Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Sex differences in molecular neuroscience: from fruit flies to humans

Key Points

  • There are sex biases in the expression of many genes in the brains of species ranging from Drosophila melanogaster to humans.

  • The mechanisms controlling sex differences during the development of the CNS in D. melanogaster and nematodes are well known. Conversely, little is known about the early regulation of sex differences in the brains of vertebrates, except for the well-established actions of sex hormones.

  • Independent of hormonal control, several recently published results point to the sex chromosome complement as a main player in establishing sex differences in the CNS.

  • Genes encoded on the X chromosome that escape X inactivation are among those recently proposed to control sex differences during brain development.

  • Other regulatory candidates include genes on the Y chromosome, some of which are expressed early during development.

  • Proposed molecular mechanisms for the control of sex-biased expression differences include differential splicing and epigenetic control.

Abstract

A plethora of discoveries relating to sex influences on brain function is rapidly moving this field into the spotlight for most areas of neuroscience. The domain of molecular or genetic neuroscience is no exception. The goal of this article is to highlight key developments concerning sex-based dimorphisms in molecular neuroscience, describe control mechanisms regulating these differences, address the implications of these dimorphisms for normal and abnormal brain function and discuss what these advances mean for future work in the field. The overriding conclusion is that, as for neuroscience in general, molecular neuroscience has to take into account potential sex influences that might modify signalling pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Early genetic control of sex determination in the CNS.
Figure 2: Regulation of gene expression by hormone receptors.

Similar content being viewed by others

References

  1. Fitzpatrick, J. M. et al. An oligonucleotide microarray for transcriptome analysis of Schistosoma mansoni and its application/use to investigate gender-associated gene expression. Mol. Biochem. Parasitol. 141, 1–13 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Jin, W. et al. The contributions of sex, genotype and age to transcriptional variance in Drosophila melanogaster. Nature Genet. 29, 389–395 (2001). A genome-wide analysis of sex bias in gene expression in flies, demonstrating that around one-half of the transcriptome differs significantly between the two sexes and that adult age has remarkably little effect on transcriptional variance.

    Article  CAS  PubMed  Google Scholar 

  3. Santos, E. M. et al. Molecular basis of sex and reproductive status in breeding zebrafish. Physiol. Genomics 30, 111–122 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Yang, X. et al. Tissue-specific expression and regulation of sexually dimorphic genes in mice. Genome Res. 16, 995–1004 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Reinius, B. et al. An evolutionarily conserved sexual signature in the primate brain. PLoS Genet. 4, e1000100 (2008). This article demonstrates that some human sex-specific gene expression patterns are conserved in the brains of other primates. Conservation across species indicates that these patterns may underlie some genetic differences between the sexes.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Zhang, W., Bleibel, W. K., Roe, C. A., Cox, N. J. & Eileen Dolan, M. Gender-specific differences in expression in human lymphoblastoid cell lines. Pharmacogenet. Genomics 17, 447–450 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Isensee, J. & Ruiz Noppinger, P. Sexually dimorphic gene expression in mammalian somatic tissue. Gend. Med. 4 (Suppl. B), S75–S95 (2007).

    Article  PubMed  Google Scholar 

  8. Cahill, L. Why sex matters for neuroscience. Nature Rev. Neurosci. 7, 477–484 (2006). A comprehensive review of multiple sex influences on the anatomy, chemistry and function of the brain, including a discussion of sex effects on brain disorders.

    Article  CAS  Google Scholar 

  9. Arnold, A. P. et al. Minireview: sex chromosomes and brain sexual differentiation. Endocrinology 145, 1057–1062 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Flerko, B. Steroid hormones and the differentiation of the central nervous system. Curr. Top. Exp. Endocrinol. 1, 41–80 (1971).

    Article  CAS  PubMed  Google Scholar 

  11. McEwen, B. S. Steroid hormones and the chemistry of behavior. Adv. Behav. Biol. 4, 41–59 (1972).

    Article  CAS  PubMed  Google Scholar 

  12. Pfaff, D. W. Steroid sex hormones in the rat brain: specificity of uptake and physiological effects. UCLA Forum Med. Sci. 15, 103–112 (1972).

    CAS  PubMed  Google Scholar 

  13. Mayer, A., Mosler, G., Just, W., Pilgrim, C. & Reisert, I. Developmental profile of Sry transcripts in mouse brain. Neurogenetics 3, 25–30 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Agate, R. J. et al. Neural, not gonadal, origin of brain sex differences in a gynandromorphic finch. Proc. Natl Acad. Sci. USA 100, 4873–4878 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dewing, P., Shi, T., Horvath, S. & Vilain, E. Sexually dimorphic gene expression in mouse brain precedes gonadal differentiation. Brain Res. Mol. Brain Res. 118, 82–90 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Glickman, S. E., Short, R. V. & Renfree, M. B. Sexual differentiation in three unconventional mammals: spotted hyenas, elephants and tammar wallabies. Horm. Behav. 48, 403–417 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Scholz, B. et al. Sex-dependent gene expression in early brain development of chicken embryos. BMC Neurosci. 7, 12 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Quinn, J. J., Hitchcott, P. K., Umeda, E. A., Arnold, A. P. & Taylor, J. R. Sex chromosome complement regulates habit formation. Nature Neurosci. 10, 1398–1400 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Gioiosa, L. et al. Sex chromosome complement affects nociception in tests of acute and chronic exposure to morphine in mice. Horm. Behav. 53, 124–130 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Budefeld, T., Grgurevic, N., Tobet, S. A. & Majdic, G. Sex differences in brain developing in the presence or absence of gonads. Dev. Neurobiol. 68, 981–995 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sanders, L. E. & Arbeitman, M. N. Doublesex establishes sexual dimorphism in the Drosophila central nervous system in an isoform-dependent manner by directing cell number. Dev. Biol. 320, 378–390 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Suseendranathan, K. et al. Expression pattern of Drosophila translin and behavioral analyses of the mutant. Eur. J. Cell Biol. 86, 173–186 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Cao, J., Cao, Z. & Wu, T. Generation of antibodies against DMRT1 and DMRT4 of Oreochromis aurea and analysis of their expression profile in Oreochromis aurea tissues. J. Genet. Genomics 34, 497–509 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Holmes, M. M., Goldman, B. D. & Forger, N. G. Social status and sex independently influence androgen receptor expression in the eusocial naked molerat brain. Horm. Behav. 54, 278–285 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Du, Q. Y., Wang, F. Y., Hua, H. Y. & Chang, Z. J. Cloning and study of adult-tissue-specific expression of Sox9 in Cyprinus carpio. J. Genet. 86, 85–91 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Guo, Y. et al. Molecular cloning, characterization, and expression in brain and gonad of Dmrt5 of zebrafish. Biochem. Biophys. Res. Commun. 324, 569–575 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Blazquez, M. & Piferrer, F. Sea bass (Dicentrarchus labrax) androgen receptor: cDNA cloning, tissue-specific expression, and mRNA levels during early development and sex differentiation. Mol. Cell. Endocrinol. 237, 37–48 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. De Vries, G. J. & Panzica, G. C. Sexual differentiation of central vasopressin and vasotocin systems in vertebrates: different mechanisms, similar endpoints. Neuroscience 138, 947–955 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Alfonso, J. et al. Regulation of hippocampal gene expression is conserved in two species subjected to different stressors and antidepressant treatments. Biol. Psychiatry 59, 244–251 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Pask, A. J. et al. SOX9 has both conserved and novel roles in marsupial sexual differentiation. Genesis 33, 131–139 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Blanco, P., Sargent, C. A., Boucher, C. A., Mitchell, M. & Affara, N. A. Conservation of PCDHX in mammals; expression of human X/Y genes predominantly in brain. Mamm. Genome 11, 906–914 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Delbridge, M. L., McMillan, D. A., Doherty, R. J., Deakin, J. E. & Graves, J. A. Origin and evolution of candidate mental retardation genes on the human X chromosome (MRX). BMC Genomics 9, 65 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Galfalvy, H. C. et al. Sex genes for genomic analysis in human brain: internal controls for comparison of probe level data extraction. BMC Bioinformatics 4, 37 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rinn, J. L. & Snyder, M. Sexual dimorphism in mammalian gene expression. Trends Genet. 21, 298–305 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Berchtold, N. C. et al. Gene expression changes in the course of normal brain aging are sexually dimorphic. Proc. Natl Acad. Sci. USA 105, 15605–15610 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hesen, W. et al. Hippocampal cell responses in mice with a targeted glucocorticoid receptor gene disruption. J. Neurosci. 16, 6766–6774 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. D'Hooge, R. et al. Mildly impaired water maze performance in male Fmr1 knockout mice. Neuroscience 76, 367–376 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Bao, S., Chen, L., Qiao, X., Knusel, B. & Thompson, R. F. Impaired eye-blink conditioning in waggler, a mutant mouse with cerebellar BDNF deficiency. Learn. Mem. 5, 355–364 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Xue, L. et al. Carbon monoxide and nitric oxide as coneurotransmitters in the enteric nervous system: evidence from genomic deletion of biosynthetic enzymes. Proc. Natl Acad. Sci. USA 97, 1851–1855 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jung, M. Y., Hof, P. R. & Schmauss, C. Targeted disruption of the dopamine D2 and D3 receptor genes leads to different alterations in the expression of striatal calbindin-D28k . Neuroscience 97, 495–504 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Sora, I. et al. Molecular mechanisms of cocaine reward: combined dopamine and serotonin transporter knockouts eliminate cocaine place preference. Proc. Natl Acad. Sci. USA 98, 5300–5305 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Takahashi, N. et al. VMAT2 knockout mice: heterozygotes display reduced amphetamine-conditioned reward, enhanced amphetamine locomotion, and enhanced MPTP toxicity. Proc. Natl Acad. Sci. USA 94, 9938–9943 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Iadecola, C., Zhang, F., Casey, R., Nagayama, M. & Ross, M. E. Delayed reduction of ischemic brain injury and neurological deficits in mice lacking the inducible nitric oxide synthase gene. J. Neurosci. 17, 9157–9164 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Deans, M. R., Gibson, J. R., Sellitto, C., Connors, B. W. & Paul, D. L. Synchronous activity of inhibitory networks in neocortex requires electrical synapses containing connexin36. Neuron 31, 477–485 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Bielsky, I. F., Hu, S. B., Szegda, K. L., Westphal, H. & Young, L. J. Profound impairment in social recognition and reduction in anxiety-like behavior in vasopressin V1a receptor knockout mice. Neuropsychopharmacology 29, 483–493 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Bielsky, I. F., Hu, S. B. & Young, L. J. Sexual dimorphism in the vasopressin system: lack of an altered behavioral phenotype in female V1a receptor knockout mice. Behav. Brain Res. 164, 132–136 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Ranz, J. M., Castillo-Davis, C. I., Meiklejohn, C. D. & Hartl, D. L. Sex-dependent gene expression and evolution of the Drosophila transcriptome. Science 300, 1742–1745 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Parisi, M. et al. A survey of ovary-, testis-, and soma-biased gene expression in Drosophila melanogaster adults. Genome Biol. 5, R40 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  49. McIntyre, L. M. et al. Sex-specific expression of alternative transcripts in Drosophila. Genome Biol. 7, R79 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zhang, Y., Sturgill, D., Parisi, M., Kumar, S. & Oliver, B. Constraint and turnover in sex-biased gene expression in the genus Drosophila. Nature 450, 233–237 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. De Vries, G. J. et al. A model system for study of sex chromosome effects on sexually dimorphic neural and behavioral traits. J. Neurosci. 22, 9005–9014 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xu, J., Watkins, R. & Arnold, A. P. Sexually dimorphic expression of the X-linked gene Eif2s3x mRNA but not protein in mouse brain. Gene Expr. Patterns 6, 146–155 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Gatewood, J. D. et al. Sex chromosome complement and gonadal sex influence aggressive and parental behaviors in mice. J. Neurosci. 26, 2335–2342 (2006). These results imply that genes on the sex chromosomes affect sex differences in brain and behaviour.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Crews, D., Coomber, P., Baldwin, R., Azad, N. & Gonzalez-Lima, F. Brain organization in a reptile lacking sex chromosomes: effects of gonadectomy and exogenous testosterone. Horm. Behav. 30, 474–486 (1996).

    Article  CAS  PubMed  Google Scholar 

  55. Meyer, B. J. & Casson, L. P. Caenorhabditis elegans compensates for the difference in X chromosome dosage between the sexes by regulating transcript levels. Cell 47, 871–881 (1986).

    Article  CAS  PubMed  Google Scholar 

  56. Luz, J. G. et al. XOL-1, primary determinant of sexual fate in C. elegans, is a GHMP kinase family member and a structural prototype for a class of developmental regulators. Genes Dev. 17, 977–990 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Amrein, H. & Axel, R. Genes expressed in neurons of adult male Drosophila. Cell 88, 459–469 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Ruiz, M. F., Esteban, M. R., Donoro, C., Goday, C. & Sanchez, L. Evolution of dosage compensation in Diptera: the gene maleless implements dosage compensation in Drosophila (Brachycera suborder) but its homolog in Sciara (Nematocera suborder) appears to play no role in dosage compensation. Genetics 156, 1853–1865 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Arnold, A. P., Itoh, Y. & Melamed, E. A birds-eye view of sex chromosome dosage compensation. Annu. Rev. Genomics Hum. Genet. 9, 109–127 (2008). This excellent review not only describes mechanisms of sex chromosome dosage compensation in birds but also describes and compares these mechanisms with those present in other species, including mammals.

    Article  CAS  PubMed  Google Scholar 

  60. Nguyen, D. K. & Disteche, C. M. Dosage compensation of the active X chromosome in mammals. Nature Genet. 38, 47–53 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Tartaglia, N. et al. A new look at XXYY syndrome: medical and psychological features. Am. J. Med. Genet. A 146, 1509–1522 (2008).

    Article  Google Scholar 

  62. Cutter, W. J. et al. Influence of X chromosome and hormones on human brain development: a magnetic resonance imaging and proton magnetic resonance spectroscopy study of Turner syndrome. Biol. Psychiatry 59, 273–283 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Nguyen, D. K. & Disteche, C. M. High expression of the mammalian X chromosome in brain. Brain Res. 1126, 46–49 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Xu, J., Burgoyne, P. S. & Arnold, A. P. Sex differences in sex chromosome gene expression in mouse brain. Hum. Mol. Genet. 11, 1409–1419 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Skuse, D. H. X-linked genes and mental functioning. Hum. Mol. Genet. 14, R27–R32 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Lopes, A. M. et al. Inactivation status of PCDH11X: sexual dimorphisms in gene expression levels in brain. Hum. Genet. 119, 267–275 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Xu, J., Deng, X., Watkins, R. & Disteche, C. M. Sex-specific differences in expression of histone demethylases Utx and Uty in mouse brain and neurons. J. Neurosci. 28, 4521–4527 (2008). A very elegant example of the use of Sry -modified mice to study sex bias effects that are independent from the action of sex hormones.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mayer, A., Lahr, G., Swaab, D. F., Pilgrim, C. & Reisert, I. The Y-chromosomal genes SRY and ZFY are transcribed in adult human brain. Neurogenetics 1, 281–288 (1998). First description of the expression of SRY , a testis-determining factor, in adult human brain.

    Article  CAS  PubMed  Google Scholar 

  69. Dewing, P. et al. Direct regulation of adult brain function by the male-specific factor SRY. Curr. Biol. 16, 415–420 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Manoli, D. S. et al. Male-specific fruitless specifies the neural substrates of Drosophila courtship behaviour. Nature 436, 395–400 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Kimura, K., Ote, M., Tazawa, T. & Yamamoto, D. Fruitless specifies sexually dimorphic neural circuitry in the Drosophila brain. Nature 438, 229–233 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Datta, S. R. et al. The Drosophila pheromone cVA activates a sexually dimorphic neural circuit. Nature 452, 473–477 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. DeMarco, R., Oliveira, K. C., Venancio, T. M. & Verjovski-Almeida, S. Gender biased differential alternative splicing patterns of the transcriptional cofactor CA150 gene in Schistosoma mansoni. Mol. Biochem. Parasitol. 150, 123–131 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Mechaly, A. S., Vinas, J. & Piferrer, F. Identification of two isoforms of the kisspeptin-1 receptor (kiss1r) generated by alternative splicing in a modern teleost, the Senegalese sole (Solea senegalensis). Biol. Reprod. 80, 60–69 (2008).

    Article  PubMed  CAS  Google Scholar 

  75. Anand, A. et al. Multiple alternative splicing of Dmrt1 during gonadogenesis in Indian mugger, a species exhibiting temperature-dependent sex determination. Gene 425, 56–63 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Antunes-Martins, A., Mizuno, K., Irvine, E. E., Lepicard, E. M. & Giese, K. P. Sex-dependent up-regulation of two splicing factors, Psf and Srp20, during hippocampal memory formation. Learn. Mem. 14, 693–702 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chang, S. Y. et al. Age and gender-dependent alternative splicing of P/Q-type calcium channel EF-hand. Neuroscience 145, 1026–1036 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Su, W. L. et al. Exon and junction microarrays detect widespread mouse strain- and sex-bias expression differences. BMC Genomics 9, 273 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Wolff, J. R. & Zarkower, D. Somatic sexual differentiation in Caenorhabditis elegans. Curr. Top. Dev. Biol. 83, 1–39 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Brunner, B. et al. Genomic organization and expression of the doublesex-related gene cluster in vertebrates and detection of putative regulatory regions for DMRT1. Genomics 77, 8–17 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Smith, C. A. & Sinclair, A. H. Sex determination in the chicken embryo. J. Exp. Zool. 290, 691–699 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Volff, J. N., Zarkower, D., Bardwell, V. J. & Schartl, M. Evolutionary dynamics of the DM domain gene family in metazoans. J. Mol. Evol. 57 (Suppl. 1), S241–S249 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Huang, X., Hong, C. S., O'Donnell, M. & Saint-Jeannet, J. P. The doublesex-related gene, XDmrt4, is required for neurogenesis in the olfactory system. Proc. Natl Acad. Sci. USA 102, 11349–11354 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. El-Mogharbel, N. et al. DMRT gene cluster analysis in the platypus: new insights into genomic organization and regulatory regions. Genomics 89, 10–21 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Hong, C. S., Park, B. Y. & Saint-Jeannet, J. P. The function of Dmrt genes in vertebrate development: it is not just about sex. Dev. Biol. 310, 1–9 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Davies, W., Isles, A. R. & Wilkinson, L. S. Imprinted genes and mental dysfunction. Ann. Med. 33, 428–436 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Vige, A., Gallou-Kabani, C. & Junien, C. Sexual dimorphism in non-Mendelian inheritance. Pediatr. Res. 63, 340–347 (2008).

    Article  PubMed  Google Scholar 

  88. Breedlove, S. M., Cooke, B. M. & Jordan, C. L. The orthodox view of brain sexual differentiation. Brain Behav. Evol. 54, 8–14 (1999).

    Article  CAS  PubMed  Google Scholar 

  89. Tsai, H. W., Grant, P. A. & Rissman, E. F. Sex differences in histone modifications in the neonatal mouse brain. Epigenetics 4, 47–53 (2009). This is the first demonstration that histone modification is associated with neural sexual differentiation.

    Article  CAS  PubMed  Google Scholar 

  90. Bourdeau, V. et al. Genome-wide identification of high-affinity estrogen response elements in human and mouse. Mol. Endocrinol. 18, 1411–1427 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Moehren, U., Denayer, S., Podvinec, M., Verrijdt, G. & Claessens, F. Identification of androgen-selective androgen-response elements in the human aquaporin-5 and Rad9 genes. Biochem. J. 411, 679–686 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Maatouk, D. M. & Capel, B. Sexual development of the soma in the mouse. Curr. Top. Dev. Biol. 83, 151–183 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Sekido, R. & Lovell-Badge, R. Sex determination and SRY: down to a wink and a nudge? Trends Genet. 25, 19–29 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Reinius, B. & Jazin, E. Prenatal sex differences in the human brain. Mol. Psychiatry 14, 987, 988–989 (2009).

    Article  Google Scholar 

  95. Johnston, C. M. et al. Large-scale population study of human cell lines indicates that dosage compensation is virtually complete. PLoS Genet. 4, e9 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Bode, F. J. et al. Sex differences in a transgenic rat model of Huntington's disease: decreased 17ss-estradiol levels correlate with reduced numbers of DARPP32+ neurons in males. Hum. Mol. Genet. 17, 2595–2609 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Kitano, H. et al. Gender-specific response to isoflurane preconditioning in focal cerebral ischemia. J. Cereb. Blood Flow Metab. 27, 1377–1386 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Monteggia, L. M. et al. Brain-derived neurotrophic factor conditional knockouts show gender differences in depression-related behaviors. Biol. Psychiatry 61, 187–197 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Villasana, L., Acevedo, S., Poage, C. & Raber, J. Sex- and APOE isoform-dependent effects of radiation on cognitive function. Radiat. Res. 166, 883–891 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Ober, C., Loisel, D. A. & Gilad, Y. Sex-specific genetic architecture of human disease. Nature Rev. Genet. 9, 911–922 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Saudou, F. et al. Enhanced aggressive behavior in mice lacking 5-HT1B receptor. Science 265, 1875–1878 (1994).

    Article  CAS  PubMed  Google Scholar 

  102. Bouwknecht, J. A. et al. Male and female 5-HT1B receptor knockout mice have higher body weights than wildtypes. Physiol. Behav. 74, 507–516 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Ma, X., Reyna, A., Mani, S. K., Matzuk, M. M. & Kumar, T. R. Impaired male sexual behavior in activin receptor type II knockout mice. Biol. Reprod. 73, 1182–1190 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Raber, J. et al. Isoform-specific effects of human apolipoprotein E on brain function revealed in ApoE knockout mice: increased susceptibility of females. Proc. Natl Acad. Sci. USA 95, 10914–10919 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Maynard, C. J. et al. Gender and genetic background effects on brain metal levels in APP transgenic and normal mice: implications for Alzheimer beta-amyloid pathology. J. Inorg. Biochem. 100, 952–962 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Schuessel, K. et al. Impaired Cu/Zn-SOD activity contributes to increased oxidative damage in APP transgenic mice. Neurobiol. Dis. 18, 89–99 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Rizk, A., Robertson, J. & Raber, J. Behavioral performance of tfm mice supports the beneficial role of androgen receptors in spatial learning and memory. Brain Res. 1034, 132–138 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Steiner, M. A. et al. Impaired cannabinoid receptor type 1 signaling interferes with stress-coping behavior in mice. Pharmacogenomics J. 8, 196–208 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Ciana, P. et al. In vivo imaging of transcriptionally active estrogen receptors. Nature Med. 9, 82–86 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Wiltgen, B. J., Sanders, M. J., Ferguson, C., Homanics, G. E. & Fanselow, M. S. Trace fear conditioning is enhanced in mice lacking the delta subunit of the GABAA receptor. Learn. Mem. 12, 327–333 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Rhodes, M. E., Billings, T. E., Czambel, R. K. & Rubin, R. T. Pituitary-adrenal responses to cholinergic stimulation and acute mild stress are differentially elevated in male and female M2 muscarinic receptor knockout mice. J. Neuroendocrinol. 17, 817–826 (2005).

    CAS  PubMed  Google Scholar 

  112. Mogil, J. S. et al. The melanocortin-1 receptor gene mediates female-specific mechanisms of analgesia in mice and humans. Proc. Natl Acad. Sci. USA 100, 4867–4872 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Franken, P. et al. NPAS2 as a transcriptional regulator of non-rapid eye movement sleep: genotype and sex interactions. Proc. Natl Acad. Sci. USA 103, 7118–7123 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Gonzalez, S. et al. Cannabinoid CB1 receptors in the basal ganglia and motor response to activation or blockade of these receptors in parkin-null mice. Brain Res. 1046, 195–206 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Kim, D. K. et al. Altered serotonin synthesis, turnover and dynamic regulation in multiple brain regions of mice lacking the serotonin transporter. Neuropharmacology 49, 798–810 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Thanky, N. R., Son, J. H. & Herbison, A. E. Sex differences in the regulation of tyrosine hydroxylase gene transcription by estrogen in the locus coeruleus of TH9-LacZ transgenic mice. Brain Res. Mol. Brain Res. 104, 220–226 (2002).

    Article  CAS  PubMed  Google Scholar 

  117. Stowers, L., Holy, T. E., Meister, M., Dulac, C. & Koentges, G. Loss of sex discrimination and male-male aggression in mice deficient for TRP2. Science 295, 1493–1500 (2002).

    Article  CAS  PubMed  Google Scholar 

  118. Martinez-Cue, C., Rueda, N., Garcia, E. & Florez, J. Anxiety and panic responses to a predator in male and female Ts65Dn mice, a model for Down syndrome. Genes Brain Behav. 5, 413–422 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Swedish Börgströms Foundation (E.J.) and the National Institute of Mental Health (R01 to L.C.) for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Jazin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

OMIM

Alzheimer's disease

Huntington's disease

FURTHER INFORMATION

Elena Jazin's homepage

Larry Cahill's homepage

Ensemble for Homo sapiens

EREs in human and mouse

Nurebase

Sebida

Glossary

Epigenetics

Changes in phenotype caused by mechanisms other than changes in the underlying DNA sequence (hence the name epi — 'in addition to' — genetics).

Sex bias

(Also known as sexual dimorphism.) The systematic difference in form or function between individuals of a different sex in the same species. Body features that are affected by sex bias include colour of skin or coat (fur, feathers, et cetera), size and the presence or absence of body parts or behaviours.

Gonadal sex determination

The biological mechanism that induces the development of the ovaries or testes in an organism. In many species it is genetically determined by the presence of specific chromosomes called sex chromosomes.

Gonadal hormones

(Also called sex steroids or sex hormones.) Hormones produced in the gonads, including oestrogen and testosterone. These hormones interact with oestrogen or androgen receptors.

Gonad

The organ that makes gametes, the germ cells used for fertilization. The gonads in males are the testes or testicles and the gonads in females are the ovaries.

Genome-wide expression analysis

Examination of RNA expression variation across the human genome, designed to identify associations with observable traits.

Alternative splicing

(Also known as differential splicing.) Variations of the splicing mechanism in which the exons of the primary gene transcript are separated and reconnected so as to produce alternative ribonucleotide arrangements.

SRY

(Sex-determining region Y). A gene encoded on the Y chromosome in many placental mammals. It encodes a transcription factor that initiates the formation of the testicles in males.

X inactivation

The process by which one of the two X chromosomes in female mammals is not expressed. Inactivation occurs at random in each cell, resulting in a mosaic of expression in each XX individual.

Paralogues

One type of homologous gene. Homologous genes are those that have a common ancestor. Paralogous genes were separated during evolution by a gene duplication event.

Genomic imprinting

Different expression of a gene, depending on the sex of the parent who transmits it. One of the alleles is imprinted or marked to be silenced, for example by methylation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jazin, E., Cahill, L. Sex differences in molecular neuroscience: from fruit flies to humans. Nat Rev Neurosci 11, 9–17 (2010). https://doi.org/10.1038/nrn2754

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2754

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing