Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advances in visual perceptual learning and plasticity

This article has been updated

Key Points

  • Visual perceptual learning (VPL) is defined as performance enhancement on a visual task as a result of visual experience and has been regarded as a manifestation of brain plasticity.

  • Studies of VPL mechanisms should distinguish the process that leads to learning from the changes resulting from learning.

  • It was formerly believed that conscious effort, such as deliberately paying attention, is necessary for the occurrence of VPL; however, this has recently been challenged by studies indicating that the involvement of more implicit processing, such as reinforcement-driven processing and consolidation processing, is crucial for VPL to occur.

  • VPL occurs as a result of the participant either focusing attention on a given task and/or relevant visual feature or through mere exposure to a feature that is irrelevant to a given task. These are known as task-relevant learning and task-irrelevant learning, respectively.

  • Recent results suggest that attention enhances signals from task-relevant features and suppresses signals from task-irrelevant features, resulting in task-relevant learning. Conversely, reinforcement signals driven by rewards may enhance signals from task-relevant and task-irrelevant features.

  • Some results suggest that the visual cortex changes in association with VPL, with or without the influence of top-down processing from higher cortical levels. However, other findings indicate that at least some types of VPL are associated with changes in the areas of the cortex responsible for decision making or in the connectivity between the visual and decision-making cortices, without changes in the visual cortex itself.

  • Whether changes associated with perceptual learning mainly occur within or beyond the visual cortex may depend on conditions including the task, the relevant feature and the irrelevant feature. The brain probably changes the targeted region in order to achieve the greatest improvement possible on the perceptual task.

Abstract

Visual perceptual learning (VPL) is defined as a long-term improvement in performance on a visual task. In recent years, the idea that conscious effort is necessary for VPL to occur has been challenged by research suggesting the involvement of more implicit processing mechanisms, such as reinforcement-driven processing and consolidation. In addition, we have learnt much about the neural substrates of VPL and it has become evident that changes in visual areas and regions beyond the visual cortex can take place during VPL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Processing during VPL training.
Figure 2: Typical tasks used in VPL studies.
Figure 3: Neural correlates of VPL.

Similar content being viewed by others

Change history

  • 07 December 2009

    This Review article has been corrected in the HTML and PDF versions.

References

  1. Fahle, M. & Poggio, T. Perceptual Learning (MIT Press, 2002).

    Book  Google Scholar 

  2. Ahissar, M. & Hochstein, S. Attentional control of early perceptual learning. Proc. Natl Acad. Sci. USA 90, 5718–5722 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shiu, L. P. & Pashler, H. Improvement in line orientation discrimination is retinally local but dependent on cognitive set. Percept. Psychophys. 52, 582–588 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Law, C. T. & Gold, J. I. Neural correlates of perceptual learning in a sensory-motor, but not a sensory, cortical area. Nature Neurosci. 11, 505–513 (2008). Performance improvement in motion-direction discrimination resulting from training was accompanied by changes in motion-driven responses of LIP but not MT neurons. The results support a model suggesting that VPL is associated with changes in connectivity between the visual and decision areas or in decision areas.

    Article  CAS  PubMed  Google Scholar 

  5. Chowdhury, S. A. & DeAngelis, G. C. Fine discrimination training alters the causal contribution of macaque area MT to depth perception. Neuron 60, 367–377 (2008). This study indicates that VPL of coarse binocular disparity, which is usually processed by MT, can occur as a result of decision units learning to put more weight on signals from ventral areas that usually process finer binocular disparity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Weinberger, N. M. Auditory associative memory and representational plasticity in the primary auditory cortex. Hear. Res. 229, 54–68 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Shams, L. & Seitz, A. R. Benefits of multisensory learning. Trends Cogn. Sci. 12, 411–417 (2008).

    Article  PubMed  Google Scholar 

  8. Chun, M. M. & Marois, R. The dark side of visual attention. Curr. Opin. Neurobiol. 12, 184–189 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Turk-Browne, N. B., Scholl, B. J., Chun, M. M. & Johnson, M. K. Neural evidence of statistical learning: efficient detection of visual regularities without awareness. J. Cogn. Neurosci. 21, 1934–1945 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Fiser, J., Scholl, B. J. & Aslin, R. N. Perceived object trajectories during occlusion constrain visual statistical learning. Psychon. Bull. Rev. 14, 173–178 (2007).

    Article  PubMed  Google Scholar 

  11. Ogasawara, H., Doi, T. & Kawato, M. Systems biology perspectives on cerebellar long-term depression. Neurosignals 16, 300–317 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Grossberg, S. How does a brain build a cognitive code? Psychol. Rev. 87, 1–51 (1980).

    Article  CAS  PubMed  Google Scholar 

  13. Ahissar, M. Perceptual training: a tool for both modifying the brain and exploring it. Proc. Natl Acad. Sci. USA 98, 11842–11843 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schoups, A., Vogels, R., Qian, N. & Orban, G. Practising orientation identification improves orientation coding in V1 neurons. Nature 412, 549–553 (2001). Changes were observed in tuning properties in monkey V1 neurons tuned to orientations crucial for VPL of an orientation-discrimination task.

    Article  CAS  PubMed  Google Scholar 

  15. Li, W., Piech, V. & Gilbert, C. D. Perceptual learning and top-down influences in primary visual cortex. Nature Neurosci. 7, 651–657 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Huang, X., Lu, H., Tjan, B. S., Zhou, Y. & Liu, Z. Motion perceptual learning: when only task-relevant information is learned. J. Vis. 7, 14.1–10 (2007).

    Google Scholar 

  17. Herzog, M. H. & Fahle, M. The role of feedback in learning a vernier discrimination task. Vision Res. 37, 2133–2141 (1997). This study systematically examined the effects of trial-by-trial feedback, block feedback and incorrect feedback on VPL.

    Article  CAS  PubMed  Google Scholar 

  18. Herzog, M. H. & Fahle, M. Modeling perceptual learning: difficulties and how they can be overcome. Biol. Cybern. 78, 107–117 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Herzog, M. H. & Fahle, M. Effects of biased feedback on learning and deciding in a vernier discrimination task. Vision Res. 39, 4232–4243 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Shibata, K., Yamagishi, N., Ishii, S. & Kawato, M. Boosting perceptual learning by fake feedback. Vision Res. 49, 2574–2585 (2009).

    Article  PubMed  Google Scholar 

  21. Poggio, T., Fahle, M. & Edelman, S. Fast perceptual learning in visual hyperacuity. Science 256, 1018–1021 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Weiss, Y., Edelman, S. & Fahle, M. Models of perceptual learning in vernier hyperacuity. Neural Comput. 5, 695–718 (1993).

    Article  Google Scholar 

  23. Zajonc, R. Attitudinal effects of mere exposure. J. Pers. Soc. Psych. Mon. Suppl. 9, 1–27 (1968).

    Article  Google Scholar 

  24. Skrandies, W. & Fahle, M. Neurophysiological correlates of perceptual learning in the human brain. Brain Topogr. 7, 163–168 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Gutnisky, D. A., Hansen, B. J., Iliescu, B. F. & Dragoi, V. Attention alters visual plasticity during exposure-based learning. Curr. Biol. 19, 555–560 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Carrasco, M., Rosenbaum, A. & Giordano, A. Exogenous attention: less effort, more learning! J. Vis. 8, 1095a (2008).

    Article  Google Scholar 

  27. Nishina, S., Seitz, A. R., Kawato, M. & Watanabe, T. Effect of spatial distance to the task stimulus on task-irrelevant perceptual learning of static Gabors. J. Vis. 7, 2.1–10 (2007).

    Article  Google Scholar 

  28. Watanabe, T. et al. Greater plasticity in lower-level than higher-level visual motion processing in a passive perceptual learning task. Nature Neurosci. 5, 1003–1009 (2002). This study indicates that attention to a visual feature is not necessary in order to learn the feature.

    Article  CAS  PubMed  Google Scholar 

  29. Watanabe, T., Nanez, J. E. & Sasaki, Y. Perceptual learning without perception. Nature 413, 844–848 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Seitz, A. R. & Watanabe, T. Psychophysics: is subliminal learning really passive? Nature 422, 36 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Seitz, A., Kim, D. & Watanabe, T. Rewards evoke learning of unconsciously processed visual stimuli in adult humans. Neuron 61, 700–707 (2009) This study shows that a stimulus that was below the threshold for perception was learnt when the subject was deprived of food or water and then given water as a reward..

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Britten, K. H., Newsome, W. T., Shadlen, M. N., Celebrini, S. & Movshon, J. A. A relationship between behavioral choice and the visual responses of neurons in macaque MT. Vis. Neurosci. 13, 87–100 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Ahissar, M. & Hochstein, S. Task difficulty and the specificity of perceptual learning. Nature 387, 401–406 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Mukai, I. et al. Activations in visual and attention-related areas predict and correlate with the degree of perceptual learning. J. Neurosci. 27, 11401–11411 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Seitz, A., Lefebvre, C., Watanabe, T. & Jolicoeur, P. Requirement for high-level processing in subliminal learning. Curr. Biol. 15, R753–R755 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Seitz, A. & Watanabe, T. A unified model for perceptual learning. Trends Cogn. Sci. 9, 329–334 (2005).

    Article  PubMed  Google Scholar 

  37. Seitz, A. R., Kim, D. & Watanabe, T. Rewards evoke learning of unconsciously processed visual stimuli in adult humans. Neuron 61, 700–707 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tsuchiya, N. & Koch, C. Continuous flash suppression reduces negative afterimages. Nature Neurosci. 8, 1096–1101 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Hubel, D. H. & Wiesel, T. N. Receptive fields and functional architecture of monkey striate cortex. J. Physiol. 195, 215–243 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shuler, M. G. & Bear, M. F. Reward timing in the primary visual cortex. Science 311, 1606–1609 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Serences, J. T. Value-based modulations in human visual cortex. Neuron 60, 1169–1181 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tsushima, Y., Seitz, A. R. & Watanabe, T. Task-irrelevant learning occurs only when the irrelevant feature is weak. Curr. Biol. 18, R516–R517 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Knight, R. T., Staines, W. R., Swick, D. & Chao, L. L. Prefrontal cortex regulates inhibition and excitation in distributed neural networks. Acta Psychol. (Amst.) 101, 159–178 (1999).

    Article  CAS  Google Scholar 

  44. Tsushima, Y., Sasaki, Y. & Watanabe, T. Greater disruption due to failure of inhibitory control on an ambiguous distractor. Science 314, 1786–1788 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Paffen, C. L., Verstraten, F. A. & Vidnyanszky, Z. Attention-based perceptual learning increases binocular rivalry suppression of irrelevant visual features. J. Vis. 8, 25.1–11 (2008).

    Article  PubMed  Google Scholar 

  46. Gal, V. et al. Learning to filter out visual distractors. Eur. J. Neurosci. 29, 1723–1731 (2009).

    Article  PubMed  Google Scholar 

  47. Treue, S. & Martinez Trujillo, J. C. Feature-based attention influences motion processing gain in macaque visual cortex. Nature 399, 575–579 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Saenz, M., Buracas, G. T. & Boynton, G. M. Global effects of feature-based attention in human visual cortex. Nature Neurosci. 5, 631–632 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Roelfsema, P. R. & van Ooyen, A. Attention-gated reinforcement learning of internal representations for classification. Neural Comput. 17, 2176–2214 (2005).

    Article  PubMed  Google Scholar 

  50. Dudai, Y. Memory from A to Z. Keywords, Concepts and Beyond (Oxford Univ. Press, 2002).

    Google Scholar 

  51. Meeter, M. & Murre, J. M. Consolidation of long-term memory: evidence and alternatives. Psychol. Bull. 130, 843–857 (2004).

    Article  PubMed  Google Scholar 

  52. Walker, M. P. & Stickgold, R. Sleep, memory, and plasticity. Annu. Rev. Psychol. 57, 139–166 (2006).

    Article  PubMed  Google Scholar 

  53. Stickgold, R. Sleep-dependent memory consolidation. Nature 437, 1272–1278 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Alberini, C. M. Mechanisms of memory stabilization: are consolidation and reconsolidation similar or distinct processes? Trends Neurosci. 28, 51–56 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Alvarez, P. & Squire, L. R. Memory consolidation and the medial temporal lobe: a simple network model. Proc. Natl Acad. Sci. USA 91, 7041–7045 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Born, J., Rasch, B. & Gais, S. Sleep to remember. Neuroscientist 12, 410–424 (2006).

    Article  PubMed  Google Scholar 

  57. Brashers-Krug, T., Shadmehr, R. & Bizzi, E. Consolidation in human motor memory. Nature 382, 252–255 (1996).

    Article  CAS  PubMed  Google Scholar 

  58. Craik, F. I. Levels of processing: past, present. and future? Memory 10, 305–318 (2002).

    Article  PubMed  Google Scholar 

  59. Datta, S. Avoidance task training potentiates phasic pontine-wave density in the rat: a mechanism for sleep-dependent plasticity. J. Neurosci. 20, 8607–8613 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Doyon, J. & Benali, H. Reorganization and plasticity in the adult brain during learning of motor skills. Curr. Opin. Neurobiol. 15, 161–167 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Ellenbogen, J. M., Hulbert, J. C., Stickgold, R., Dinges, D. F. & Thompson-Schill, S. L. Interfering with theories of sleep and memory: sleep, declarative memory, and associative interference. Curr. Biol. 16, 1290–1294 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Fischer, S., Hallschmid, M., Elsner, A. L. & Born, J. Sleep forms memory for finger skills. Proc. Natl Acad. Sci. USA 99, 11987–11991 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gais, S., Molle, M., Helms, K. & Born, J. Learning-dependent increases in sleep spindle density. J. Neurosci. 22, 6830–6834 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Izquierdo, I. et al. Different molecular cascades in different sites of the brain control memory consolidation. Trends Neurosci. 29, 496–505 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Karni, A., Tanne, D., Rubenstein, B. S., Askenasy, J. J. & Sagi, D. Dependence on REM sleep of overnight improvement of a perceptual skill. Science 265, 679–682 (1994). The first study to indicate that deprivation of REM sleep abolished VPL established by training before the sleep. The result suggests an important role of sleep in perceptual learning.

    Article  CAS  PubMed  Google Scholar 

  66. Karni, A. et al. The acquisition of skilled motor performance: fast and slow experience-driven changes in primary motor cortex. Proc. Natl Acad. Sci. USA 95, 861–868 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Maquet, P. The role of sleep in learning and memory. Science 294, 1048–1052 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Plihal, W. & Born, J. Memory consolidation in human sleep depends on inhibition of glucocorticoid release. Neuroreport 10, 2741–2747 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Seitz, A. R. et al. Task-specific disruption of perceptual learning. Proc. Natl Acad. Sci. USA 102, 14895–14900 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yotsumoto, Y., Watanabe, T. & Sasaki, Y. Interference and feature specificity in visual perceptual learning. Vision Res. 49, 26112–2623 (2009).

    Article  Google Scholar 

  71. Karni, A. & Sagi, D. Where practice makes perfect in texture discrimination: evidence for primary visual cortex plasticity. Proc. Natl Acad. Sci. USA 88, 4966–4970 (1991)A seminal study indicating a high specificity for location and the trained feature in VPL and suggesting the involvement of early visual stages in VPL..

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rechtschaffen, A. & Kales, A. A. (eds). Manual of Standardized Terminology, Techniques, and Scoring System for Sleep Stages of Human Subjects (US Department of Health, Education, and Welfare, Bethesda, Maryland, 1968).

    Google Scholar 

  73. Gais, S., Plihal, W., Wagner, U. & Born, J. Early sleep triggers memory for early visual discrimination skills. Nature Neurosci. 3, 1335–1339 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Stickgold, R., James, L. & Hobson, J. A. Visual discrimination learning requires sleep after training. Nature Neurosci. 3, 1237–1238 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Smith, C. & Rose, G. M. Evidence for a paradoxical sleep window for place learning in the Morris water maze. Physiol. Behav. 59, 93–97 (1996).

    Article  CAS  PubMed  Google Scholar 

  76. Ribeiro, S., Goyal, V., Mello, C. V. & Pavlides, C. Brain gene expression during REM sleep depends on prior waking experience. Learn. Mem. 6, 500–508 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Schwartz, S., Maquet, P. & Frith, C. Neural correlates of perceptual learning: a functional MRI study of visual texture discrimination. Proc. Natl Acad. Sci. USA 99, 17137–17142 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Walker, M. P., Stickgold, R., Jolesz, F. A. & Yoo, S. S. The functional anatomy of sleep-dependent visual skill learning. Cereb. Cortex 15, 1666–1675 (2005).

    Article  PubMed  Google Scholar 

  79. Yotsumoto, Y. et al. Location-specific cortical activation changes during sleep after training for perceptual learning. Curr. Biol. 19, 1278–1282 (2009). Signal enhancement was observed specifically in the region of V1 corresponding to the trained location during sleep after training on a TDT, and was highly correlated with performance enhancement after sleep.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Euston, D. R., Tatsuno, M. & McNaughton, B. L. Fast-forward playback of recent memory sequences in prefrontal cortex during sleep. Science 318, 1147–1150 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Tononi, G. & Cirelli, C. Sleep and synaptic homeostasis: a hypothesis. Brain Res. Bull. 62, 143–150 (2003).

    Article  PubMed  Google Scholar 

  82. Censor, N., Karni, A. & Sagi, D. A link between perceptual learning, adaptation and sleep. Vision Res. 46, 4071–4074 (2006).

    Article  PubMed  Google Scholar 

  83. Rasch, B., Buchel, C., Gais, S. & Born, J. Odor cues during slow-wave sleep prompt declarative memory consolidation. Science 315, 1426–1429 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Hasselmo, M. E. Neuromodulation: acetylcholine and memory consolidation. Trends Cogn. Sci. 3, 351–359 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Crist, R. E., Kapadia, M. K., Westheimer, G. & Gilbert, C. D. Perceptual learning of spatial localization: specificity for orientation, position, and context. J. Neurophysiol. 78, 2889–2894 (1997).

    Article  CAS  PubMed  Google Scholar 

  86. Fahle, M. & Edelman, S. Long-term learning in vernier acuity: effects of stimulus orientation, range and of feedback. Vision Res. 33, 397–412 (1993).

    Article  CAS  PubMed  Google Scholar 

  87. Fiorentini, A. & Berardi, N. Perceptual learning specific for orientation and spatial frequency. Nature 287, 43–44 (1980).

    Article  CAS  PubMed  Google Scholar 

  88. McKee, S. P. & Westheimer, G. Improvement in vernier acuity with practice. Percept. Psychophys. 24, 258–262 (1978).

    Article  CAS  PubMed  Google Scholar 

  89. Sagi, D. & Tanne, D. Perceptual learning: learning to see. Curr. Opin. Neurobiol. 4, 195–199 (1994).

    Article  CAS  PubMed  Google Scholar 

  90. Ball, K. & Sekuler, R. Direction-specific improvement in motion discrimination. Vision Res. 27, 953–965 (1987).

    Article  CAS  PubMed  Google Scholar 

  91. Koyama, S., Harner, A. & Watanabe, T. Task-dependent changes of the psychophysical motion-tuning functions in the course of perceptual learning. Perception 33, 1139–1147 (2004).

    Article  PubMed  Google Scholar 

  92. Vaina, L. M., Belliveau, J. W., des Roziers, E. B. & Zeffiro, T. A. Neural systems underlying learning and representation of global motion. Proc. Natl Acad. Sci. USA 95, 12657–12662 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Karni, A. & Sagi, D. The time course of learning a visual skill. Nature 365, 250–252 (1993).

    Article  CAS  PubMed  Google Scholar 

  94. Albright, T. D. Direction and orientation selectivity of neurons in visual area MT of the macaque. J. Neurophysiol. 52, 1106–1130 (1984).

    Article  CAS  PubMed  Google Scholar 

  95. Maunsell, J. H. & Newsome, W. T. Visual processing in monkey extrastriate cortex. Annu. Rev. Neurosci. 10, 363–401 (1987).

    Article  CAS  PubMed  Google Scholar 

  96. Furmanski, C. S., Schluppeck, D. & Engel, S. A. Learning strengthens the response of primary visual cortex to simple patterns. Curr. Biol. 14, 573–578 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Yotsumoto, Y., Watanabe, T. & Sasaki, Y. Different dynamics of performance and brain activation in the time course of perceptual learning. Neuron 57, 827–833 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gilbert, C. D., Sigman, M. & Crist, R. E. The neural basis of perceptual learning. Neuron 31, 681–697 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Karmarkar, U. R. & Dan, Y. Experience-dependent plasticity in adult visual cortex. Neuron 52, 577–585 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Yang, T. & Maunsell, J. H. The effect of perceptual learning on neuronal responses in monkey visual area V4. J. Neurosci. 24, 1617–1626 (2004).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  101. Ghose, G. M., Yang, T. & Maunsell, J. H. Physiological correlates of perceptual learning in monkey V1 and V2. J. Neurophysiol. 87, 1867–1888 (2002).

    Article  PubMed  Google Scholar 

  102. Garrigan, P. & Kellman, P. J. Perceptual learning depends on perceptual constancy. Proc. Natl Acad. Sci. USA 105, 2248–2253 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Liu, Z. Perceptual learning in motion discrimination that generalizes across motion directions. Proc. Natl Acad. Sci. USA 96, 14085–14087 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Xiao, L. Q. et al. Complete transfer of perceptual learning across retinal locations enabled by double training. Curr. Biol. 18, 1922–1926 (2008). Training to discriminate a particular feature at one location concurrently with or followed by additional training with another feature at a second location resulted in a complete transfer of the improved discrimination of the first feature to the second location. The results suggest that at least some types of VPL are associated with changes in middle- or higher-level stages of visual processing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hochstein, S. & Ahissar, M. View from the top: hierarchies and reverse hierarchies in the visual system. Neuron 36, 791–804 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Dosher, B. A. & Lu, Z. L. The functional form of performance improvements in perceptual learning: learning rates and transfer. Psychol. Sci. 18, 531–539 (2007).

    Article  PubMed  Google Scholar 

  107. Britten, K. H., Shadlen, M. N., Newsome, W. T. & Movshon, J. A. The analysis of visual motion: a comparison of neuronal and psychophysical performance. J. Neurosci. 12, 4745–4765 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Shadlen, M. N. & Newsome, W. T. Motion perception: seeing and deciding. Proc. Natl Acad. Sci. USA 93, 628–633 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Uka, T. & DeAngelis, G. C. Linking neural representation to function in stereoscopic depth perception: roles of the middle temporal area in coarse versus fine disparity discrimination. J. Neurosci. 26, 6791–6802 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Umeda, K., Tanabe, S. & Fujita, I. Representation of stereoscopic depth based on relative disparity in macaque area V4. J. Neurophysiol. 98, 241–252 (2007).

    Article  PubMed  Google Scholar 

  111. Dosher, B. A. & Lu, Z. L. Perceptual learning reflects external noise filtering and internal noise reduction through channel reweighting. Proc. Natl Acad. Sci. USA 95, 13988–13993 (1998). Proposes one of the most influential models of VPL. In this model, VPL occurs in association with changes in connectivity between areas for visual representation and for decision making, rather than with changes in visual representation in early areas.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Dosher, B. A. & Lu, Z. L. Mechanisms of perceptual learning. Vision Res. 39, 3197–3221 (1999).

    Article  CAS  PubMed  Google Scholar 

  113. Petrov, A. A., Dosher, B. A. & Lu, Z. L. The dynamics of perceptual learning: an incremental reweighting model. Psychol. Rev. 112, 715–743 (2005).

    Article  PubMed  Google Scholar 

  114. Stickgold, R. & Walker, M. P. Sleep and memory: the ongoing debate. Sleep 28, 1225–1227 (2005).

    Article  PubMed  Google Scholar 

  115. Huber, R., Ghilardi, M. F., Massimini, M. & Tononi, G. Local sleep and learning. Nature 430, 78–81 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Censor, N. & Sagi, D. Benefits of efficient consolidation: short training enables long-term resistance to perceptual adaptation induced by intensive testing. Vision Res. 48, 970–977 (2008).

    Article  PubMed  Google Scholar 

  117. Ofen, N., Moran, A. & Sagi, D. Effects of trial repetition in texture discrimination. Vision Res. 47, 1094–1102 (2007).

    Article  PubMed  Google Scholar 

  118. Mednick, S. C. et al. The restorative effect of naps on perceptual deterioration. Nature Neurosci. 5, 677–681 (2002).

    Article  CAS  PubMed  Google Scholar 

  119. Mednick, S., Nakayama, K. & Stickgold, R. Sleep-dependent learning: a nap is as good as a night. Nature Neurosci. 6, 697–698 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Mednick, S. C., Drummond, S. P., Arman, A. C. & Boynton, G. M. Perceptual deterioration is reflected in the neural response: fMRI study of nappers and non-nappers. Perception 37, 1086–1097 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Gilestro, G. F., Tononi, G. & Cirelli, C. Widespread changes in synaptic markers as a function of sleep and wakefulness in Drosophila. Science 324, 109–112 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Donlea, J. M., Ramanan, N. & Shaw, P. J. Use-dependent plasticity in clock neurons regulates sleep need in Drosophila. Science 324, 105–108 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wilson, M. A. & McNaughton, B. L. Reactivation of hippocampal ensemble memories during sleep. Science 265, 676–679 (1994).

    Article  CAS  PubMed  Google Scholar 

  124. Peigneux, P. et al. Are spatial memories strengthened in the human hippocampus during slow wave sleep? Neuron 44, 535–545 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank G. Deangelis, B. Dosher, Z.-L. Lu and K. Shibata for valuable comments on an early draft of the paper and N. Ito for technical assistance. This study is supported by grants from the Sleep Research Society Foundation, Harvard Medical School, Massachusetts General Hospital, ERATO Shimojo Implicit Brain Project (Japan Science Technology), the National Centre for Research Resources (P41RR14075) the Mind Institute and the Athinoula A. Martinos Center for Biological Imaging to Y.S. and by grants from the US National Institutes of Health (R01 EY015980-04A2, R01 EY019466, R01 AG031941, R21 EY018925, R21 EY017737) and the National Science Foundation (BCS-0549,036) to T.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeo Watanabe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (figure)

Conceptual diagram of classifications of sleep (PDF 117 kb)

Related links

Related links

FURTHER INFORMATION

Yuka Sasaki's homepage

Jose E. Nanez's homepage

Takeo Watanabe's homepage

Glossary

Implicit processing

Processing that occurs without a subject's awareness.

Vernier acuity

The ability to detect an offset from collinearity in a pair or triad of abutting lines or dots.

Gabor patches

The two-dimensional image formed by multiplying a sine wave and a Gaussian function. Gabor patches are widely used in vision research because they have a well-defined spatial frequency, orientation and location.

Blood oxygen level-dependent (BOLD) signal

The signal based on the relative concentration of contrast deoxygenated and oxygenated blood measured by functional MRI. The BOLD signal is thought to reflect some significant aspects of neural activity.

Rapid eye movement (REM) sleep

The period of sleep characterized by a relatively low-voltage, mixed-frequency electroencephalogram in conjunction with episodic rapid eye movements and low-amplitude electromyogram. Breathing and heart rates are irregular during REM sleep, which is also when vivid dreaming is thought to occur.

Non-REM (NREM) sleep

The period of sleep that is not classified as REM sleep. Slow-wave sleep (SWS) is a component of deeper NREM sleep in humans. However, SWS is synonymous with NREM sleep in animals.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sasaki, Y., Nanez, J. & Watanabe, T. Advances in visual perceptual learning and plasticity. Nat Rev Neurosci 11, 53–60 (2010). https://doi.org/10.1038/nrn2737

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2737

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing