity.
Figure 2: Signalling pathway motifs and computational units.
Figure 3: Spatial representation of a dendrite plus multiple dendritic spines are required to address input specificity and microdomains.
Figure 4: The role of proteins and spatial localization in long-term potentiation.
Figure 5: Computational neuroscience in the future integrates many scales and diverse modelling approaches.

Similar content being viewed by others

References

  1. Coba, M. P. et al. Neurotransmitters drive combinatorial multistate postsynaptic density networks. Sci. Signal. 2, ra19 (2009).

    PubMed  PubMed Central  Google Scholar 

  2. Collins, M. O. et al. Proteomic analysis of in vivo phosphorylated synaptic proteins. J. Biol. Chem. 280, 5972–5982 (2005).

    CAS  PubMed  Google Scholar 

  3. Daoudal, G. & Debanne, D. Long-term plasticity of intrinsic excitability: learning rules and mechanisms. Learn. Mem. 10, 456–465 (2003).

    PubMed  Google Scholar 

  4. Debanne, D. Associative synaptic plasticity in hippocampus and visual cortex: cellular mechanisms and functional implications. Rev. Neurosci. 7, 29–46 (1996).

    CAS  PubMed  Google Scholar 

  5. Citri, A. & Malenka, R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33, 18–41 (2008). An extensive and recent overview of synaptic plasticity in the nervous system.

    PubMed  Google Scholar 

  6. Lynch, G., Larson, J., Kelso, S., Barrionuevo, G. & Schottler, F. Intracellular injections of EGTA block induction of hippocampal long-term potentiation. Nature 305, 719–721 (1983).

    CAS  PubMed  Google Scholar 

  7. Malenka, R. C., Kauer, J. A., Zucker, R. S. & Nicoll, R. A. Postsynaptic calcium is sufficient for potentiation of hippocampal synaptic transmission. Science 242, 81–84 (1988).

    CAS  PubMed  Google Scholar 

  8. Bear, M. F., Cooper, L. N. & Ebner, F. F. A physiological basis for a theory of synapse modification. Science 237, 42–48 (1987).

    CAS  PubMed  Google Scholar 

  9. Lisman, J. A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. Proc. Natl Acad. Sci. USA 86, 9574–9578 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Nevian, T. & Sakmann, B. Spine Ca2+ signaling in spike-timing-dependent plasticity. J. Neurosci. 26, 11001–11013 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Adermark, L. & Lovinger, D. M. Retrograde endocannabinoid signaling at striatal synapses requires a regulated postsynaptic release step. Proc. Natl Acad. Sci. USA 104, 20564–20569 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Feldman, D. E. Synaptic mechanisms for plasticity in neocortex. Annu. Rev. Neurosci. 32, 33–55 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Abel, T. et al. Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term memory. Cell 88, 615–626 (1997). In this study, transgenic mice with forebrain-specific, conditionally expressed inhibition of PKA were used to show a correlation between deficits in late-phase LTP and spatial navigation.

    CAS  PubMed  Google Scholar 

  14. Shema, R., Sacktor, T. C. & Dudai, Y. Rapid erasure of long-term memory associations in the cortex by an inhibitor of PKM ζ. Science 317, 951–953 (2007). This study showed that long-term associative memories in the rat neocortex were disrupted following local application of an inhibitor of protein kinase Mζ, suggesting a constitutively active kinase might be necessary for long-term memory.

    CAS  PubMed  Google Scholar 

  15. Yao, Y. et al. PKM ζ maintains late long-term potentiation by N-ethylmaleimide-sensitive factor/GluR2-dependent trafficking of postsynaptic AMPA receptors. J. Neurosci. 28, 7820–7827 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kelleher, R. J. III, Govindarajan, A., Jung, H. Y., Kang, H. & Tonegawa, S. Translational control by MAPK signaling in long-term synaptic plasticity and memory. Cell 116, 467–479 (2004).

    CAS  PubMed  Google Scholar 

  17. Sweatt, J. D. The neuronal MAP kinase cascade: a biochemical signal integration system subserving synaptic plasticity and memory. J. Neurochem. 76, 1–10 (2001).

    CAS  PubMed  Google Scholar 

  18. Apergis-Schoute, A. M., Debiec, J., Doyere, V., LeDoux, J. E. & Schafe, G. E. Auditory fear conditioning and long-term potentiation in the lateral amygdala require ERK/MAP kinase signaling in the auditory thalamus: a role for presynaptic plasticity in the fear system. J. Neurosci. 25, 5730–5739 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ajay, S. M. & Bhalla, U. S. A role for ERKII in synaptic pattern selectivity on the time-scale of minutes. Eur. J. Neurosci. 20, 2671–2680 (2004).

    PubMed  Google Scholar 

  20. Shouval, H. Z., Bear, M. F. & Cooper, L. N. A unified model of NMDA receptor-dependent bidirectional synaptic plasticity. Proc. Natl Acad. Sci. USA 99, 10831–10836 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Song, S., Miller, K. D. & Abbott, L. F. Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nature Neurosci. 3, 919–926 (2000).

    CAS  PubMed  Google Scholar 

  22. van Rossum, M. C., Bi, G. Q. & Turrigiano, G. G. Stable Hebbian learning from spike timing-dependent plasticity. J. Neuroscience 20, 8812–8821 (2000).

    CAS  Google Scholar 

  23. Morrison, A., Diesmann, M. & Gerstner, W. Phenomenological models of synaptic plasticity based on spike timing. Biol. Cybern. 98, 459–478 (2010).

    Google Scholar 

  24. Holmes, W. R. & Levy, W. B. Insights into associative long-term potentiation from computational models of NMDA receptor-mediated calcium influx and intracellular calcium changes. J. Neurophysiol. 63, 1148–1168 (1990).

    CAS  PubMed  Google Scholar 

  25. Schiegg, A., Gerstner, W., Ritz, R. & Leo van Hemmen, J. Intracellular Ca2+ stores can account for the time course of LTP Induction: a model of Ca2+ dynamics in dendritic spines. J. Neurophysiol. 74, 1046–1055 (1995).

    CAS  PubMed  Google Scholar 

  26. Gamble, E. & Koch, C. The dynamics of free calcium in dendritic spines in response to repetitive synaptic input. Science 236, 1311–1315 (1987).

    CAS  PubMed  Google Scholar 

  27. Zador, A., Koch, C. & Brown, T. H. Biophysical model of a Hebbian synapse. Proc. Natl Acad. Sci. USA 87, 6718–6722 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kitano, H. Systems biology: a brief overview. Science 295, 1662–1664 (2002).

    CAS  PubMed  Google Scholar 

  29. Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. & Barabasi, A. L. The large-scale organization of metabolic networks. Nature 407, 651–654 (2000).

    CAS  PubMed  Google Scholar 

  30. Bullmore, E. & Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Rev. Neurosci. 10, 186–198 (2009).

    CAS  Google Scholar 

  31. Ma'ayan, A. Insights into the organization of biochemical regulatory networks using graph theory analyses. J. Biol. Chem. 284, 5451–5455 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lockhart, D. J. & Winzeler, E. A. Genomics, gene expression and DNA arrays. Nature 405, 827–836 (2000).

    CAS  PubMed  Google Scholar 

  33. Tyers, M. & Mann, M. From genomics to proteomics. Nature 422, 193–197 (2003).

    CAS  PubMed  Google Scholar 

  34. Rual, J. F. et al. Towards a proteome-scale map of the human protein–protein interaction network. Nature 437, 1173–1178 (2005).

    CAS  PubMed  Google Scholar 

  35. Wenk, M. R. The emerging field of lipidomics. Nature Rev. Drug Discov. 4, 594–610 (2005).

    CAS  Google Scholar 

  36. Watts, D. J. & Strogatz, S. H. Collective dynamics of 'small-world' networks. Nature 393, 440–442 (1998).

    CAS  PubMed  Google Scholar 

  37. Noorbakhsh, F., Overall, C. M. & Power, C. Deciphering complex mechanisms in neurodegenerative diseases: the advent of systems biology. Trends Neurosci. 32, 88–100 (2009).

    CAS  PubMed  Google Scholar 

  38. Bromberg, K. D., Ma'ayan, A., Neves, S. R. & Iyengar, R. Design logic of a cannabinoid receptor signaling network that triggers neurite outgrowth. Science 320, 903–909 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Taylor, I. W. et al. Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nature Biotech. 27, 199–204 (2009).

    CAS  Google Scholar 

  40. Husi, H., Ward, M. A., Choudhary, J. S., Blackstock, W. P. & Grant, S. G. Proteomic analysis of NMDA receptor–adhesion protein signaling complexes. Nature Neurosci. 3, 661–669 (2000).

    CAS  PubMed  Google Scholar 

  41. Ryan, T. J. & Grant, S. G. The origin and evolution of synapses. Nature Rev. Neurosci. 10, 701–712 (2009).

    CAS  Google Scholar 

  42. Ferrell, J. E. Jr. Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Curr. Opin. Cell Biol. 14, 140–148 (2002). An excellent explanation of the difference between bistability and hysteresis, and discussion of the circuit motifs required to produce bistability. This paper also presents experimental efforts that test modelling predictions and engineer bistable circuits in bacteria.

    CAS  PubMed  Google Scholar 

  43. Wolf, D. M. & Arkin, A. P. Motifs, modules and games in bacteria. Curr. Opin. Microbiol. 6, 125–134 (2003).

    CAS  PubMed  Google Scholar 

  44. Ingram, P. J., Stumpf, M. P. & Stark, J. Network motifs: structure does not determine function. BMC Genomics 7, 108 (2006).

    PubMed  PubMed Central  Google Scholar 

  45. Novak, B. & Tyson, J. J. Design principles of biochemical oscillators. Nature Rev. Mol. Cell Biol. 9, 981–991 (2008).

    CAS  Google Scholar 

  46. Sauro, H. M. & Kholodenko, B. N. Quantitative analysis of signaling networks. Prog. Biophys. Mol. Biol. 86, 5–43 (2004).

    CAS  PubMed  Google Scholar 

  47. Megason, S. G. & Fraser, S. E. Imaging in systems biology. Cell 130, 784–795 (2007).

    CAS  PubMed  Google Scholar 

  48. Smolen, P., Baxter, D. A. & Byrne, J. H. Modeling transcriptional control in gene networks — methods, recent results, and future directions. Bull. Math. Biol. 62, 247–292 (2000).

    CAS  PubMed  Google Scholar 

  49. Heinrich, R., Neel, B. G. & Rapoport, T. A. Mathematical models of protein kinase signal transduction. Mol. Cell 9, 957–970 (2002).

    CAS  PubMed  Google Scholar 

  50. Bhalla, U. S. & Iyengar, R. Emergent properties of networks of biological signaling pathways. Science 283, 381–387 (1999). The first modelling paper to take a systems biology approach by simulating interactions between several pathways known to be important for synaptic plasticity.

    CAS  PubMed  Google Scholar 

  51. Kholodenko, B. N. Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades. Eur. J. Biochem. 267, 1583–1588 (2000).

    CAS  PubMed  Google Scholar 

  52. Markevich, N. I., Hoek, J. B. & Kholodenko, B. N. Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades. J. Cell Biol. 164, 353–359 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kolch, W., Calder, M. & Gilbert, D. When kinases meet mathematics: the systems biology of MAPK signalling. FEBS Lett. 579, 1891–1895 (2005).

    CAS  PubMed  Google Scholar 

  54. Hornberg, J. J. et al. Principles behind the multifarious control of signal transduction. ERK phosphorylation and kinase/phosphatase control. FEBS J. 272, 244–258 (2005).

    CAS  PubMed  Google Scholar 

  55. Gillespie, D. T. Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem. 58, 35–55 (2007). A review of the exact stochastic simulation algorithm, as well as recent developments in approximate strategies for simulating such systems.

    CAS  PubMed  Google Scholar 

  56. Stein, M., Gabdoulline, R. R. & Wade, R. C. Bridging from molecular simulation to biochemical networks. Curr. Opin. Struct. Biol. 17, 166–172 (2007).

    CAS  PubMed  Google Scholar 

  57. Smolen, P., Baxter, D. A. & Byrne, J. H. Interlinked dual-time feedback loops can enhance robustness to stochasticity and persistence of memory. Phys. Rev. E. Stat. Nonlin. Soft. Matter Phys. 79, 031902 (2009).

    PubMed  PubMed Central  Google Scholar 

  58. Brandman, O., Ferrell, J. E. Jr, Li, R. & Meyer, T. Interlinked fast and slow positive feedback loops drive reliable cell decisions. Science 310, 496–498 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Takahashi, K., Arjunan, S. N. & Tomita, M. Space in systems biology of signaling pathways — towards intracellular molecular crowding in silico. FEBS Lett. 579, 1783–1788 (2005). A review of different methods for simulating spatial aspects of neurons.

    CAS  PubMed  Google Scholar 

  60. Coggan, J. S. et al. Evidence for ectopic neurotransmission at a neuronal synapse. Science 309, 446–451 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Shimizu, T. S. et al. Molecular model of a lattice of signalling proteins involved in bacterial chemotaxis. Nature Cell Biol. 2, 792–796 (2000).

    CAS  PubMed  Google Scholar 

  62. Lipkow, K., Andrews, S. S. & Bray, D. Simulated diffusion of phosphorylated CheY through the cytoplasm of Escherichia coli. J. Bacteriol. 187, 45–53 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Hattne, J., Fange, D. & Elf, J. Stochastic reaction-diffusion simulation with MesoRD. Bioinformatics. 21, 2923–2924 (2005).

    CAS  PubMed  Google Scholar 

  64. Blackwell, K. T. An efficient stochastic diffusion algorithm for modeling second messengers in dendrites and spines. J. Neurosci. Methods 157, 142–153 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhong, H. et al. A spatial focusing model for G protein signals. Regulator of G protein signaling (RGS) protien-mediated kinetic scaffolding. J. Biol. Chem. 278, 7278–7284 (2003).

    CAS  PubMed  Google Scholar 

  66. Terrin, A. et al. PGE1 stimulation of HEK293 cells generates multiple contiguous domains with different [cAMP]: role of compartmentalized phosphodiesterases. J. Cell Biol. 175, 441–451 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Oliveira, R. F., Kim, M., Zaccolo, M. & Blackwell, K. T. The role of anchoring proteins and type 4 phosphodiesterases in generating microdomains of cAMP. Society for Neuroscience Annual Meeting (San Diego, California). Abstract 788.3 (2007).

  68. Lindskog, M., Kim, M., Wikstrom, M. A., Blackwell, K. T. & Kotaleski, J. H. Transient calcium and dopamine increase PKA activity and DARPP-32 phosphorylation. PLoS Comput. Biol. 2, e119 (2006).

    PubMed  PubMed Central  Google Scholar 

  69. Kotaleski, J. H., Lester, D. S. & Blackwell, K. T. Subcellular interactions between parallel fibre and climbing fibre signals in Purkinje cells predict sensitivity of classical conditioning to interstimulus interval. Integr. Physiol. Behav. Sci. 37, 265–292 (2002).

    PubMed  Google Scholar 

  70. Miller, P., Zhabotinsky, A. M., Lisman, J. E. & Wang, X. J. The stability of a stochastic CaMKII switch: dependence on the number of enzyme molecules and protein turnover. PLoS Biol. 3, e107 (2005). An analysis of a model of the CAMK2 switch implicated in long-term memory. Using Monte Carlo simulations, the lifetimes of phosphorylation states of the CAMK2 holoenzyme were analysed.

    PubMed  PubMed Central  Google Scholar 

  71. Hayer, A. & Bhalla, U. S. Molecular switches at the synapse emerge from receptor and kinase traffic. PLoS Comput. Biol. 1, 137–154 (2005).

    CAS  PubMed  Google Scholar 

  72. Ajay, S. M. & Bhalla, U. S. A propagating ERKII switch forms zones of elevated dendritic activation correlated with plasticity. HFSP J. 1, 49–66 (2007). A combined modelling and experimental study aimed at explaining how MAPK1 activation can spread along dendrites of stimulated hippocampal CA1 pyramidal neurons.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Blackwell, K. T. Paired turbulence and light do not produce a supralinear calcium increase in Hermissenda. J. Comput. Neurosci. 17, 81–99 (2004).

    PubMed  Google Scholar 

  74. Neves, S. R. et al. Cell shape and negative links in regulatory motifs together control spatial information flow in signaling networks. Cell 133, 666–680 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Kubota, Y. & Bower, J. M. Transient versus asymptotic dynamics of CaM kinase II: possible roles of phosphatase. J. Comput. Neurosci. 11, 263–279 (2001).

    CAS  PubMed  Google Scholar 

  76. Lisman, J. E. & Zhabotinsky, A. M. A model of synaptic memory: a CaMKII/PP1 switch that potentiates transmission by organizing an AMPA receptor anchoring assembly. Neuron 31, 191–201 (2001).

    CAS  PubMed  Google Scholar 

  77. Graupner, M. & Brunel, N. STDP in a bistable synapse model based on CaMKII and associated signaling pathways. PLoS Comput. Biol. 3, e221 (2007).

    PubMed  PubMed Central  Google Scholar 

  78. De Koninck, P. & Schulman, H. Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations. Science 279, 227–230 (1998).

    CAS  PubMed  Google Scholar 

  79. Holmes, W. R. Models of calmodulin trapping and CaM kinase II activation in a dendritic spine. J. Comput. Neurosci. 8, 65–85 (2000).

    CAS  PubMed  Google Scholar 

  80. Dosemeci, A. & Albers, R. W. A mechanism for synaptic frequency detection through autophosphorylation of CaM kinase II. Biophys. J. 70, 2493–2501 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Ito, M. The molecular organization of cerebellar long-term depression. Nature Rev. Neurosci. 3, 896–902 (2002).

    CAS  Google Scholar 

  82. Schreurs, B. G., Oh, M. M. & Alkon, D. L. Pairing-specific long-term depression of Purkinje cell excitatory postsynaptic potentials results from a classical conditioning procedure in rabbit. J. Neurophysiol. 75, 1051–1060 (1996).

    CAS  PubMed  Google Scholar 

  83. Kuroda, S., Schweighofer, N. & Kawato, M. Exploration of signal transduction pathways in cerebellar long-term depression by kinetic simulation. J. Neurosci. 21, 5693–5702 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Daniel, H., Hemart, N., Jaillard, D. & Crepel, F. Coactivation of metabotropic glutamate receptors and of voltage-gated calcium channels induces long-term depression in cerebellar Purkinje cells in vitro. Exp. Brain Res. 90, 327–331 (1992).

    CAS  PubMed  Google Scholar 

  85. Gormezano, I., Kehoe, E. J. & Marshall, B. J. Twenty years of classical conditioning research with the rabbit. Prog. Psychobiol. Physiol. Psychol. 10, 192–275 (1983).

    Google Scholar 

  86. Nishi, A., Snyder, G. L. & Greengard, P. Bidirectional regulation of DARPP-32 phosphorylation by dopamine. J. Neurosci. 17, 8147–8155 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Nishi, A. et al. Amplification of dopaminergic signaling by a positive feedback loop. Proc. Natl Acad. Sci. USA 97, 12840–12845 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Snyder, G. L. et al. Regulation of AMPA receptor dephosphorylation by glutamate receptor agonists. Neuropharmacology 45, 703–713 (2003).

    CAS  PubMed  Google Scholar 

  89. Fernandez, E., Schiappa, R., Girault, J. A. & Le, N. N. DARPP-32 is a robust integrator of dopamine and glutamate signals. PLoS Comput. Biol. 2, e176 (2006).

    PubMed  PubMed Central  Google Scholar 

  90. Nishi, A. et al. Regulation of DARPP-32 dephosphorylation at PKA- and Cdk5-sites by NMDA and AMPA receptors: distinct roles of calcineurin and protein phosphatase-2A. J. Neurochem. 81, 832–841 (2002).

    CAS  PubMed  Google Scholar 

  91. Ahn, J. H. et al. The B”/PR72 subunit mediates Ca2+-dependent dephosphorylation of DARPP-32 by protein phosphatase 2A. Proc. Natl Acad. Sci. USA 104, 9876–9881 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Bhalla, U. S. Mechanisms for temporal tuning and filtering by postsynaptic signaling pathways. Biophys. J. 83, 740–752 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Bhalla, U. S. Signaling in small subcellular volumes. II. Stochastic and diffusion effects on synaptic network properties. Biophys. J. 87, 745–753 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Andrews, S. S. & Bray, D. Stochastic simulation of chemical reactions with spatial resolution and single molecule detail. Phys. Biol. 1, 137–151 (2004).

    CAS  PubMed  Google Scholar 

  95. Takahashi, K., Kaizu, K., Hu, B. & Tomita, M. A multi-algorithm, multi-timescale method for cell simulation. Bioinformatics. 20, 538–546 (2004).

    CAS  PubMed  Google Scholar 

  96. Keller, D. X., Franks, K. M., Bartol, T. M. Jr & Sejnowski, T. J. Calmodulin activation by calcium transients in the postsynaptic density of dendritic spines. PLoS ONE. 3, e2045 (2008). A Monte Carlo model of spine Ca2+ dynamics and successive activation of calmodulin, and the first spatial stochastic model to include signalling molecules downstream of Ca2+.

    PubMed  PubMed Central  Google Scholar 

  97. Ray, S. & Bhalla, U. S. PyMOOSE: interoperable scripting in python for MOOSE. Front. Neuroinformatics 2, 6 (2008).

    PubMed Central  Google Scholar 

  98. Aslam, N., Kubota, Y., Wells, D. & Shouval, H. Z. Translational switch for long-term maintenance of synaptic plasticity. Mol. Syst. Biol. 5, 284 (2009).

    PubMed  PubMed Central  Google Scholar 

  99. Hodgkin, A. L. & Huxley, A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Rall, W. Branching dendritic trees and motoneuron membrane resistivity. Exp. Neurol. 1, 491–527 (1959).

    CAS  PubMed  Google Scholar 

  101. Giepmans, B. N., Adams, S. R., Ellisman, M. H. & Tsien, R. Y. The fluorescent toolbox for assessing protein location and function. Science 312, 217–224 (2006).

    CAS  PubMed  Google Scholar 

  102. Lippincott-Schwartz, J. & Patterson, G. H. Development and use of fluorescent protein markers in living cells. Science 300, 87–91 (2003).

    CAS  PubMed  Google Scholar 

  103. Carlson, H. J. & Campbell, R. E. Genetically encoded FRET-based biosensors for multiparameter fluorescence imaging. Curr. Opin. Biotechnol. 20, 19–27 (2009).

    CAS  PubMed  Google Scholar 

  104. Lee, S. J., Escobedo-Lozoya, Y., Szatmari, E. M. & Yasuda, R. Activation of CaMKII in single dendritic spines during long-term potentiation. Nature 458, 299–304 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Harvey, C. D., Yasuda, R., Zhong, H. & Svoboda, K. The spread of ras activity triggered by activation of a single dendritic spine. Science 321, 136–140 (2008). This study investigated the compartmentalization and spread of signalling molecules activated by synaptic activity, highlighting a key role for RAF in synaptic plasticity.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Perkel, D. J., Petrozzino, J. J., Nicoll, R. A. & Connor, J. A. The role of Ca2+ entry via synaptically activated NMDA receptors in the induction of long-term potentiation. Neuron 11, 817–823 (1993).

    CAS  PubMed  Google Scholar 

  107. Bear, M. F. & Kirkwood, A. Neocortical long-term potentiation. Curr. Opin. Neurobiol. 3, 197–202 (1993).

    CAS  PubMed  Google Scholar 

  108. Otmakhov, N., Griffith, L. C. & Lisman, J. E. Postsynaptic inhibitors of calcium/calmodulin-dependent protein kinase type II block induction but not maintenance of pairing-induced long-term potentiation. J. Neurosci. 17, 5357–5365 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Lisman, J., Schulman, H. & Cline, H. The molecular basis of CaMKII function in synaptic and behavioural memory. Nature Rev. Neurosci. 3, 175–190 (2002).

    CAS  Google Scholar 

  110. Wong, S. T. et al. Calcium-stimulated adenylyl cyclase activity is critical for hippocampus-dependent long-term memory and late phase LTP. Neuron 23, 787–798 (1999).

    CAS  PubMed  Google Scholar 

  111. Mons, N. & Cooper, D. M. Selective expression of one Ca2+-inhibitable adenylyl cyclase in dopaminergically innervated rat brain regions. Brain Res. Mol. Brain Res. 22, 236–244 (1994).

    CAS  PubMed  Google Scholar 

  112. Svenningsson, P. et al. DARPP-32: an integrator of neurotransmission. Annu. Rev. Pharmacol. Toxicol. 44, 269–296 (2004).

    CAS  PubMed  Google Scholar 

  113. Mulkey, R. M., Endo, S., Shenolikar, S. & Malenka, R. C. Involvement of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature 369, 486–488 (1994).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

J. H. K. was supported by the Swedish Research Council and the Parkinson's Foundation, and K. T. B. was supported by an HFSP programme grant, the joint NSF-NIH CRCNS programme through NIH grant R01 AA16022 and RO1 AA18060. The authors thank T. Abel and R. Evans for comments on an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeanette Hellgren Kotaleski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Jeanette Hellgren Kotaleski's homepage

Computational and Experimental Neuroplasticity Laboratory

Glossary

Dynamics

Time-dependent changes in the activity or quantity of a variable.

Kinetics

The rates at which reactions or diffusion occur.

Systems biology

An inter-disciplinary field that focuses on the relationships and interactions between components of complex biological systems.

Current clamp mode

Used for measuring membrane potential in response to current injection.

Markov kinetic model

A description of ion channel gating in which the change in channel conformation from one state to another depends only on the present state and not on previous states.

Cable equation

Describes the flow of electrical current along a wire, dendrite or axon.

Low-pass filter

A filter that reduces the amplitude of high-frequency signals while leaving low-frequency signals unaltered.

Resistive–capacitive models

Modelling a small neuronal compartment as a resistive element in parallel with a capacitor, and modelling dendrites as a connected set of these elements.

Network or graph theory

The study of the interconnectedness of related items. The nodes or vertices of a graph are individual items, and two nodes are linked with an edge if they influence each other.

Power law

The relationship between the dependent variable, y, and the independent variable, x, is described by y = x^(−k).

Bistability

The existence of two stable or equilibrium states for the same input. Hysteresis is required for a system to achieve bistability.

Boolean logic network

A network with nodes that take one of two values — for example, activated or non-activated genes. Dynamics of the network are simulated using logical operations coupled with explicit time delay.

Exact stochastic simulation algorithm

An algorithm for the numerical solution of the state of a biochemical reaction system, which therefore produces a realistic actualization of the biochemical reactions.

Stochastic simulations

Simulations that use random-number generators — that is, Monte Carlo methods that are governed by rules of chance.

Deterministic model

A model that calculates quantities using differential equations and algebraic equations.

Glutamate uncaging

The process by which chemically caged glutamate is released by focal light. It is used to study the effects of postsynaptic activation with high temporal and spatial control.

Partial differential equation

An equation that describes how the change in one variable depends on several other variables such as time and space.

Molecular crowding

A phenomenon in which the volume occupied by molecules is so large that molecules cannot diffuse freely in the cytoplasm. Reactions are either impeded or enhanced depending on the proximity of reacting molecules.

Stochastic resonance

A mechanism by which noise added to a system enhances the signal to noise ratio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotaleski, J., Blackwell, K. Modelling the molecular mechanisms of synaptic plasticity using systems biology approaches. Nat Rev Neurosci 11, 239–251 (2010). https://doi.org/10.1038/nrn2807

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2807

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing