Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Conflict-induced behavioural adjustment: a clue to the executive functions of the prefrontal cortex

An Erratum to this article was published on 04 February 2009

Key Points

  • In our daily life, we often rely on executive, or cognitive, control processes, which optimize the flexible use of our limited cognitive resources to currently prioritized tasks. Such control may become necessary when automatic or previously learned behaviours can no longer achieve the goal.

  • An experimentally well-studied example of behavioural adjustment in changing environments is the kind of behavioural modulation that is triggered by the presence of competition or conflict between behavioural options. Studying the neural substrate and mechanisms of conflict-induced behavioural adjustment has opened an important window on to the neural basis of executive control.

  • From observations of anterior cingulate cortex (ACC) and dorsolateral prefrontal cortex (DLPFC) activation in tasks that elicited conflict, influential theories have emerged that suggested that the ACC detects the conflict and conveys conflict-related information to areas such as the DLPFC, leading to adjustments in executive-control levels and consequently to better performance when the subject faces the conflict again.

  • Recent studies have revealed striking similarities in conflict-induced behavioural adjustment between humans and monkeys, indicating that monkeys can provide a model to study the underlying neural substrates and mechanisms of such behaviour.

  • Recent studies in humans and monkeys indicate a crucial role for the DLPFC in adaptive and dynamic modulation of executive control, and also suggest involvement of the posterior parietal cortex, the inferior frontal junction area and the cerebellum in conflict-induced behavioural adjustment. However, these studies do not support a causal or indispensable role for the ACC in conflict-induced behavioural adjustment.

Abstract

The behavioural adjustment that follows the experience of conflict has been extensively studied in humans, leading to influential models of executive-control adjustment. Recent studies have revealed striking similarities in conflict-induced behavioural adjustment between humans and monkeys, indicating that monkeys can provide a model to study the underlying neural substrates and mechanisms of such behaviour. These studies have advanced our knowledge about the role of different prefrontal brain regions, including the anterior cingulate cortex (ACC) and the dorsolateral prefrontal cortex (DLPFC), in executive-control adjustment and suggest a pivotal role for the DLPFC in the dynamic tuning of executive control and, consequently, in behavioural adaptation to changing environments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Examples of tasks that involve conflict.
Figure 2: Two main theories regarding the role of the anterior cingulate cortex in conflict-induced behavioural adjustment.
Figure 3: Conflict-induced behavioural adjustment and prefrontal cell activity in monkeys.
Figure 4: A model of the conflict detection–resolution process in goal-directed behaviour.
Figure 5: Regions associated with conflict-induced behavioural adjustment in humans.

Similar content being viewed by others

References

  1. Miller, E. K. & Cohen, J. D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–202 (2001). An explanation of the role of the PFC in cognitive control and flexibility.

    CAS  PubMed  Google Scholar 

  2. Botvinick, M. M. et al. Conflict monitoring and cognitive control. Psychol. Rev. 108, 624–652 (2001). This paper detailed a computational model proposing that conflict in information processing is monitored by the ACC and then used to adjust the executive control level through the DLPFC.

    CAS  PubMed  Google Scholar 

  3. Stroop, J. R. Studies of interference in serial verbal reactions. J. Exp. Psychol. 18, 643–662 (1935).

    Google Scholar 

  4. MacLeod, C. M. Half a century of research on the Stroop effect: an integrative review. Psychol. Bull. 109, 163–203 (1991).

    CAS  PubMed  Google Scholar 

  5. MacLeod, C. M. & MacDonald, P. A. Interdimensional interference in the Stroop effect: uncovering the cognitive and neural anatomy of attention. Trends Cogn. Sci. 4, 383–391 (2000).

    CAS  PubMed  Google Scholar 

  6. Eriksen, B. A. & Eriksen, C. W. Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept. Psychophys. 16, 143–149 (1974).

    Google Scholar 

  7. Casey, B. J. et al. Dissociation of response conflict, attentional selection, and expectancy with functional magnetic resonanace imaging. Proc. Natl Acad. Sci. USA 97, 8728–8733 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kawashima, R. et al. Functional anatomy of GO/NO-GO discrimination and response selection: a PET study in man. Brain Res. 728, 79–89 (1996).

    CAS  PubMed  Google Scholar 

  9. Durston, S. et al. Parametric manipulation of conflict and response competition using rapid mixed-trial event-related fMRI. Neuroimage 20, 2135–2141 (2003).

    CAS  PubMed  Google Scholar 

  10. de Zubicaray, G. I. et al. Motor response suppression and the prepotent tendency to respond: a parametric fMRI study. Neuropsychologia 38, 1280–1291 (2000).

    CAS  PubMed  Google Scholar 

  11. Braver, T. S. et al. Anterior cingulate cortex and response conflict: effects of frequency, inhibition and errors. Cereb. Cortex 11 825–836 (2001).

    CAS  PubMed  Google Scholar 

  12. Chao, L. L. & Knight, R. T. Human prefrontal lesions increase distractibility to irrelevant sensory inputs. Neuroreport 6, 1605–1610 (1995).

    CAS  PubMed  Google Scholar 

  13. Carter, C. S. & van Veen, V. Anterior cingulate cortex and conflict detection: an update of theory and data. Cogn. Affect. Behav. Neurosci. 7, 367–379 (2007).

    PubMed  Google Scholar 

  14. Simon, J. R. & Berbaum, K. Effect of conflicting cues: the 'Stroop effect' vs. the 'Simon effect'. Acta Psychol. (Amst.) 73, 159–170 (1990).

    CAS  Google Scholar 

  15. Kerns, J. G. et al. Anterior cingulate conflict monitoring and adjustments in control. Science 303, 1023–1026 (2004). An fMRI study that showed the role of the ACC and the DLPFC in the conflict detection–resolution process.

    CAS  PubMed  Google Scholar 

  16. Egner, T. & Hirsch, J. Cognitive control mechanisms resolve conflict through cortical amplification of task-relevant information. Nature Neurosci. 8, 1784–1790 (2005). An fMRI study that showed how the DLPFC contributes to conflict-induced executive-control adjustment.

    CAS  PubMed  Google Scholar 

  17. Egner, T. & Hirsch, J. The neural correlates and functional integration of cognitive control in a Stroop task. Neuroimage 24, 539–547 (2005).

    PubMed  Google Scholar 

  18. Egner, T. Congruency sequence effects and cognitive control. Cogn. Affect. Behav. Neurosci. 7, 380–390 (2007). A review of studies in humans regarding the conflict-induced adjustment in cognitive control.

    PubMed  Google Scholar 

  19. Stuermer, B. et al. Control over location-based response activation in the Simon task: behavioral and electrophysiological evidence. J. Exp. Psychol. Hum. Percept. Perform. 28, 1345–1363 (2002).

    Google Scholar 

  20. Gratton, G. et al. Optimizing the use of information: strategic control of activation of responses. J. Exp. Psychol. Gen. 121, 480–506 (1992).

    CAS  PubMed  Google Scholar 

  21. Hommel, B ., Proctor, R. W. & Vu, K. P. A feature-integration account of sequential effects in the Simon task. Psychol. Res. 68, 1–17 (2004).

    PubMed  Google Scholar 

  22. Mayr, U. et al. Conflict adaptation effects in the absence of executive control. Nature Neurosci. 6, 450–452 (2003).

    CAS  PubMed  Google Scholar 

  23. Pardo, J. V., Pardo, P., Janer, K. W. & Raichle, M. E. The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm. Proc. Natl Acad. Sci. USA 87, 256–259 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Casey, B. J. et al. A developmental functional MRI study of prefrontal activation during performance of a go-no-go task. J. Cogn. Neurosci. 9, 835–847 (1997).

    CAS  PubMed  Google Scholar 

  25. Carter, C. S. et al. Anterior cingulate cortex, error detection, and the online monitoring of performance. Science 280, 747–749 (1998).

    CAS  PubMed  Google Scholar 

  26. Barch, D. M. et al. Anterior cingulate cortex and response conflict: effects of response modality and processing domain. Cereb. Cortex 11, 837–848 (2001).

    CAS  PubMed  Google Scholar 

  27. Leung, H. C. et al. An event-related functional MRI study comparing interference effects in the Simon and Stroop tasks. Cereb. Cortex 10, 552–560 (2000).

    CAS  PubMed  Google Scholar 

  28. MacDonald, A. W., Cohen, J. D., Stenger, V. A. & Carter, C. S. Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science 288, 1835–1838 (2000).

    CAS  PubMed  Google Scholar 

  29. van Veen, V. et al. Anterior cingulate cortex, conflict monitoring, and levels of processing. Neuroimage 14, 1302–1308 (2001).

    CAS  PubMed  Google Scholar 

  30. Ridderinkhof, K. R., van den Wildenberg, W. P., Segalowitz, S. J. & Carter, C. S. Neurocognitive mechanisms of cognitive control: the role of prefrontal cortex in action selection, response inhibition, performance monitoring, and reward-based learning. Brain Cogn. 56, 129–140 (2004).

    PubMed  Google Scholar 

  31. Liston, C., Matalon, S., Hare, T. A., Davidson, M. & Casey, B. J. Anterior cingulate and posterior parietal cortices are sensitive to dissociable forms of conflict in a task-switching paradigm. Neuron 50, 643–653 (2006).

    CAS  PubMed  Google Scholar 

  32. Roberts, K. L. & Hall, D. A. Examining a supramodal network for conflict processing: a systematic review and novel functional magnetic resonance imaging data for related visual and auditory stroop tasks. J. Cogn. Neurosci. 20, 1063–1078 (2008).

    PubMed  Google Scholar 

  33. Milham, M. P., Banich, M. T., Claus, E. D. & Cohen, N. J. Practice-related effects demonstrate complementary roles of anterior cingulate and prefrontal cortices in attentional control. Neuroimage 18, 483–493 (2003).

    CAS  PubMed  Google Scholar 

  34. Fan, J., Flombaum, J. I., McCandliss, B. D., Thomas, K. M. & Posner, M. I. Cognitive and brain consequences of conflict. Neuroimage 18, 42–57 (2003).

    PubMed  Google Scholar 

  35. Roelofs, A., van Turennout, M. & Coles, M. G. H. Anterior cingulate cortex activity can be independent of response conflict in Stroop-like tasks. Proc. Natl Acad. Sci. USA 103, 13884–13889 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Adleman, N. E. A developmental fMRI study of the Stroop color-word task. Neuroimage 16, 61–75 (2002).

    PubMed  Google Scholar 

  37. di Pellegrino, G., Ciaramelli, E. & Làdavas, E. The regulation of cognitive control following rostral anterior cingulate cortex lesion in humans. J. Cogn. Neurosci. 19, 275–286 (2007).

    PubMed  Google Scholar 

  38. Davis, K. D. et al. Human anterior cingulate cortex neurons encode cognitive and emotional demands. J. Neurosci. 25, 8402–8406 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Posner, M. I. & DiGirolamo, G. J. in The Attentive Brain (ed. Parasuraman, R.) 401–423 (MIT Press, 1998).

    Google Scholar 

  40. Paus, T., Koski, L., Caramanos, Z. & Westbury, C. Regional differences in the effects of task difficulty and motor output on blood flow response in the human anterior cingulate cortex: a review of 107 PET activation studies. Neuroreport 9, R37–R47 (1998).

    CAS  PubMed  Google Scholar 

  41. Zysset, S., Muller, K., Lohmann, G. & von Cramon, D. Y. Color-word matching stroop task: separating interference and response conflict. Neuroimage 13, 29–36 (2001).

    CAS  PubMed  Google Scholar 

  42. Milham, M. P. et al. The relative involvement of anterior cingulate and prefrontal cortex in attentional control depends on nature of conflict. Cogn. Brain Res. 12, 467–473 (2001).

    CAS  Google Scholar 

  43. Erickson, K. I. et al. Behavioral conflict, anterior cingulate cortex, and experiment duration: implications of diverging data. Hum. Brain Mapp. 21, 98–107 (2004).

    PubMed  Google Scholar 

  44. Vendrell, P. et al. The role of prefrontal regions in the Stroop task. Neuropsychologia 33, 341–352 (1995).

    CAS  PubMed  Google Scholar 

  45. Stuss, D. T., Floden, D., Alexander, M. P., Levine, B. & Katz, D. Stroop performance in focal lesion patients: dissociation of processes and frontal lobe lesion location. Neuropsychologia 39, 771–786 (2001).

    CAS  PubMed  Google Scholar 

  46. Fellows, L. K. & Farah, M. Is anterior cingulate cortex necessary for cognitive control? Brain 128, 788–796 (2005). A report of neuropsychological assessment of patients with ACC lesions in tasks that elicited conflict.

    PubMed  Google Scholar 

  47. Markela-Lerenc, J. et al. Prefrontal-cingulate activation during executive control: which comes first? Cogn. Brain Res. 18, 278–287 (2004).

    Google Scholar 

  48. Lauwereyns, J. et al. Interference from irrelevant features on visual discrimination by macaques (Macaca fuscata): a behavioral analogue of the human Stroop effect. J. Exp. Psychol. Anim. Behav. Process. 26, 352–357 (2000).

    CAS  PubMed  Google Scholar 

  49. Mansouri, F. A., Buckley M. J. & Tanaka K. Mnemonic function of the dorsolateral prefrontal cortex in conflict-induced behavioral adjustment. Science 318, 987–990 (2007).

    CAS  PubMed  Google Scholar 

  50. Nakamura, K., Roesch, M. R., Olson, C. R. Neuronal activity in macaque SEF and ACC during performance of tasks involving conflict. J. Neurophysiol. 93, 884–908 (2005).

    PubMed  Google Scholar 

  51. Stoet, G. & Snyder, L. H. Executive control and task-switching in monkeys. Neuropsychologia 41, 1357–1364 (2003).

    PubMed  Google Scholar 

  52. Stoet, G. & Snyder, L. H. Correlates of stimulus-response congruence in the posterior parietal cortex. J. Cogn. Neurosci. 19, 194–203 (2007).

    PubMed  Google Scholar 

  53. Haddon, J. E. & Killcross, S. Prefrontal cortex lesions disrupt the contextual control of response conflict. J. Neurosci. 26, 2933–2940 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Marquis, J., Haddon, J. E. & Killcross, S. Inactivation of the prelimbic, but not infralimbic, prefrontal cortex impairs the contextual control of response conflict in rats. Eur. J. Neurosci. 25, 559–566 (2007).

    PubMed  Google Scholar 

  55. Ito, S., Stuphorn, V., Brown, J. W. & Schall, J. D. Performance monitoring by the anterior cingulate cortex during saccade countermanding. Science 302, 120–122 (2003).

    CAS  PubMed  Google Scholar 

  56. Stuphorn, V., Taylor, T. L. & Schall, J. D. Performance monitoring by the supplementary eye field. Nature 408, 857–860 (2000).

    CAS  PubMed  Google Scholar 

  57. Olson, C. R. & Gettner, S. N. Neuronal activity related to rule and conflict in macaque supplementary eye field. Physiol. Behav. 77, 663–670 (2002).

    CAS  PubMed  Google Scholar 

  58. Milner, B. Effects of different brain lesions on card sorting. Arch. Neurol. 9, 90–100 (1963).

    Google Scholar 

  59. Stuss, D. T. et al. Wisconsin Card Sorting Test performance in patients with focal frontal and posterior brain damage: effects of lesion location and test structure on separable cognitive processes. Neuropsychologia 38, 388–402 (2000).

    CAS  PubMed  Google Scholar 

  60. Desimone, R. & Duncan, J. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18, 193–222 (1995). This paper presented a theoretical model explaining the mechanisms that underlie selective attention and top-down biasing of information processing.

    CAS  PubMed  Google Scholar 

  61. Miller, E. K. The prefrontal cortex and cognitive control. Nature Rev. Neurosci. 1, 59–65 (2000).

    CAS  Google Scholar 

  62. Egner, T., Delano, M. & Hirsch, J. Separate conflict-specific cognitive control mechanisms in the human brain. Neuroimage 35, 940–948 (2007).

    PubMed  Google Scholar 

  63. Rushworth, M. F. & Behrens, T. E. Choice, uncertainty and value in prefrontal and cingulate cortex. Nature Neurosci. 11, 389–397 (2008).

    CAS  PubMed  Google Scholar 

  64. Behrens, T. E., Woolrich, M. W., Walton, M. E. & Rushworth, M. F. Learning the value of information in an uncertain world. Nature Neurosci. 10, 1214–1221 (2007).

    CAS  PubMed  Google Scholar 

  65. Matsumoto, M., Matsumoto, K., Abe, H. & Tanaka, K. Medial prefrontal cell activity signaling prediction errors of action values. Nature Neurosci. 10, 647–656 (2007).

    CAS  PubMed  Google Scholar 

  66. Shidara, M. & Richmond, B. J. Anterior cingulate: single neuronal signals related to degree of reward expectancy. Science 296, 1709–1711 (2002).

    PubMed  Google Scholar 

  67. Kennerley, S. W., Walton, M. E., Behrens, T. E. J., Buckley, M. J. & Rushworth, M. F. S. Optimal decision making and the anterior cingulate cortex. Nature Neurosci. 9, 940–947 (2006).

    CAS  PubMed  Google Scholar 

  68. Matsumoto, M., Matsumoto, K. & Tanaka, K. Effects of novelty on activity of lateral and medial prefrontal neurons. Neurosci. Res. 57, 268–276 (2007).

    PubMed  Google Scholar 

  69. Critchley, H. D. et al. Human cingulate cortex and autonomic control: converging neuroimaging and clinical evidence. Brain 126, 2139–2152 (2003).

    PubMed  Google Scholar 

  70. Paus, T. Primate anterior cingulate cortex: where motor control, drive and cognition interface. Nature Rev. Neurosci. 2, 417–424 (2001).

    CAS  Google Scholar 

  71. Mansouri, F. A., Matsumoto, K. & Tanaka, K. Prefrontal cell activities related to monkeys' success and failure in adapting to rule changes in a Wisconsin Card Sorting Test (WCST) analog. J. Neurosci. 26, 2745–2756 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Coulthard, E. J., Nachev, P. & Husain, M. Control over conflict during movement preparation: role of posterior parietal cortex. Neuron 58, 144–157 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Derrfuss, J., Brass, M., Neumann, J. & von Cramon, D. Y. Involvement of the inferior frontal junction in cognitive control: meta-analyses of switching and Stroop studies. Hum. Brain Mapp. 25, 22–34 (2005).

    PubMed  PubMed Central  Google Scholar 

  74. Schweizer, T. A. et al. The cerebellum mediates conflict resolution. J. Cogn. Neurosci. 19, 1974–1982 (2007).

    PubMed  Google Scholar 

  75. Devinsky, O., Morrell, M. J. & Vogt, B. A. Contributions of anterior cingulate cortex to behavior. Brain 118, 279–306 (1995).

    PubMed  Google Scholar 

  76. Rushworth, M. F., Buckley, M. J., Behrens, T. E., Walton, M. E. & Bannerman, D. M. Functional organization of the medial frontal cortex. Curr. Opin. Neurobiol. 17, 220–227 (2007).

    CAS  PubMed  Google Scholar 

  77. Dum, R. P. & Strick, P. L. Motor areas in the frontal lobe of the primate. Physiol. Behav. 77, 677–682 (2002).

    CAS  PubMed  Google Scholar 

  78. Rushworth, M. F., Walton, M. E., Kennerley, S. W. & Bannerman, D. M. Action sets and decisions in the medial frontal cortex. Trends Cogn. Sci. 8, 410–417 (2004).

    CAS  PubMed  Google Scholar 

  79. Bush, G., Luu, P. & Posner, M. I. Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn. Sci. 4, 215–222 (2000).

    CAS  PubMed  Google Scholar 

  80. Matsumoto, K., Suzuki, W. & Tanaka, K. Neuronal correlates of goal-based motor selection in the prefrontal cortex. Science 301, 229–232 (2003).

    CAS  PubMed  Google Scholar 

  81. Rudebeck, P. H., Buckley, M. J., Walton, M. E. & Rushworth, M. F. S. A role for the macaque anterior cingulate gyrus in social valuation. Science 313, 1310–1312 (2006).

    CAS  PubMed  Google Scholar 

  82. Vogt, B. A. Pain and emotion interactions in subregions of the cingulate gyrus. Nature Rev. Neurosci. 6, 533–544 (2005).

    CAS  Google Scholar 

  83. Melcher, T., Falkai, P. & Gruber, O. Functional brain abnormalities in psychiatric disorders: neural mechanisms to detect and resolve cognitive conflict and interference. Brain Res. Rev. 59, 96–124 (2008).

    PubMed  Google Scholar 

  84. Braver, T. S., Barch, D. M. & Cohen, J. D. Cognition and control in schizophrenia: a computational model of dopamine and prefrontal function. Biol. Psychiatry 46, 312–328 (1999).

    CAS  PubMed  Google Scholar 

  85. Weisbrod, M., Kiefer, M., Marzinzik, F. & Spitzer, M. Executive control is disturbed in schizophrenia: evidence from event-related potentials in a Go/NoGo task. Biol. Psychiatry. 47, 51–60 (2000).

    CAS  PubMed  Google Scholar 

  86. Laurens, K. R., Ngan, E. T., Bates, A. T., Kiehl, K. A. & Liddle, P. F. Rostral anterior cingulate cortex dysfunction during error processing in schizophrenia. Brain 126, 610–622 (2003).

    PubMed  Google Scholar 

  87. Barch, D. M., Carter, C. S. & Cohen, J. D. Factors influencing stroop performance in schizophrenia. Neuropsychology 18, 477–484 (2004).

    PubMed  Google Scholar 

  88. Kerns, J. G. et al. Decreased conflict- and error-related activity in the anterior cingulate cortex in subjects with schizophrenia. Am. J. Psychiatry 162, 1833–1839 (2005).

    PubMed  Google Scholar 

  89. Benes, F. M., Vincent S. L. & Todtenkopf, M. The density of pyramidal and nonpyramidal neurons in anterior cingulate cortex of schizophrenic and bipolar subjects. Biol. Psychiatry 50, 395–406 (2001).

    CAS  PubMed  Google Scholar 

  90. Gruber, S. A., Rogowska, J. & Yurgelun-Todd, D. A. Decreased activation of the anterior cingulate in bipolar patients: an fMRI study. J. Affect. Disord. 82, 191–201 (2004).

    PubMed  Google Scholar 

  91. Wagner, E. et al. Cortical inefficiency in patients with unipolar depression: an event-related fMRI study with the Stroop task. Biol. Psychiatry 59, 958–965 (2006).

    PubMed  Google Scholar 

  92. Lopez-Larson, M. P., DelBello, M. P., Zimmerman, M. E., Schwiers M. L. & Strakowski, S. M. Regional prefrontal gray and white matter abnormalities in bipolar disorder. Biol. Psychiatry 52, 93–100 (2002).

    PubMed  Google Scholar 

  93. Penades, R. Impaired response inhibition in obsessive compulsive disorder. Eur. Psychiatry 22, 404–410 (2007).

    CAS  PubMed  Google Scholar 

  94. Gehring, W. J., Himle, J. & Nisenson, L. G. Action-monitoring dysfunction in obsessive-compulsive disorder. Psychol. Sci. 11, 1–6 (2000).

    CAS  PubMed  Google Scholar 

  95. Ursu, S., Stenger, V. A., Shear, M. K., Jones, M. R. & Carter, C. S. Overactive action monitoring in obsessive-compulsive disorder: evidence from functional magnetic resonance imaging. Psychol. Sci. 14, 347–353 (2003).

    PubMed  Google Scholar 

  96. Gu, B. M. et al. Neural correlates of cognitive inflexibility during task-switching in obsessive-compulsive disorder. Brain 131, 155–164 (2008).

    PubMed  Google Scholar 

  97. Greisberg, S. & McKay, D. Neuropsychology of obsessive-compulsive disorder: a review and treatment implications. Clin. Psychol. Rev. 23, 95–117 (2003).

    PubMed  Google Scholar 

Download references

Acknowledgements

Grant-in-aid for Scientific Research on Priority Areas from the Ministry of Education, Culture, Sports, Science, and Technology of Japan. Also supported by the UK Medical Research Council (M.J.B.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Farshad A. Mansouri or Mark J. Buckley.

Supplementary information

Related links

Related links

FURTHER INFORMATION

Keiji Tanaka's homepage

Mark J. Buckley's homepage

SUPPLEMENTARY INFORMATION

See online article

S1 (figure)

Glossary

Event-related potential

(ERP). An electrophysiological response of the brain to an internal or external stimulus, which can be measured through electrodes on the scalp.

Arrow–word Stroop variant

A test in which subjects are presented with a left- or right-pointing arrow above a word (for example, 'left' or 'right') and have to indicate by button press the direction denoted by the word or arrow. The arrow and word might instruct the same direction (congruent condition) or opposite directions (incongruent condition) or only one of them might denote a direction (neutral condition).

Saccade-countermanding task

A task in which subjects fixating their eyes on a spot at the centre of a display should change their gaze direction (saccade) towards a peripherally cued location when the fixation point goes off. In some trials the fixation spot reappears at an unpredictable time and the subjects should cancel the saccade.

Obsessive–compulsive disorder

A behavioural disorder that makes people repeatedly and unnecessarily express a behaviour.

Schizophrenia

A mental disorder that makes it difficult to have normal emotional responses, social interaction and organized thoughts and that is accompanied by unreal experiences, such as delusions or hallucinations.

Mood disorder

A mood disorder is a mental disorder characterized by periods of depression that sometimes alternate with periods of elevated mood.

Error-related negativity

A negative deflection in a response-locked ERP that reaches its peak 100 ms after the response initiation in error trials.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mansouri, F., Tanaka, K. & Buckley, M. Conflict-induced behavioural adjustment: a clue to the executive functions of the prefrontal cortex. Nat Rev Neurosci 10, 141–152 (2009). https://doi.org/10.1038/nrn2538

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2538

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing