Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Identity crisis for adult periventricular neural stem cells: subventricular zone astrocytes, ependymal cells or both?

An Erratum to this article was published on 11 February 2009

Abstract

A population of neural stem cells (NSCs) resides adjacent to the lateral ventricles in the adult mammalian brain. Despite knowledge of their existence since the early 1990s, their identity remains controversial, with evidence suggesting that they may be ependymal cells, glial fibrillary acidic protein (GFAP)-expressing subventricular zone (SVZ) cells or several distinct NSC populations. This issue has major implications for the therapeutic use of NSCs as well as for the study and treatment of brain cancers. Recent studies have both shed light on the issue and added to the controversy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The possible origins of adult periventricular neural stem cells.
Figure 2: Initial models for the cytoarchitecture of the adult periventricular area.
Figure 3: Revised models for the cytoarchitecture of the adult periventricular area.
Figure 4: Possible and known lineage relationships in the adult periventricular area.

Similar content being viewed by others

References

  1. Bonfanti, L. & Peretto, P. Radial glial origin of the adult neural stem cells in the subventricular zone. Prog. Neurobiol. 83, 24–36 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Brazel, C. Y., Romanko, M. J., Rothstein, R. P. & Levison, S. W. Roles of the mammalian subventricular zone in brain development. Prog. Neurobiol. 69, 49–69 (2003).

    Article  PubMed  Google Scholar 

  3. Allen, E. The cessation of mitosis in the central nervous system of the albino rat. J. Comp. Neurol. 22, 547–568 (1912).

    Google Scholar 

  4. Altman, J. Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J. Comp. Neurol. 137, 433–457 (1969).

    Article  CAS  PubMed  Google Scholar 

  5. Altman, J. Autoradiographic and histological studies of postnatal neurogenesis. 3. Dating the time of production and onset of differentiation of cerebellar microneurons in rats. J. Comp. Neurol. 136, 269–293 (1969).

    Article  CAS  PubMed  Google Scholar 

  6. Kaplan, M. S. & Hinds, J. W. Neurogenesis in the adult rat: electron microscopic analysis of light radioautographs. Science 197, 1092–1094 (1977).

    Article  CAS  PubMed  Google Scholar 

  7. Lewis, P. D. A quantitative study of cell proliferation in the subependymal layer of the adult rat brain. Exp. Neurol. 20, 203–207 (1968).

    Article  CAS  PubMed  Google Scholar 

  8. Privat, A. & Leblond, C. P. The subependymal layer and neighboring region in the brain of the young rat. J. Comp. Neurol. 146, 277–302 (1972).

    Article  CAS  PubMed  Google Scholar 

  9. Kaplan, M. S. Proliferation of subependymal cells in the adult primate CNS: differential uptake of DNA labelled precursors. J. Hirnforsch. 24, 23–33 (1983).

    CAS  PubMed  Google Scholar 

  10. Reynolds, B. A. & Weiss, S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255, 1707–1710 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. Morshead, C. M. & van der Kooy, D. Disguising adult neural stem cells. Curr. Opin. Neurobiol. 14, 125–131 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Doetsch, F. The glial identity of neural stem cells. Nature Neurosci. 6, 1127–1134 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Alvarez-Buylla, A. & Garcia-Verdugo, J. M. Neurogenesis in adult subventricular zone. J. Neurosci. 22, 629–634 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Levison, S. W. & Goldman, J. E. Both oligodendrocytes and astrocytes develop from progenitors in the subventricular zone of postnatal rat forebrain. Neuron 10, 201–212 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Lois, C. & Alvarez-Buylla, A. Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc. Natl Acad. Sci. USA 90, 2074–2077 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lois, C. & Alvarez-Buylla, A. Long-distance neuronal migration in the adult mammalian brain. Science 264, 1145–1148 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Enwere, E. et al. Aging results in reduced epidermal growth factor receptor signaling, diminished olfactory neurogenesis, and deficits in fine olfactory discrimination. J. Neurosci. 24, 8354–8365 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gheusi, G. et al. Importance of newly generated neurons in the adult olfactory bulb for odor discrimination. Proc. Natl Acad. Sci. USA 97, 1823–1828 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rochefort, C., Gheusi, G., Vincent, J. D. & Lledo, P. M. Enriched odor exposure increases the number of newborn neurons in the adult olfactory bulb and improves odor memory. J. Neurosci. 22, 2679–2689 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bedard, A. & Parent, A. Evidence of newly generated neurons in the human olfactory bulb. Brain Res. Dev. Brain Res. 151, 159–168 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Ignatova, T. N. et al. Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia 39, 193–206 (2002).

    Article  PubMed  Google Scholar 

  22. Singh, S. K., Clarke, I. D., Hide, T. & Dirks, P. B. Cancer stem cells in nervous system tumors. Oncogene 23, 7267–7273 (2004).

    Article  CAS  Google Scholar 

  23. Tramontin, A. D., Garcia-Verdugo, J. M., Lim, D. A. & Alvarez-Buylla, A. Postnatal development of radial glia and the ventricular zone (VZ): a continuum of the neural stem cell compartment. Cereb. Cortex 13, 580–587 (2003).

    Article  PubMed  Google Scholar 

  24. Merkle, F. T., Tramontin, A. D., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. Radial glia give rise to adult neural stem cells in the subventricular zone. Proc. Natl Acad. Sci. USA 101, 17528–17532 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Garcia-Verdugo, J. M. et al. The proliferative ventricular zone in adult vertebrates: a comparative study using reptiles, birds, and mammals. Brain Res. Bull. 57, 765–775 (2002).

    Article  PubMed  Google Scholar 

  26. Weiss, S. et al. Is there a neural stem cell in the mammalian forebrain? Trends Neurosci. 19, 387–393 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Alvarez-Buylla, A., Garcia-Verdugo, J. M. & Tramontin, A. D. A unified hypothesis on the lineage of neural stem cells. Nature Rev. Neurosci. 2, 287–293 (2001).

    Article  CAS  Google Scholar 

  28. Alvarez-Buylla, A. & Lim, D. A. For the long run: maintaining germinal niches in the adult brain. Neuron 41, 683–686 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Doetsch, F. A niche for adult neural stem cells. Curr. Opin. Genet. Dev. 13, 543–550 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Wognum, A. W., Eaves, A. C. & Thomas, T. E. Identification and isolation of hematopoietic stem cells. Arch. Med. Res. 34, 461–475 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Temple, S. Division and differentiation of isolated CNS blast cells in microculture. Nature 340, 471–473 (1989).

    Article  CAS  PubMed  Google Scholar 

  32. Jensen, J. B. & Parmar, M. Strengths and limitations of the neurosphere culture system. Mol. Neurobiol. 34, 153–161 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Chaichana, K., Zamora-Berridi, G., Camara-Quintana, J. & Quinones-Hinojosa, A. Neurosphere assays: growth factors and hormone differences in tumor and nontumor studies. Stem Cells 24, 2851–2857 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Reynolds, B. A. & Rietze, R. L. Neural stem cells and neurospheres—re-evaluating the relationship. Nature Methods 2, 333–336 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Marshall, G. P., Reynolds, B. A. & Laywell, E. D. Using the neurosphere assay to quantify neural stem cells in vivo. Curr. Pharm. Biotechnol. 8, 141–145 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Singec, I. et al. Defining the actual sensitivity and specificity of the neurosphere assay in stem cell biology. Nature Methods 3, 801–806 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Parker, M. A. et al. Expression profile of an operationally-defined neural stem cell clone. Exp. Neurol. 194, 320–332 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Navarro-Galve, B. & Martinez-Serrano, A. “Is there any need to argue...” about the nature and genetic signature of in vitro neural stem cells? Exp. Neurol. 199, 20–25 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Morshead, C. M. et al. Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron 13, 1071–1082 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Cooper-Kuhn, C. M. & Kuhn, H. G. Is it all DNA repair? Methodological considerations for detecting neurogenesis in the adult brain. Brain Res. Dev. Brain Res. 134, 13–21 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Ross, H. et al. Bromodeoxyuridine induces senescence in neural stem and progenitor cells. Stem cells 26, 3218–3227 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Luo, J., Shook, B. A., Daniels, S. B. & Conover, J. C. Subventricular zone-mediated ependyma repair in the adult mammalian brain. J. Neurosci. 28, 3804–3813 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Maslov, A. Y., Barone, T. A., Plunkett, R. J. & Pruitt, S. C. Neural stem cell detection, characterization, and age-related changes in the subventricular zone of mice. J. Neurosci. 24, 1726–1733 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rando, T. A. The immortal strand hypothesis: segregation and reconstruction. Cell 129, 1239–1243 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Cairns, J. Mutation selection and the natural history of cancer. Nature 255, 197–200 (1975).

    Article  CAS  PubMed  Google Scholar 

  46. Potten, C. S., Hume, W. J., Reid, P. & Cairns, J. The segregation of DNA in epithelial stem cells. Cell 15, 899–906 (1978).

    Article  CAS  PubMed  Google Scholar 

  47. Potten, C. S., Owen, G. & Booth, D. Intestinal stem cells protect their genome by selective segregation of template DNA strands. J. Cell Sci. 115, 2381–2388 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Karpowicz, P. et al. Support for the immortal strand hypothesis: neural stem cells partition DNA asymmetrically in vitro. J. Cell Biol. 170, 721–732 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kuhn, H. G. & Peterson D. A. in Adult Neurogenesis (eds Gage, F. H., Kempermann, G. & Song, H.) 25–47 (Cold Spring Harbor Laboratory Press, 2008).

    Google Scholar 

  50. Doetsch, F., Caille, I., Lim, D. A., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703–716 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Johansson, C. B. et al. Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96, 25–34 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Morshead, C. M., Craig, C. G. & van der Kooy, D. In vivo clonal analyses reveal the properties of endogenous neural stem cell proliferation in the adult mammalian forebrain. Development 125, 2251–2261 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Colak, D. et al. Adult neurogenesis requires Smad4-mediated bone morphogenic protein signaling in stem cells. J. Neurosci. 28, 434–446 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ackman, J. B., Siddiqi, F., Walikonis, R. S. & LoTurco, J. J. Fusion of microglia with pyramidal neurons after retroviral infection. J. Neurosci. 26, 11413–11422 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gilyarov, A. V. Nestin in central nervous system cells. Neurosci. Behav. Physiol. 38, 165–169 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Sakakibara, S. et al. Mouse-Musashi-1, a neural RNA-binding protein highly enriched in the mammalian CNS stem cell. Dev. Biol. 176, 230–242 (1996).

    Article  CAS  PubMed  Google Scholar 

  57. Sakakibara, S., Nakamura, Y., Satoh, H. & Okano, H. RNA-binding protein Musashi2: developmentally regulated expression in neural precursor cells and subpopulations of neurons in mammalian CNS. J. Neurosci. 21, 8091–8107 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Episkopou, V. SOX2 functions in adult neural stem cells. Trends Neurosci. 28, 219–221 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Graham, V., Khudyakov, J., Ellis, P. & Pevny, L. SOX2 functions to maintain neural progenitor identity. Neuron 39, 749–765 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Pevny, L. & Placzek, M. SOX genes and neural progenitor identity. Curr. Opin. Neurobiol. 15, 7–13 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Uyeda, C. T., Eng, L. F. & Bignami, A. Immunological study of the glial fibrillary acidic protein. Brain Res. 37, 81–89 (1972).

    Article  CAS  PubMed  Google Scholar 

  62. Bignami, A. & Dahl, D. Astrocyte-specific protein and neuroglial differentiation. An immunofluorescence study with antibodies to the glial fibrillary acidic protein. J. Comp. Neurol. 153, 27–38 (1974).

    Article  CAS  PubMed  Google Scholar 

  63. Yanagisawa, M. & Yu, R. K. The expression and functions of glycoconjugates in neural stem cells. Glycobiology 17, 57R–74R (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Capela, A. & Temple, S. LeX/ssea-1 is expressed by adult mouse CNS stem cells, identifying them as nonependymal. Neuron 35, 865–875 (2002).

    Article  PubMed  Google Scholar 

  65. Corti, S. et al. Isolation and characterization of murine neural stem/progenitor cells based on Prominin-1 expression. Exp. Neurol. 205, 547–562 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Coskun, V. et al. CD133+ neural stem cells in the ependyma of mammalian postnatal forebrain. Proc. Natl Acad. Sci. USA 105, 1026–1031 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhuo, L. et al. Live astrocytes visualized by green fluorescent protein in transgenic mice. Dev. Biol. 187, 36–42 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Mirzadeh, Z., Merkle, F. T., Soriano-Navarro, M., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell 3, 265–278 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Garcia, A. D., Doan, N. B., Imura, T., Bush, T. G. & Sofroniew, M. V. GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nature Neurosci. 7, 1233–1241 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nature Genet. 21, 70–71 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Novak, A., Guo, C., Yang, W., Nagy, A. & Lobe, C. G. Z/EG, a double reporter mouse line that expresses enhanced green fluorescent protein upon Cre-mediated excision. Genesis 28, 147–155 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Sauer, B. Site-specific recombination: developments and applications. Curr. Opin. Biotechnol. 5, 521–527 (1994).

    Article  CAS  PubMed  Google Scholar 

  73. Doetsch, F., Petreanu, L., Caille, I., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 36, 1021–1034 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Morshead, C. M., Garcia, A. D., Sofroniew, M. V. & van Der Kooy, D. The ablation of glial fibrillary acidic protein-positive cells from the adult central nervous system results in the loss of forebrain neural stem cells but not retinal stem cells. Eur. J. Neurosci. 18, 76–84 (2003).

    Article  PubMed  Google Scholar 

  75. Imura, T., Kornblum, H. I. & Sofroniew, M. V. The predominant neural stem cell isolated from postnatal and adult forebrain but not early embryonic forebrain expresses GFAP. J. Neurosci. 23, 2824–2832 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Garcia-Verdugo, J. M., Doetsch, F., Wichterle, H., Lim, D. A. & Alvarez-Buylla, A. Architecture and cell types of the adult subventricular zone: in search of the stem cells. J. Neurobiol. 36, 234–248 (1998).

    Article  CAS  PubMed  Google Scholar 

  77. Doetsch, F., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J. Neurosci. 17, 5046–5061 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shen, Q. et al. Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions. Cell Stem Cell 3, 289–300 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tavazoie, M. et al. A specialized vascular niche for adult neural stem cells. Cell Stem Cell 3, 279–288 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Fuchs, E., Tumbar, T. & Guasch, G. Socializing with the neighbors: stem cells and their niche. Cell 116, 769–778 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Lim, D. A., Huang, Y. C. & Alvarez-Buylla, A. The adult neural stem cell niche: lessons for future neural cell replacement strategies. Neurosurg. Clin. N. Am. 18, 81–92, ix (2007).

    Article  PubMed  Google Scholar 

  82. Conover, J. C. & Notti, R. Q. The neural stem cell niche. Cell Tissue Res. 331, 211–224 (2008).

    Article  PubMed  Google Scholar 

  83. Nyfeler, Y. et al. Jagged1 signals in the postnatal subventricular zone are required for neural stem cell self-renewal. EMBO J. 24, 3504–3515 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Jiao, J. & Chen, D. F. Induction of neurogenesis in nonconventional neurogenic regions of the adult central nervous system by niche astrocyte-produced signals. Stem Cells 26, 1221–1230 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chiasson, B. J., Tropepe, V., Morshead, C. M. & van der Kooy, D. Adult mammalian forebrain ependymal and subependymal cells demonstrate proliferative potential, but only subependymal cells have neural stem cell characteristics. J. Neurosci. 19, 4462–4471 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Laywell, E. D., Rakic, P., Kukekov, V. G., Holland, E. C. & Steindler, D. A. Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain. Proc. Natl Acad. Sci. USA 97, 13883–13888 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rietze, R. L. et al. Purification of a pluripotent neural stem cell from the adult mouse brain. Nature 412, 736–739 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Weigmann, A., Corbeil, D., Hellwig, A. & Huttner, W. B. Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. Proc. Natl Acad. Sci. USA 94, 12425–12430 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Spassky, N. et al. Adult ependymal cells are postmitotic and are derived from radial glial cells during embryogenesis. J. Neurosci. 25, 10–18 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Imamoto, K., Paterson, J. A. & Leblond, C. P. Radioautographic investigation of gliogenesis in the corpus callosum of young rats. I. Sequential changes in oligodendrocytes. J. Comp. Neurol. 180, 115–128, 132–7 (1978).

    Article  CAS  PubMed  Google Scholar 

  91. Kraus-Ruppert, R., Laissue, J., Burki, H. & Odartchenko, N. Kinetic studies on glial, Schwann and capsular cells labelled with 3H thymidine in cerebrospinal tissue of young mice. J. Neurol. Sci. 26, 555–563 (1975).

    Article  CAS  PubMed  Google Scholar 

  92. Chauhan, A. N. & Lewis, P. D. A quantitative study of cell proliferation in ependyma and choroid plexus in the postnatal rat brain. Neuropathol. Appl. Neurobiol. 5, 303–309 (1979).

    Article  CAS  PubMed  Google Scholar 

  93. Altman, J. Autoradiographic investigation of cell proliferation in the brains of rats and cats. Anat. Rec. 145, 573–591 (1963).

    Article  CAS  PubMed  Google Scholar 

  94. Korr, H. Proliferation of different cell types in the brain. Adv. Anat. Embryol. Cell Biol. 61, 1–72 (1980).

    Article  CAS  PubMed  Google Scholar 

  95. Bryans, W. A. Mitotic activity in the brain of the adult rat. Anat. Rec. 133, 65–71 (1959).

    Article  Google Scholar 

  96. Smart, I. The subependymal layer of the mouse brain and its cell production as shown by radioautography after thymidine-H3 injection. J. Comp. Neurol. 116, 325–338 (1961).

    Article  Google Scholar 

  97. Mori, T. et al. Inducible gene deletion in astroglia and radial glia - a valuable tool for functional and lineage analysis. Glia 54, 21–34 (2006).

    Article  PubMed  Google Scholar 

  98. Metzger, D. & Chambon, P. Site- and time-specific gene targeting in the mouse. Methods 24, 71–80 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Ninkovic, J., Mori, T. & Gotz, M. Distinct modes of neuron addition in adult mouse neurogenesis. J. Neurosci. 27, 10906–10911 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Doetsch, F., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. Regeneration of a germinal layer in the adult mammalian brain. Proc. Natl Acad. Sci. USA 96, 11619–11624 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Brawer, J. R. The fine structure of the ependymal tanycytes at the level of the arcuate nucleus. J. Comp. Neurol. 145, 25–41 (1972).

    Article  CAS  PubMed  Google Scholar 

  102. Millhouse, O. E. Light and electron microscopic studies of the ventricular wall. Z. Zellforsch. Mikrosk. Anat. 127, 149–174 (1972).

    Article  CAS  Google Scholar 

  103. Bruni, J. E. Ependymal development, proliferation, and functions: a review. Microsc. Res. Tech. 41, 2–13 (1998).

    Article  CAS  PubMed  Google Scholar 

  104. Coates, P. W. & Davis, S. L. Tanycytes in long-term ovariectomized ewes treated with estrogen exhibit ultrastructural features associated with increased cellular activity. Anat. Rec. 203, 179–187 (1982).

    Article  CAS  PubMed  Google Scholar 

  105. de Vitry, F., Picart, R., Jacque, C. & Tixier-Vidal, A. Glial fibrillary acidic protein. A cellular marker of tanycytes in the mouse hypothalamus. Dev. Neurosci. 4, 457–460 (1981).

    Article  CAS  PubMed  Google Scholar 

  106. Jeffrey, M., Wells, G. A. & Bridges, A. W. An immunohistochemical study of the topography and cellular localization of three neural proteins in the sheep nervous system. J. Comp. Pathol. 103, 23–35 (1990).

    Article  CAS  PubMed  Google Scholar 

  107. Alvarez-Buylla, A., Buskirk, D. R. & Nottebohm, F. Monoclonal antibody reveals radial glia in adult avian brain. J. Comp. Neurol. 264, 159–170 (1987).

    Article  CAS  PubMed  Google Scholar 

  108. Gotz, M. & Huttner, W. B. The cell biology of neurogenesis. Nature Rev. Mol. Cell Biol. 6, 777–788 (2005).

    Article  CAS  Google Scholar 

  109. Alvarez-Buylla, A., Garcia-Verdugo, J. M., Mateo, A. S. & Merchant-Larios, H. Primary neural precursors and intermitotic nuclear migration in the ventricular zone of adult canaries. J. Neurosci. 18, 1020–1037 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Del Bene, F., Wehman, A. M., Link, B. A. & Baier, H. Regulation of neurogenesis by interkinetic nuclear migration through an apical-basal notch gradient. Cell 134, 1055–1065 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Tsai, J. W., Chen, Y., Kriegstein, A. R. & Vallee, R. B. LIS1 RNA interference blocks neural stem cell division, morphogenesis, and motility at multiple stages. J. Cell Biol. 170, 935–945 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Xie, Z. et al. Cep120 and TACCs control interkinetic nuclear migration and the neural progenitor pool. Neuron 56, 79–93 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Willaime-Morawek, S. & van der Kooy, D. Cortex- and striatum- derived neural stem cells produce distinct progeny in the olfactory bulb and striatum. Eur. J. Neurosci. 27, 2354–2362 (2008).

    Article  PubMed  Google Scholar 

  114. Merkle, F. T., Mirzadeh, Z. & Alvarez-Buylla, A. Mosaic organization of neural stem cells in the adult brain. Science 317, 381–384 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Kohwi, M. et al. A subpopulation of olfactory bulb GABAergic interneurons is derived from Emx1- and Dlx5/6-expressing progenitors. J. Neurosci. 27, 6878–6891 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hack, M. A. et al. Neuronal fate determinants of adult olfactory bulb neurogenesis. Nature Neurosci. 8, 865–872 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Willaime-Morawek, S. et al. Embryonic cortical neural stem cells migrate ventrally and persist as postnatal striatal stem cells. J. Cell Biol. 175, 159–168 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Young, K. M., Fogarty, M., Kessaris, N. & Richardson, W. D. Subventricular zone stem cells are heterogeneous with respect to their embryonic origins and neurogenic fates in the adult olfactory bulb. J. Neurosci. 27, 8286–8296 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kakita, A. & Goldman, J. E. Patterns and dynamics of SVZ cell migration in the postnatal forebrain: monitoring living progenitors in slice preparations. Neuron 23, 461–472 (1999).

    Article  CAS  PubMed  Google Scholar 

  120. Halliday, A. L. & Cepko, C. L. Generation and migration of cells in the developing striatum. Neuron 9, 15–26 (1992).

    Article  CAS  PubMed  Google Scholar 

  121. Noctor, S. C., Martinez-Cerdeno, V., Ivic, L. & Kriegstein, A. R. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nature Neurosci. 7, 136–144 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. Haubensak, W., Attardo, A., Denk, W. & Huttner, W. B. Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. Proc. Natl Acad. Sci. USA 101, 3196–3201 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Porteus, M. H. et al. DLX-2, MASH-1, and MAP-2 expression and bromodeoxyuridine incorporation define molecularly distinct cell populations in the embryonic mouse forebrain. J. Neurosci. 14, 6370–6383 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Torii, M. et al. Transcription factors Mash-1 and Prox-1 delineate early steps in differentiation of neural stem cells in the developing central nervous system. Development 126, 443–456 (1999).

    Article  CAS  PubMed  Google Scholar 

  125. Wu, S. X. et al. Pyramidal neurons of upper cortical layers generated by NEX-positive progenitor cells in the subventricular zone. Proc. Natl Acad. Sci. USA 102, 17172–17177 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Staugaitis, S. M., Zerlin, M., Hawkes, R., Levine, J. M. & Goldman, J. E. Aldolase C/zebrin II expression in the neonatal rat forebrain reveals cellular heterogeneity within the subventricular zone and early astrocyte differentiation. J. Neurosci. 21, 6195–6205 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Lledo, P. M., Merkle, F. T. & Alvarez-Buylla, A. Origin and function of olfactory bulb interneuron diversity. Trends Neurosci. 31, 392–400 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Corbin, J. G., Gaiano, N., Machold, R. P., Langston, A. & Fishell, G. The Gsh2 homeodomain gene controls multiple aspects of telencephalic development. Development 127, 5007–5020 (2000).

    Article  CAS  PubMed  Google Scholar 

  129. Toresson, H., Potter, S. S. & Campbell, K. Genetic control of dorsal-ventral identity in the telencephalon: opposing roles for Pax6 and Gsh2. Development 127, 4361–4371 (2000).

    Article  CAS  PubMed  Google Scholar 

  130. Parmar, M., Sjoberg, A., Bjorklund, A. & Kokaia, Z. Phenotypic and molecular identity of cells in the adult subventricular zone: in vivo and after expansion in vitro. Mol. Cell Neurosci. 24, 741–752 (2003).

    Article  CAS  PubMed  Google Scholar 

  131. Jessen, K. R. & Mirsky, R. Glial cells in the enteric nervous system contain glial fibrillary acidic protein. Nature 286, 736–737 (1980).

    Article  CAS  PubMed  Google Scholar 

  132. Antanitus, D. S., Choi, B. H. & Lapham, L. W. The demonstration of glial fibrillary acidic protein in the cerebrum of the human fetus by indirect immunofluorescence. Brain Res. 103, 613–616 (1976).

    Article  CAS  PubMed  Google Scholar 

  133. Levitt, P. & Rakic, P. Immunoperoxidase localization of glial fibrillary acidic protein in radial glial cells and astrocytes of the developing rhesus monkey brain. J. Comp. Neurol. 193, 815–840 (1980).

    Article  CAS  PubMed  Google Scholar 

  134. Choi, B. H. & Lapham, L. W. Radial glia in the human fetal cerebrum: a combined Golgi, immunofluorescent and electron microscopic study. Brain Res. 148, 295–311 (1978).

    Article  CAS  PubMed  Google Scholar 

  135. Schmechel, D. E. & Rakic, P. A Golgi study of radial glial cells in developing monkey telencephalon: morphogenesis and transformation into astrocytes. Anat. Embryol. 156, 115–152 (1979).

    Article  CAS  Google Scholar 

  136. Bodega, G., Suarez, I., Rubio, M. & Fernandez, B. Ependyma: phylogenetic evolution of glial fibrillary acidic protein (GFAP) and vimentin expression in vertebrate spinal cord. Histochemistry 102, 113–122 (1994).

    Article  CAS  PubMed  Google Scholar 

  137. Gould, S. J. & Howard, S. An immunohistochemical study of the germinal layer in the late gestation human fetal brain. Neuropathol. Appl. Neurobiol. 13, 421–437 (1987).

    Article  CAS  PubMed  Google Scholar 

  138. Roessmann, U., Velasco, M. E., Sindely, S. D. & Gambetti, P. Glial fibrillary acidic protein (GFAP) in ependymal cells during development. An immunocytochemical study. Brain Res. 200, 13–21 (1980).

    Article  CAS  PubMed  Google Scholar 

  139. Gould, S. J., Howard, S. & Papadaki, L. The development of ependyma in the human fetal brain: an immunohistological and electron microscopic study. Brain Res. Dev. Brain Res. 55, 255–267 (1990).

    Article  CAS  PubMed  Google Scholar 

  140. Rafols, J. A. & Goshgarian, H. G. Spinal tanycytes in the adult rat: a correlative Golgi gold-toning study. Anat. Rec. 211, 75–86 (1985).

    Article  CAS  PubMed  Google Scholar 

  141. Meletis, K. et al. Spinal cord injury reveals multilineage differentiation of ependymal cells. PLoS Biol. 6, e182 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Xu, Y. et al. Neurogenesis in the ependymal layer of the adult rat 3rd ventricle. Exp. Neurol. 192, 251–264 (2005).

    Article  CAS  PubMed  Google Scholar 

  143. Messier, B., Leblond, C. P. & Smart, I. Presence of DNA synthesis and mitosis in the brain of young adult mice. Exp. Cell Res. 14, 224–226 (1958).

    Article  CAS  PubMed  Google Scholar 

  144. Smart, I. & Leblond, C. P. Evidence for division and transformation of neuroglia cells in the mouse brain as derived from radioautography after injection of thymidine-H3. J. Comp. Neurol. 116, 349–367 (1961).

    Article  Google Scholar 

  145. Altman, J. Are new neurons formed in the brains of adult mammals? Science 135, 1127–1128 (1962).

    Article  CAS  PubMed  Google Scholar 

  146. Altman, J. & Das, G. D. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J. Comp. Neurol. 124, 319–335 (1965).

    Article  CAS  PubMed  Google Scholar 

  147. Altman, J. & Das, G. D. Post-natal origin of microneurones in the rat brain. Nature 207, 953–956 (1965).

    Article  CAS  PubMed  Google Scholar 

  148. Rakic, P. Limits of neurogenesis in primates. Science 227, 1054–1056 (1985).

    Article  CAS  PubMed  Google Scholar 

  149. Richards, L. J., Kilpatrick, T. J. & Bartlett, P. F. De novo generation of neuronal cells from the adult mouse brain. Proc. Natl Acad. Sci. USA 89, 8591–8595 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Corotto, F. S., Henegar, J. A. & Maruniak, J. A. Neurogenesis persists in the subependymal layer of the adult mouse brain. Neurosci. Lett. 149, 111–114 (1993).

    Article  CAS  PubMed  Google Scholar 

  151. Luskin, M. B. Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11, 173–189 (1993).

    Article  CAS  PubMed  Google Scholar 

  152. Lois, C., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. Chain migration of neuronal precursors. Science 271, 978–981 (1996).

    Article  CAS  PubMed  Google Scholar 

  153. Craig, C. G. et al. In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain. J. Neurosci. 16, 2649–2658 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Johansson, C. B., Svensson, M., Wallstedt, L., Janson, A. M. & Frisen, J. Neural stem cells in the adult human brain. Exp. Cell Res. 253, 733–736 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors' work is supported by the Canadian Institutes of Health Research (S.W.) and the Alberta Heritage Foundation for Medical Research (G.K.M and S.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Weiss.

Supplementary information

Supplementary information S1 (box)

Contradictory results contributing to the uncertainty surrounding adult periventricular NSC identity. (PDF 228 kb)

Related links

Related links

SUPPLEMENTARY INFORMATION

S1 (box)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chojnacki, A., Mak, G. & Weiss, S. Identity crisis for adult periventricular neural stem cells: subventricular zone astrocytes, ependymal cells or both?. Nat Rev Neurosci 10, 153–163 (2009). https://doi.org/10.1038/nrn2571

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2571

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing