Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cerebellar cortical organization: a one-map hypothesis

Key Points

  • At least three different viewpoints have emerged of cerebellar cortical topography, based on the anatomy and physiology of climbing fibre inputs and Purkinje cell outputs, the physiology of mossy fibre inputs, restriction boundaries in gene expression and regional differences in Purkinje cell phenotype.

  • In this Review we consider some of the more commonly used terminology to describe cerebellar cortical organization with a view to providing some clarification. Overarching this, we argue the different terminologies are in fact unnecessary because both developmental and adult studies suggest that the different mapping techniques — anatomical, physiological and molecular — reveal different facets of a common topography.

  • The one-map hypothesis proposes that cerebellar architecture is built around an array of interdigitated transverse zones, each of which is subdivided into a series of rostrocaudally oriented Purkinje cell stripes, defined by the restricted expression of molecular markers, that are symmetrically distributed across the midline, highly reproducible between individuals, and conserved across species. The most comprehensively studied marker is zebrin II, which cloning studies revealed to be the metabolic enzyme aldolase C.

  • The molecular identity of each stripe may already be determined at the time the Purkinje cells become postmitotic, and, at the time a mouse is born, the molecular identity of individual Purkinje cells seems to be set and independent of cerebellar connectivity. The embryonic Purkinje cell clusters are the targets of the developing climbing fibre and mossy fibre afferents and, through this matching, the Purkinje cells form a template around which afferent topography is constructed.

  • Anatomical and physiological studies in adult animals have shown that climbing fibre afferents from different parts of the contralateral inferior olive form longitudinal zones within the cerebellar cortex. In some cases these zones can be subdivided into smaller units called microzones. Investigation of the relationship between longitudinal zones and Purkinje cell stripes has revealed extensive co-localization, consistent with the one-map hypothesis.

  • Anatomical studies have also found that mossy fibre terminal fields align with Purkinje cell stripes and also with climbing fibres associated with individual longitudinal zones, suggesting a common principle of organization.

  • By contrast, other studies support the notion that mossy fibres terminate as patches to form a fractured somatotopical map within the cerebellar cortex. The apparent discrepancy between stripes and patches may be explained by individual Purkinje cell stripes being subdivided into chains of small patches or microzones, which can be revealed by differential gene expression or electrophysiological mapping.

  • The one-map hypothesis therefore proposes that transverse zones are subdivided into stripes (one or more stripes equals a longitudinal zone); and stripes are further segmented longitudinally into microzones that correspond to one or more small patches.

  • The functional significance of this elaborate architecture remains to be determined but may be used for parallel processing of sensorimotor commands, energy efficient information processing, positional coding of sensory inputs and/or molecular fine-tuning of local circuits for specific functions such as motor learning.

Abstract

The fundamental architecture of the cerebellum is concealed within a terminological forest — transverse zones and stripes, longitudinal zones and microzones, patches, etc. To make things worse, the same term is used in different contexts to describe quite different patterns of spatial localization. Here we consider the possibility that this complexity hides the fact that the cerebellar cortex contains only one map, which has been charted in various ways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gross morphology of the cerebellum.
Figure 2: Transverse zones and stripes.
Figure 3: The development of Purkinje cell stripes in mice.
Figure 4: Longitudinal zones.
Figure 5: Patches.
Figure 6: Patches can have similar spatial distributions as longitudinal zones and microzones.

Similar content being viewed by others

References

  1. Sillitoe, R. V., Chung, S. H., Fritschy, J. M., Hoy, M. & Hawkes, R. Golgi cell dendrites are restricted by Purkinje cell stripe boundaries in the adult mouse cerebellar cortex. J. Neurosci. 28, 2820–2826 (2008).

    CAS  PubMed  Google Scholar 

  2. Voogd, J. & Bigaré, F. in The Inferior Olivary Nucleus: Anatomy and Physiology (ed. Courville, J.) 207–235 (Raven, New York, 1980).

    Google Scholar 

  3. Apps, R. & Garwicz, M. Anatomical and physiological foundations of cerebellar information processing. Nature Rev. Neurosci. 6, 297–311 (2005).

    CAS  Google Scholar 

  4. Larsell, O. The morphogenesis and adult pattern of the lobules and fissures of the cerebellum of the white rat. J. Comp. Neurol. 97, 281–356 (1952).

    CAS  PubMed  Google Scholar 

  5. Larsell, O. The cerebellum of the cat and the monkey. J. Comp. Neurol. 99, 135–199 (1953).

    CAS  PubMed  Google Scholar 

  6. Voogd, J. & Glickstein, M. The anatomy of the cerebellum. Trends Neurosci. 21, 370–375 (1998).

    CAS  PubMed  Google Scholar 

  7. Airey, D. C., Lu, L. & Williams, R. W. Genetic control of the mouse cerebellum: identification of quantitative trait loci modulating size and architecture. J. Neurosci. 21, 5099–5109 (2001).

    CAS  PubMed  Google Scholar 

  8. Larsell, O. The Comparative Anatomy and Histology of the Cerebellum From Monotremes Through Apes (ed. Jansen, J.) (Univ. Minnesota Press, Minneapolis, 1970).

    Google Scholar 

  9. Armstrong, C. L., Krueger-Naug, A. M., Currie, R. W. & Hawkes, R. Constitutive expression of the 25-kDa heat shock protein Hsp25 reveals novel parasagittal bands of Purkinje cells in the adult mouse cerebellar cortex. J. Comp. Neurol. 416, 383–397 (2000).

    CAS  PubMed  Google Scholar 

  10. Beierbach, E., Park, C., Ackerman, S. L., Goldowitz, D. & Hawkes, R. Abnormal dispersion of a Purkinje cell subset in the mouse mutant cerebellar deficient folia (cdf). J. Comp. Neurol. 436, 42–51 (2001).

    CAS  PubMed  Google Scholar 

  11. Howell, B. W., Hawkes, R., Soriano, P. & Cooper, J. A. Neuronal position in the developing brain is regulated by mouse disabled-1. Nature 389, 733–737 (1997).

    CAS  PubMed  Google Scholar 

  12. Trommsdorff, M. et al. Reeler/Disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97, 689–701 (1999).

    CAS  Google Scholar 

  13. Larouche, M., Beffert, U., Herz, J. & Hawkes, R. The Reelin receptors Apoer2 and Vldlr coordinate the patterning of Purkinje cell topography in the developing mouse cerebellum. PLoS ONE 3, e1653 (2008).

    PubMed  PubMed Central  Google Scholar 

  14. Atkins, M. J. & Apps, R. Somatotopical organisation within the climbing fibre projection to the paramedian lobule and copula pyramidis of the rat cerebellum. J. Comp. Neurol. 389, 249–263 (1997).

    CAS  PubMed  Google Scholar 

  15. Edge, A. L., Marple-Horvat, D. E. & Apps, R. Lateral cerebellum: functional localization within crus I and correspondence to cortical zones. Eur. J. Neurosci. 18, 1468–1485 (2003).

    PubMed  Google Scholar 

  16. Thier, P., Dicke, P. W., Haas, R., Thielert, C. D. & Catz, N. The role of the occulomotor vermis in the control of saccadic eye movements. Ann. NY Acad. Sci. 978, 50–62 (2002).

    PubMed  Google Scholar 

  17. Ozol, K., Hayden, J. M., Oberdick, J. & Hawkes, R. Transverse zones in the vermis of the mouse cerebellum. J. Comp. Neurol. 412, 95–111 (1999).

    CAS  PubMed  Google Scholar 

  18. Korneliussen, H. K. On the ontogenetic development of the cerebellum (nuclei, fissures, and cortex) of the rat, with special reference to regional variations in corticogenesis. J. Hirnforsch. 10, 379–412 (1968).

    CAS  PubMed  Google Scholar 

  19. Sawada, K., Fukui, Y. & Hawkes, R. Spatial distribution of corticotropin-releasing factor immunopositive climbing fibers in the mouse cerebellum: analysis by whole mount immunocytochemistry. Brain Res. 1222, 106–117 (2008).

    CAS  PubMed  Google Scholar 

  20. Marzban, H., Kim, C.-T., Doorn, D., Chung, S.-H. & Hawkes, R. A novel transverse expression domain in the mouse cerebellum revealed by a neurofilament-associated antigen. Neuroscience 153, 721–732 (2008).

    PubMed  Google Scholar 

  21. Sillitoe, R. V. & Hawkes, R. Whole-mount immunohistochemistry: a high-throughput screen for patterning defects in the mouse cerebellum. J. Histochem. Cytochem. 50, 235–244 (2002).

    CAS  PubMed  Google Scholar 

  22. Brochu, G., Maler, L. & Hawkes, R. Zebrin II: a polypeptide antigen expressed selectively by Purkinje cells reveals compartments in rat and fish cerebellum. J. Comp. Neurol. 291, 538–552 (1990). The first identification of the canonical stripe antigen zebrin II. The zones and stripes revealed by the zebrin II expression map are widely used as a reference frame to correlate maps derived from different experimental techniques.

    CAS  PubMed  Google Scholar 

  23. Ahn, A. H., Dziennis, S., Hawkes, R. & Herrup, K. The cloning of zebrin II reveals its identity with aldolase C. Development 120, 2081–2090 (1994).

    CAS  PubMed  Google Scholar 

  24. Hawkes, R. & Herrup, K. Aldolase C/zebrin II and the regionalization of the cerebellum. J. Mol. Neurosci. 6, 147–158 (1995).

    CAS  PubMed  Google Scholar 

  25. Hawkes, R., Colonnier, M. & Leclerc, N. Monoclonal antibodies reveal sagittal banding in the rodent cerebellar cortex. Brain Res. 333, 359–365 (1985).

    CAS  PubMed  Google Scholar 

  26. Hawkes, R. & Leclerc, N. Antigenic map of the rat cerebellar cortex: the distribution of parasagittal bands as revealed by a monoclonal anti-Purkinje cell antibody mabQ113. J. Comp. Neurol. 256, 29–41 (1987).

    CAS  PubMed  Google Scholar 

  27. Sillitoe, R. V. et al. Conservation of the architecture of the anterior lobe vermis of the cerebellum across mammalian species. Prog. Brain Res. 148, 283–297 (2005).

    PubMed  Google Scholar 

  28. Scott, T. G. A unique pattern of localization within the cerebellum. Nature 200, 793 (1963). The first demonstration of striped gene expression in the cerebellum — the distribution of 5′-nucleotidase enzyme activity.

    CAS  PubMed  Google Scholar 

  29. Terada, N. et al. Compartmentation of the mouse cerebellar cortex by sphingosine kinase. J. Comp. Neurol. 469, 119–127 (2004).

    CAS  PubMed  Google Scholar 

  30. Jeong, Y. G. et al. The cyclin-dependent kinase 5 activator, p39, is expressed in stripes in the mouse cerebellum. Neuroscience 118, 323–334 (2003).

    CAS  PubMed  Google Scholar 

  31. Sarna, J. R., Marzban, H., Watanabe, M. & Hawkes, R. Complementary stripes of phospholipase Cβ3 and Cβ4 expression by Purkinje cell subsets in the mouse cerebellum. J. Comp. Neurol. 496, 303–313 (2006).

    CAS  PubMed  Google Scholar 

  32. Dehnes, Y. et al. The glutamate transporter EAAT4 in rat cerebellar Purkinje cells: a glutamate-gated chloride channel concentrated near the synapse in parts of the dendritic membrane facing astroglia. J. Neurosci. 18, 3606–3619 (1998).

    CAS  PubMed  Google Scholar 

  33. Mateos, J. M. et al. Parasagittal compartmentalization of the metabotropic glutamate receptor mGluR1b in the cerebellar cortex. Eur. J. Anat. 5, 15–21 (2001).

    Google Scholar 

  34. Murase, S. & Hayashi, Y. Expression pattern of integrin beta 1 subunit in Purkinje cells of rat and cerebellar mutant mice. J. Comp. Neurol. 375, 225–237 (1996).

    CAS  PubMed  Google Scholar 

  35. Chung, S., Zhang, Y., Van der Hoorn, F. & Hawkes, R. The anatomy of the cerebellar nuclei in the normal and scrambler mouse as revealed by the expression of the microtubule-associated protein kinesin light chain 3. Brain Res. 1140, 120–131 (2007).

    CAS  PubMed  Google Scholar 

  36. Marzban, H. et al. Expression of the immunoglobulin superfamily neuroplastin adhesion molecules in adult and developing mouse cerebellum and their localization to parasagittal stripes. J. Comp. Neurol. 462, 286–301 (2003).

    CAS  PubMed  Google Scholar 

  37. Croci, L. et al. A key role for the HLH transcription factor EBF2COE2, O/E-3 in Purkinje neuron migration and cerebellar cortical topography. Development 133, 2719–2729 (2006).

    CAS  Google Scholar 

  38. Marzban, H. et al. Abnormal HNK-1 expression in the cerebellum of an N-CAM null mouse. J. Neurocytol. 33, 117–130 (2004).

    CAS  PubMed  Google Scholar 

  39. Marzban, H., Chung, S., Watanabe, M. & Hawkes, R. Phospholipase Cβ4 expression reveals the continuity of cerebellar topography through development. J. Comp. Neurol. 502, 857–871 (2007).

    PubMed  Google Scholar 

  40. Miale, I. L. & Sidman, R. L. An autoradiographic analysis of histogenesis in the mouse cerebellum. Exp. Neurol. 4, 277–296 (1961).

    CAS  PubMed  Google Scholar 

  41. Armstrong, C. L. & Hawkes, R. Pattern formation in the cerebellar cortex. Biochem. Cell Biol. 78, 551–562 (2000).

    CAS  PubMed  Google Scholar 

  42. Larouche, M., Che, P. E. & Hawkes, R. Neurogranin expression identifies a novel array of Purkinje cell parasagittal stripes during mouse cerebellar development. J. Comp. Neurol. 494, 215–227 (2006).

    CAS  PubMed  Google Scholar 

  43. Sillitoe, R. V. & Joyner, A. L. Morphology, molecular codes, and circuitry produce the three-dimensional complexity of the cerebellum. Annu. Rev. Cell Dev. Biol. 23, 549–577 (2007).

    CAS  PubMed  Google Scholar 

  44. Hashimoto, M. & Mikoshiba, K. Mediolateral compartmentalization of the cerebellum is determined on the “birth date” of Purkinje cells. J. Neurosci. 23, 11342–11351 (2003).

    CAS  PubMed  Google Scholar 

  45. Leclerc, N., Gravel, C. & Hawkes, R. Development of parasagittal zonation in the rat cerebellar cortex. MabQ113 antigenic bands are created postnatally by the suppression of antigen expression in a subset of Purkinje cells. J. Comp. Neurol. 273, 399–420 (1988).

    CAS  PubMed  Google Scholar 

  46. Wassef, M. et al. Expression of compartmentation antigen zebrin I in cerebellar transplants. J. Comp. Neurol. 294, 223–234 (1990).

    CAS  PubMed  Google Scholar 

  47. Seil, F. J., Johnson, M. L. & Hawkes, R. Molecular compartmentation expressed in cerebellar cultures in the absence of neuronal activity and neuron-glia interactions. J. Comp. Neurol. 356, 398–407 (1995).

    CAS  PubMed  Google Scholar 

  48. Oberdick, J. et al. Control of segment-like patterns of gene expression in the mouse cerebellum. Neuron 10, 1007–1018 (1993).

    CAS  PubMed  Google Scholar 

  49. Armstrong, C. L. & Hawkes, R. Selective failure of Purkinje cell dispersion in the cerebellum of the weaver mouse. J. Comp. Neurol. 439, 151–161 (2001).

    CAS  PubMed  Google Scholar 

  50. Gallagher, E., Howell, B. W., Soriano, P., Cooper, J. A. & Hawkes, R. Cerebellar abnormalities in the disabled (mdab1–1) mouse. J. Comp. Neurol. 402, 238–251 (1998).

    CAS  PubMed  Google Scholar 

  51. Goldowitz, D. et al. Cerebellar disorganization characteristic of reeler in scrambler mutant mice despite presence of reelin. J. Neurosci. 17, 8767–8777 (1997).

    CAS  PubMed  Google Scholar 

  52. Edwards, M. A., Crandall, J. E., Leclerc, N. & Yamamoto, M. Effects of nervous mutation on Purkinje cell compartments defined by zebrin II and 9-O-acetylated ganglioside expression. Neurosci. Res. 19, 167–174 (1994).

    CAS  PubMed  Google Scholar 

  53. Sotelo, C. & Wassef, M. Cerebellar development: afferent organization and Purkinje cell heterogeneity. Philos. Trans. R. Soc. Lond. B Biol. Sci. 331, 307–313 (1991).

    CAS  PubMed  Google Scholar 

  54. Wassef, M., Angaut, P., Arsenio Nunes, M. L., Bourrat, F. & Sotelo, C. in The Cerebellum Revisited (ed. Llinás, R. & Sotelo, C.) 5–21 (Springer, New York, 1992).

    Google Scholar 

  55. Sotelo, C. & Chédotal, A. Development of the olivocerebellar system: migration and formation of cerebellar maps. Prog. Brain Res. 148, 1–20 (2005).

    PubMed  Google Scholar 

  56. Miyata, T., Nakajima, K., Mikoshiba, K. & Ogawa, M. Regulation of Purkinje cell alignment by reelin as revealed with CR-50 antibody. J. Neurosci. 17, 3599–3609 (1997).

    CAS  PubMed  Google Scholar 

  57. Sotelo, C. Cellular and genetic regulation of the development of the cerebellar system. Prog. Neurobiol. 72, 295–339 (2004).

    CAS  PubMed  Google Scholar 

  58. Sotelo, C. & Chédotal, A. Development of the olivocerebellar system: migration and formation of cerebellar maps. Prog. Brain Res. 148, 1–20 (2005).

    PubMed  Google Scholar 

  59. Karam, S. D. et al. Eph receptors and ephrins in the developing chick cerebellum: relationship to sagittal patterning and granule cell migration. J. Neurosci. 20, 6488–6500 (2000).

    CAS  PubMed  Google Scholar 

  60. Nishida, K., Flanagan, J. G. & Nakamoto, M. Domain-specific olivocerebellar projection regulated by the EphA-ephrin-A interaction. Development 129, 5647–5658 (2002).

    CAS  PubMed  Google Scholar 

  61. Crepel, F. Regression of functional synapses in the immature mammalian cerebellum. Trends Neurosci. 5, 266–269 (1982).

    Google Scholar 

  62. Arsénio Nunes, M. L. & Sotelo, C. Development of the spinocerebellar system in the postnatal rat. J. Comp. Neurol. 237, 291–306 (1985).

    PubMed  Google Scholar 

  63. Mason, C. A. & Gregory, E. Postnatal maturation of cerebellar mossy and climbing fibers: transient expression of dual features on single axons. J. Neurosci. 4, 1715–1735 (1984).

    CAS  PubMed  Google Scholar 

  64. Takeda, T. & Maekawa, K. Transient direct connection of vestibular mossy fibers to the vestibulocerebellar Purkinje cells in early postnatal development of kittens. Neuroscience 32, 99–111 (1989).

    CAS  PubMed  Google Scholar 

  65. Grishkat, H. L. & Eisenman, L. M. Development of the spinocerebellar projection in the prenatal mouse. J. Comp. Neurol. 363, 93–108 (1995).

    CAS  PubMed  Google Scholar 

  66. Paradies, M. A. et al. Correspondence between L7-lacZ-expressing Purkinje cells and labeled olivocerebellar fibers during late embryogenesis in the mouse. J. Comp. Neurol. 374, 451–466 (1996).

    CAS  PubMed  Google Scholar 

  67. Ji, Z. & Hawkes, R. Developing mossy fiber terminal fields in the rat cerebellar cortex may segregate because of Purkinje cell compartmentation and not competition. J. Comp. Neurol. 359, 197–212 (1995).

    CAS  PubMed  Google Scholar 

  68. Altman, J. Postnatal development of the cerebellar cortex in the rat. II. Phases in the maturation of Purkinje cells and of the molecular layer. J. Comp. Neurol. 145, 399–463 (1972).

    CAS  PubMed  Google Scholar 

  69. Leclerc, N. et al. Synaptophysin expression during synaptogenesis in the rat cerebellar cortex. J. Comp. Neurol. 280, 197–212 (1989).

    CAS  PubMed  Google Scholar 

  70. Arsénio Nunes, M. L., Sotelo C. & Wehrlé, R. Organization of spinocerebellar projection map in three types of agranular cerebellum: Purkinje cells vs. granule cells as organizer element. J. Comp. Neurol. 273, 120–136 (1988).

    PubMed  Google Scholar 

  71. Eisenman, L. M. & Arlinghaus, L. E. Spinocerebellar projection in the meander tail mutant mouse: organization in the granular posterior lobe and the agranular anterior lobe. Brain Res. 558, 149–152 (1991).

    CAS  PubMed  Google Scholar 

  72. Vig, J., Goldowitz, D., Steindler D. A. & Eisenman L. M. Compartmentation of the reeler cerebellum: segregation and overlap of spinocerebellar and secondary vestibulocerebellar fibers and their target cells. Neuroscience 130, 735–744 (2005).

    CAS  PubMed  Google Scholar 

  73. Goffinet, A. M., So, K. F., Yamamoto, M., Edwards, M. & Caviness, V. S. Jr Architectonic and hodological organization of the cerebellum in reeler mutant mice. Brain Res. 318, 263–276 (1984).

    CAS  PubMed  Google Scholar 

  74. Blatt, G. J. & Eisenman, L. M. Topographic and zonal organization of the olivocerebellar projection in the reeler mutant mouse. J. Comp. Neurol. 267, 603–615 (1988).

    CAS  PubMed  Google Scholar 

  75. Baader, S. L., Vogel, M. W., Sanlioglu, S., Zhang, X. & Oberdick, J. Selective disruption of “late onset” sagittal banding patterns by ectopic expression of engrailed-2 in cerebellar Purkinje cells. J. Neurosci. 19, 5370–5379 (1999).

    CAS  PubMed  Google Scholar 

  76. Tolbert, D. L., Pittman, T., Alisky, J. M. & Clark, B. R. Chronic NMDA receptor blockade or muscimol inhibition of cerebellar cortical neuronal activity alters the development of spinocerebellar afferent topography. Dev. Brain Res. 80, 268–274 (1994).

    CAS  Google Scholar 

  77. Arsénio Nunes, M. L. & Sotelo, C. Development of the spinocerebellar system in the postnatal rat. J. Comp. Neurol. 237, 291–306 (1985).

    PubMed  Google Scholar 

  78. Brodal A. & Kawamura K. Olivocerebellar projection: a review. Adv. Anat. Embryol. Cell Biol. 64, 1–140 (1980).

    Google Scholar 

  79. Buisseret-Delmas, C. & Angaut, P. The cerebellar olivo-corticonuclear connections in the rat. Prog. Neurobiol. 40, 63–87 (1993).

    CAS  PubMed  Google Scholar 

  80. Voogd, J. & Ruigrok, T. J. The organization of the corticonuclear and olivocerebellar climbing fiber projections to the rat cerebellar vermis: the congruence of projection zones and the zebrin pattern. J. Neurocytol. 233, 5–21 (2004).

    Google Scholar 

  81. Groenewegen, H. J. & Voogd, J. The parasagittal zonation within the olivocerebellar projection. I. Climbing fiber distribution in the vermis of the cat cerebellum. J. Comp. Neurol. 174, 417–488 (1977). One of the earlier anatomical studies by Voogd's group that provides important evidence to support the concept of longitudinal zones. The topography of olivocerebellar projections was systematically mapped in cats using degeneration and tritiated leucine methods. Small parts of the inferior olive were found to provide climbing fibre terminations in narrow longitudinally oriented zones in the cerebellar cortex.

    CAS  PubMed  Google Scholar 

  82. Oscarsson, O. Functional units of the cerebellum- sagittal zones and microzones. Trends Neurosci. 2, 144–145 (1979). A short review on the foundational electrophysiological studies undertaken by Oscarsson's group in mapping longitudinal zones and microzones in the cerebellar cortex. It presents the influential hypothesis that cortical microzones and their efferent relay neurons in the cerebellar nuclei might form the basic operational units of the cerebellum.

    Google Scholar 

  83. Trott, J. R. & Armstrong, D. M. The cerebellar corticonuclear projection from lobule Vb/c of the cat anterior lobe: a combined electrophysiological and autoradiographic study. I. Projections from the intermediate region. Exp. Brain Res. 66, 318–338 (1987).

    CAS  PubMed  Google Scholar 

  84. Voogd, J. Olivocerebellar projection in the cat: in the cerebellum newvistas. Exp. Brain Res. Suppl. 6, 134–161 (1982).

    Google Scholar 

  85. Ekerot, C. F. & Larson, B. Branching of olivary axons to innervate pairs of sagittal zones in the cerebellar anterior lobe of the cat. Exp. Brain Res. 48, 185–198 (1982).

    CAS  PubMed  Google Scholar 

  86. Ruigrok, T. J. Cerebellar nuclei: the olivary connection. Prog. Brain Res. 114, 167–192 (1997).

    CAS  PubMed  Google Scholar 

  87. Pijpers, A., Winkelman, B. H., Bronsing, R. & Ruigrok, T. J. Selective impairment of the cerebellar C1 module involved in rat hind limb control reduces step-dependent modulation of cutaneous reflexes. J. Neurosci. 28, 2179–2189 (2008).

    CAS  PubMed  Google Scholar 

  88. Schonewille, M. et al. Zonal organization of the mouse flocculus: physiology, input, and output. J. Comp. Neurol. 497, 670–682 (2006).

    PubMed  Google Scholar 

  89. Garwicz, M., Ekerot, C. F. & Jörntell, H. Organizational principles of cerebellar neuronal circuitry. News Physiol. Sci. 13, 26–32 (1998).

    PubMed  Google Scholar 

  90. Hesslow, G. Correspondence between climbing fibre input and motor output in eyeblink-related areas in cat cerebellar cortex. J. Physiol. 476, 229–244 (1994). An electrophysiological mapping study in decerebrate cats that demonstrates the existence of four spatially separate 'eyeblink' microzones on each side of the cerebellar cortex. It shows a close topographical correspondence between climbing fibre input from the ipsilateral periorbital area and motor output to control movement of the same eye, consistent with cerebellar microzones having functional significance in motor control.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Herrero, L., Pardoe, J. & Apps, R. Pontine and lateral reticular projections to the c1 zone in lobulus simplex and paramedian lobule of the rat cerebellar cortex. Cerebellum 1, 185–199 (2002).

    PubMed  Google Scholar 

  92. Apps, R. Rostrocaudal branching within the climbing fibre projection to forelimb-receiving areas of the cerebellar cortical C1 zone. J. Comp. Neurol. 419, 193–204 (2000).

    CAS  PubMed  Google Scholar 

  93. Apps, R., Garwicz, M. Precise matching of olivo-cortical divergence and cortico-nuclear convergence between somatotopically corresponding areas in the medial C1 and medial C3 zones of the paravermal cerebellum. Eur. J. Neurosci. 12, 205–214 (2000).

    CAS  PubMed  Google Scholar 

  94. Sugihara, I. & Shinoda, Y. Molecular, topographic, and functional organization of the cerebellar cortex: a study with combined aldolase C and olivocerebellar labeling. J. Neurosci. 24, 8771–8785 (2004).

    CAS  PubMed  Google Scholar 

  95. Gravel, C., Eisenman, L. E., Sasseville, R. & Hawkes, R. Parasagittal organization of the rat cerebellar cortex: a direct correlation between antigenic Purkinje cell bands revealed by mabQ113 and the organization of the olivocerebellar projection. J. Comp. Neurol. 263, 294–310 (1987).

    Google Scholar 

  96. Ji, Z. & Hawkes, R. Topography of Purkinje cell compartments and mossy fiber terminal fields in lobules II and III of the rat cerebellar cortex: spinocerebellar and cuneocerebellar projections. Neuroscience 61, 935–954 (1994).

    CAS  PubMed  Google Scholar 

  97. Voogd, J., Pardoe, J., Ruigrok, T. J. & Apps, R. The distribution of climbing and mossy fiber collateral branches from the copula pyramidis and the paramedian lobule: congruence of climbing fiber cortical zones and the pattern of zebrin banding within the rat cerebellum. J. Neurosci. 23, 4645–4656 (2003). A combined electrophysiological and neuroanatomical tract tracing study in rats, presenting evidence that collateral branches of climbing fibres and mossy fibres associated with a particular longitudinal zone have a congruent spatial organization within the cerebellar cortex that relates to zebrin II stripes, suggesting a common organizational scheme that is consistent with the one-map hypothesis.

    CAS  PubMed  Google Scholar 

  98. Sugihara, I. & Quy, PN. Identification of aldolase C compartments in the mouse cerebellar cortex by olivocerebellar labeling. J. Comp. Neurol. 500, 1076–1092 (2007).

    CAS  PubMed  Google Scholar 

  99. Yaginuma, H., Matsushita, M. Spinocerebellar projections from the thoracic cord in the cat, as studied by anterograde transport of wheat germ agglutinin-horseradish peroxidase. J. Comp. Neurol. 258, 1–27 (1987).

    CAS  PubMed  Google Scholar 

  100. Serapide, M. F., Pantó, M. R., Parenti, R., Zappalá, A. & Cicirata, F. Multiple zonal projections of the basilar pontine nuclei to the cerebellar cortex of the rat. J. Comp. Neurol. 430(4), 471–484 (2001).

    CAS  PubMed  Google Scholar 

  101. Gerrits, N. M., Voogd, J. & Nas, W. S. Cerebellar and olivary projections of the external and rostral internal cuneate nuclei in the cat. Exp. Brain Res. 57, 239–255 (1985).

    CAS  PubMed  Google Scholar 

  102. Wu, H. S., Sugihara, I. & Shinoda, Y. Projection patterns of single mossy fibers originating from the lateral reticular nucleus in the rat cerebellar cortex and nuclei. J. Comp. Neurol. 411(1), 97–118 (1999).

    CAS  PubMed  Google Scholar 

  103. Voogd, J. in Neurobiology of Cerebellar Evolution and Development (ed. Llinás, R.) 493–541 (American Medical Association, Chicago, 1969).

    Google Scholar 

  104. Apps, R., Trott, J. R. & Dietrichs, E. A study of branching from the inferior olive to the x and lateral c1 zones of the cat cerebellum using a combined electrophysiological and retrograde fluorescent double-labelling technique. Exp. Brain Res. 87, 141–152 (1991).

    CAS  PubMed  Google Scholar 

  105. Odeh, F., Ackerley, R., Bjaalie, J. G. & Apps, R. Pontine maps linking somatosensory and cerebellar cortices are in register with climbing fiber somatotopy. J. Neurosci. 25, 5680–5690 (2005).

    CAS  PubMed  Google Scholar 

  106. Pijpers, A. & Ruigrok, T. J. H. Organization of pontocerebellar projections to identified climbing fiber zones in the rat. J. Comp. Neurol. 496, 513–528 (2006).

    PubMed  Google Scholar 

  107. Shambes, G. M., Gibson, J. M. & Welker, W. Fractured somatotopy in granule cell tactile areas of rat cerebellar hemispheres revealed by micromapping. Brain Behav. Evol. 15, 94–140 (1978). One of the first electrophysiological studies undertaken by Welker's group to systematically map the spatial patterns of tactile projections to the cerebellar cortical granular layer in anaesthetized rats. It presents the important concept of a fractured somatotopical map, in which the cortex comprises a patchy mosaic of receptive fields arising from different body parts.

    CAS  PubMed  Google Scholar 

  108. Chockkan, V. & Hawkes, R. Functional and antigenic maps in the rat cerebellum: Zebrin compartmentation and vibrissal receptive fields in lobule IXa. J. Comp. Neurol. 345, 33–45 (1994).

    CAS  PubMed  Google Scholar 

  109. Hallem, J. S. et al. Spatial correspondence between tactile projection patterns and the distribution of the antigenic Purkinje cell markers anti-zebrin I and anti-zebrin II in the cerebellar folium crus IIa of the rat. Neuroscience 93, 1083–1094 (1999). This study combined immunocytochemistry with electrophysiology to reveal a strong correspondence between the distribution of zebrin II expression and the tactile receptive field map.

    CAS  PubMed  Google Scholar 

  110. Ebner, T. J., Chen, G., Gao, W. & Reinert, K. Optical imaging of cerebellar functional architectures: parallel fiber beams, parasagittal bands and spreading acidification. Prog. Brain Res. 148, 125–138 (2005).

    PubMed  Google Scholar 

  111. Chen, G., Hanson, C. L. & Ebner, T. J. . Functional parasagittal compartments in the rat cerebellar cortex: an in vivo optical imaging study using neutral red. J. Neurophysiol. 76, 4169–4174 (1996).

    CAS  PubMed  Google Scholar 

  112. Voogd, J. Hess, D. T. & Marani, E. in New Concepts in Cerebellar Neurobiology (ed. King, J. S.) 183–220 (Alan, R. Liss Inc., New York, 1987).

    Google Scholar 

  113. Boegman, R., Parent, A. & Hawkes, R. Zonation in the rat cerebellar cortex: patches of high acetylcholinesterase activity in the granular layer are congruent with Purkinje cell compartments. Brain Res. 448, 237–251 (1988).

    CAS  PubMed  Google Scholar 

  114. Hawkes, R. & Turner, R. W. Compartmentation of NADPH-diaphorase activity in the mouse cerebellar cortex. J. Comp. Neurol. 346, 499–516 (1994).

    CAS  PubMed  Google Scholar 

  115. Schilling, K., Schmidt, H. H. & Baader, S. L. Nitric oxide synthase expression reveals compartments of cerebellar granule cells and suggests a role for mossy fibers in their development. Neuroscience 59, 893–903 (1994).

    CAS  PubMed  Google Scholar 

  116. Leclerc, N., Doré, L., Parent, A. & Hawkes, R. The compartmentalization of the monkey and rat cerebellar cortex: zebrin I and cytochrome oxidase. Brain Res. 506, 70–78 (1990).

    CAS  PubMed  Google Scholar 

  117. Leclerc, N. et al. Synaptophysin expression during synaptogenesis in the rat cerebellar cortex. J. Comp. Neurol. 280, 197–212 (1989).

    CAS  PubMed  Google Scholar 

  118. Marani, E. & Tetteroo, P. A. T. A longitudinal band pattern for the monoclonal human granulocyte antibody B4,3 in the cerebellar external granular layer of the immature rabbit. Histochem. 78, 157–161 (1983).

    CAS  Google Scholar 

  119. Karavanova, I., Vasudevan, K., Cheng, J. & Buonanno, A. Novel regional and developmental NMDA receptor expression patterns uncovered in NR2C subunit-beta-galactosidase knock-in mice. Mol. Cell Neurosci. 34, 468–480 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Sillitoe, R. V., Benson, M. A., Blake, D. J. & Hawkes, R. Abnormal dysbindin expression in cerebellar mossy fiber synapses in the mdx mouse model of Duchenne muscular dystrophy. J. Neurosci. 23, 6576–6585 (2003).

    CAS  PubMed  Google Scholar 

  121. Hawkes, R. An anatomical model of cerebellar modules. Prog. Brain Res. 114, 39–52 (1997).

    CAS  PubMed  Google Scholar 

  122. Hawkes, R., Gallagher R. E. & Ozol K. Blebs in the cerebellar granular layer as a sign of structural inhomogeneity. I. Anterior lobe vermis. Acta Anatomica 158, 205–214 (1997).

    CAS  PubMed  Google Scholar 

  123. Hawkes, R., Gallagher, E. & Ozol, K. Blebs in the cerebellar granular layer as a sign of structural inhomogeneity. II. Posterior lobe vermis. Acta Anatomica 163, 47–55 (1999).

    Google Scholar 

  124. Brown, I. E. & Bower, J. M. Congruence of mossy fiber and climbing fiber tactile projections in the lateral hemispheres of the rat cerebellum. J. Comp. Neurol. 429, 59–70 (2001).

    CAS  PubMed  Google Scholar 

  125. Pijpers, A., Apps, R., Pardoe, J., Voogd, J. & Ruigrok, T. J. Precise spatial relationships between mossy fibers and climbing fibers in rat cerebellar cortical zones. J. Neurosci. 26, 12067–12080 (2006).

    CAS  PubMed  Google Scholar 

  126. Kitai, S. T., Taborikova, H., Tsukahara, N. & Eccles, J. C. The distribution to the cerebellar anterior lobe of the climbing and mossy fiber inputs from the plantar and palmar cutaneous afferents. Exp. Brain Res. 7, 1–10 (1969).

    CAS  PubMed  Google Scholar 

  127. Garwicz, M., Jörntell, H. & Ekerot, C. F. . Cutaneous receptive fields and topography of mossy fibres and climbing fibres projecting to cat cerebellar C3 zone. J. Physiol. 512, 277–293 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Odeh, F., Ackerley, R., Bjaalie, J. G. & Apps, R. Pontine maps linking somatosensory and cerebellar cortices are in register with climbing fiber somatotopy. J. Neurosci. 25, 5680–5690 (2005).

    CAS  PubMed  Google Scholar 

  129. Nelson, M. E. & Bower, J. M. Brain maps and parallel computers. Trends Neurosci. 13, 403–408 (1990).

    CAS  PubMed  Google Scholar 

  130. Hawkes, R. & Gravel, C. The modular cerebellum. Prog. Neurobiol. 36, 309–327 (1991).

    CAS  PubMed  Google Scholar 

  131. Niven, J. E. & Laughlin, S. B. Energy limitation as a selective pressure on the evolution of sensory systems. J. Exp. Biol. 211, 1792–1804 (2008).

    CAS  Google Scholar 

  132. Ito M. The molecular organization of cerebellar long-term depression. Nature Rev. Neurosci. 3, 896–902 (2002).

    CAS  Google Scholar 

  133. Barmack, N. H., Qian, Z. & Yoshimura, J. Regional and cellular distribution of protein kinase C in rat cerebellar Purkinje cells. J. Comp. Neurol. 427, 235–254 (2000).

    CAS  PubMed  Google Scholar 

  134. Wadiche, J. I. & Jahr, C. E. Patterned expression of Purkinje cell glutamate transporters controls synaptic plasticity. Nature Neurosci. 8, 1329–1334 (2005).

    CAS  PubMed  Google Scholar 

  135. Tanaka O & Kondo H. Localization of mRNAs for three novel members (beta 3, beta 4 and gamma 2) of phospholipase C family in mature rat brain. Neurosci. Lett. 182, 17–20 (1994).

    CAS  PubMed  Google Scholar 

  136. Sugihara, I. & Shinoda, Y. Molecular, topographic, and functional organization of the cerebellar nuclei: analysis by 3-dimensional mapping of the olivonuclear projection and aldolase C labeling. J. Neurosci. 27, 9696–9710 (2007).

    CAS  PubMed  Google Scholar 

  137. Huang, R. H. & Huang, C. M. An experimental method for measuring the mean length of cerebellar parallel fibers: validation and derivation of a correction factor by computational simulation and probability analysis. Brain Res. Bull. 64, 15–24 (2004).

    PubMed  Google Scholar 

  138. Braintenberg V. In defense of the cerebellum. Ann. NY Acad. Sci. 978, 175–183 (2002).

    Google Scholar 

  139. Garwicz, G. & Andersson, A. Spread of synaptic activity along parallel fibres in cat cerebellar anterior lobe Exp. Brain Res. 88, 615–622 (1992).

    CAS  PubMed  Google Scholar 

  140. Llinas, R. in The Cerebellum: New Vistas (eds Palay, S. L. & Chan-Palay, V.) 189–194 (Springer, New York, 1982).

    Google Scholar 

  141. Bower, J. M. & Woolston, D. C. Congruence of the spatial organization of tactile projections to the granule cell and Purkinje cell layers of the cerebellar hemispheres of the albino rat: the vertical organization of the cerebellar cortex. J. Neurophysiol. 49, 745–766 (1983).

    CAS  PubMed  Google Scholar 

  142. Cohen, D. & Yarom, Y. Patches of synchronized activity in the cerbellar cortex evoked by mossy fiber stimulation: questioning the role of parallel fibers Proc. Natl. Acad. Sci. 95, 15032–15036 (1998).

    CAS  PubMed  Google Scholar 

  143. Andersson, G. & Nyquist, J. Origin and sagittal termination areas of cerebro-cerebellar climbing fibre paths in the cat. J. Physiol. 337, 257–285 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Baker, M. R., Javid, M. & Edgley, S. A. Activation of cerebellar climbing fibres to rat cerebellar posterior lobe from motor cortical output pathways. J. Physiol. 536, 825–839 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Ackerley, R., Pardoe, J. & Apps, R. A novel site of synaptic relay for climbing fibre pathways relaying signals from the motor cortex to the cerebellar cortical C1 zone. J. Physiol. 576, 503–518 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Arndt, K., Nakagawa, S., Takeichi, M. & Redies, C. Cadherin-defined segments and parasagittal cell ribbons in the developing chicken cerebellum. Mol. Cell Neurosci. 10, 211–228 (1998).

    CAS  PubMed  Google Scholar 

  147. Larouche, M. & Hawkes, R. From clusters to stripes: the developmental origins of adult cerebellar compartmentation. Cerebellum 5, 77–88 (2006).

    CAS  PubMed  Google Scholar 

  148. Armstrong, C. L., Krueger-Naug, A. M. R., Currie, R. W. & Hawkes, R. Expression of heat-shock protein Hsp25 in mouse Purkinje cells during development reveals novel features of cerebellar compartmentation. J. Comp. Neurol. 429, 7–21 (2001).

    CAS  PubMed  Google Scholar 

  149. Apps, R. Columnar organisation of the inferior olive projection to the posterior lobe of the rat cerebellum. J. Comp. Neurol. 302(2), 236–254 (1990).

    PubMed  Google Scholar 

  150. Jörntell, H., Ekerot, C., Garwicz, M., Luo, X. L. Functional organization of climbing fibre projection to the cerebellar anterior lobe of the rat. J. Physiol. 522(2), 297–309 (2000).

    PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank J. Voogd and M. Usowicz for their comments on a draft manuscript and I. Sugihara for his comments on Table 2. The support of the BBSRC (R.A.), the Canadian Institutes of Health Research (R.H.) and the Wellcome Trust (R.A.) are gratefully acknowledged. Although space restrictions have meant it has only been possible to cite a small fraction of the relevant literature all mistakes and omissions are entirely Richard's fault.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Apps.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (table)

The conservation of cerebellar zonal architecture (PDF 242 kb)

Related links

Related links

FURTHER INFORMATION

Richard Apps's homepage

Richard Hawkes's homepage

Glossary

Inferior olivary complex

Collection of subnuclei located in the ventral medulla oblongata which are the sole source of climbing fibre afferents to the cerebellum.

Map

A systematic spatial representation of anatomical pathways, physiological activity and/or molecular features projected onto the cerebellar cortical surface.

Aldolase C

A brain-specific glycolytic isoenzyme that converts D-fructose 1,6-bisphosphate into glycerone phosphate and D-glyceraldehyde 3-phosphate.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Apps, R., Hawkes, R. Cerebellar cortical organization: a one-map hypothesis. Nat Rev Neurosci 10, 670–681 (2009). https://doi.org/10.1038/nrn2698

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2698

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing