Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The origin and evolution of synapses

A Corrigendum to this article was published on 01 November 2009

Key Points

  • The molecular composition of the synapse has recently been proved to be useful for studying the evolution of the brain.

  • Synapse proteomics data sets, such as those of the postsynaptic density (PSD) and associated protein complexes when combined with comparative genomics have provided unprecedented insights into the evolution of synapses.

  • The PSD that is found in organisms with nervous systems has evolved from an ancient protosynaptic core that exists in unicellular organisms and multicellular organisms without nervous systems.

  • Comparisons of vertebrate PSD and synaptogenesis genes with orthologues from sponges and cnidarians open an avenue for speculating as to what may have contributed to the origin of the first synapse.

  • Comparative proteomics has shown that vertebrate excitatory synapses have evolved to be significantly more complex than invertebrates.

Abstract

 See more Darwin-related content in our Nature Publishing Group collection.

Understanding the evolutionary origins of behaviour is a central aim in the study of biology and may lead to insights into human disorders. Synaptic transmission is observed in a wide range of invertebrate and vertebrate organisms and underlies their behaviour. Proteomic studies of the molecular components of the highly complex mammalian postsynaptic machinery point to an ancestral molecular machinery in unicellular organisms — the protosynapse — that existed before the evolution of metazoans and neurons, and hence challenges existing views on the origins of the brain. The phylogeny of the molecular components of the synapse provides a new model for studying synapse diversity and complexity, and their implications for brain evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phylogenetic tree depicting taxons of current relevance to synapse evolution.
Figure 2: Evolution of postsynaptic components.
Figure 3: Comparative proteomics of mouse and Drosophila melanogaster MASC.
Figure 4: NMDA receptor carboxy-terminal evolution.
Figure 5: MASC signalling diversity within the brain.

Similar content being viewed by others

References

  1. Kandel, E. R. The molecular biology of memory storage: a dialogue between genes and synapses. Science 294, 1030–1038 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Hebb, D. The Organization of Behavior; a Neuropsychological Theory. (New York, Wiley,, 1949).

    Google Scholar 

  3. Morgan, C. L. Animal Life and Intelligence (E. Arnold, London, 1891).

    Book  Google Scholar 

  4. Collins, M. O. et al. Molecular characterization and comparison of the components and multiprotein complexes in the postsynaptic proteome. J. Neurochem. 97 (Suppl. 1), 16–23 (2006). A comprehensive collation of postsynaptic protein complexes

    Article  CAS  PubMed  Google Scholar 

  5. Bayes, A. & Grant, S. G. Neuroproteomics: understanding the molecular organization and complexity of the brain. Nature Rev. Neurosci. 10, 635–646 (2009). A detailed review on the state of the art of proteomics in neuroscience

    Article  CAS  Google Scholar 

  6. Fernandez, E. et al. Targeted tandem affinity purification of PSD-95 recovers core postsynaptic complexes and schizophrenia susceptibility proteins. Mol. Syst. Biol. 5, 269 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Pocklington, A. J., Cumiskey, M., Armstrong, J. D. & Grant, S. G. The proteomes of neurotransmitter receptor complexes form modular networks with distributed functionality underlying plasticity and behaviour. Mol. Syst. Biol. 2, 2006 0023 (2006).

  8. Grant, S. G., Marshall, M. C., Page, K. L., Cumiskey, M. A. & Armstrong, J. D. Synapse proteomics of multiprotein complexes: en route from genes to nervous system diseases. Hum. Mol. Genet. 14 Spec. No. 2, R225–234 (2005).

    Article  PubMed  Google Scholar 

  9. Round, J. L. et al. Scaffold protein Dlgh1 coordinates alternative p38 kinase activation, directing T cell receptor signals toward NFAT but not NF-κB transcription factors. Nature Immunol. 8, 154–161 (2007).

    Article  CAS  Google Scholar 

  10. Tsunoda, S. & Zuker, C. S. The organization of INAD-signaling complexes by a multivalent PDZ domain protein in Drosophila photoreceptor cells ensures sensitivity and speed of signaling. Cell Calcium 26, 165–171 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Wolfe, K. H. & Li, W. H. Molecular evolution meets the genomics revolution. Nature Genet. 33, S255–S265 (2003).

    Article  CAS  Google Scholar 

  12. Darwin, C. On the Origin of Species by Means of Natural Selection (John Murray, Albemarle Street, London, 1859).

    Google Scholar 

  13. Sakarya, O. et al. A post-synaptic scaffold at the origin of the animal kingdom. PLoS ONE 2, e506 (2007). A detailed and careful study of 36 postsynaptic gene families in poriferans and cnidarians

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Garcia, M. L. & Strehler, E. E. Plasma membrane calcium ATPases as critical regulators of calcium homeostasis during neuronal cell function. Front. Biosci. 4, D869–D882 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Muller, D., Buchs, P. A., Stoppini, L. & Boddeke, H. Long-term potentiation, protein kinase C, and glutamate receptors. Mol. Neurobiol. 5, 277–288 (1991).

    Article  CAS  PubMed  Google Scholar 

  16. Emes, R. D. et al. Evolutionary expansion and anatomical specialization of synapse proteome complexity. Nature Neurosci. 11, 799–806 (2008). The first study to combine comparative genomics and proteomics to address the origin and evolution of the PSD and MASC complexes

    Article  CAS  PubMed  Google Scholar 

  17. Miyakawa, T. et al. Conditional calcineurin knockout mice exhibit multiple abnormal behaviors related to schizophrenia. Proc. Natl Acad. Sci. USA 100, 8987–8992 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cyert, M. S. Genetic analysis of calmodulin and its targets in Saccharomyces cerevisiae. Annu. Rev. Genet. 35, 647–672 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. King, N. Choanoflagellates. Curr. Biol. 15, R113–R114 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Ruiz-Trillo, I. et al. The origins of multicellularity: a multi-taxon genome initiative. Trends Genet. 23, 113–118 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. King, N. The unicellular ancestry of animal development. Dev. Cell 7, 313–325 (2004). An informative review on the importance of choanoflagellate research to our knowledge of the evolution of multicellularity.

    Article  CAS  PubMed  Google Scholar 

  22. Leys, S. P., Rohksar, D. S. & Degnan, B. M. Sponges. Curr. Biol. 15, R114–R115 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. King, N. & Carroll, S. B. A receptor tyrosine kinase from choanoflagellates: molecular insights into early animal evolution. Proc. Natl Acad. Sci. USA 98, 15032–15037 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. King, N., Hittinger, C. T. & Carroll, S. B. Evolution of key cell signaling and adhesion protein families predates animal origins. Science 301, 361–363 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Pincus, D., Letunic, I., Bork, P. & Lim, W. A. Evolution of the phospho-tyrosine signaling machinery in premetazoan lineages. Proc. Natl Acad. Sci. USA 105, 9680–9684 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Manning, G., Young, S. L., Miller, W. T. & Zhai, Y. The protist, Monosiga brevicollis, has a tyrosine kinase signaling network more elaborate and diverse than found in any known metazoan. Proc. Natl Acad. Sci. USA 105, 9674–9679 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Grant, S. G. et al. Impaired long-term potentiation, spatial learning, and hippocampal development in fyn mutant mice. Science 258, 1903–1910 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. Salter, M. W. & Kalia, L. V. Src kinases: a hub for NMDA receptor regulation. Nature Rev. Neurosci. 5, 317–328 (2004).

    Article  CAS  Google Scholar 

  29. Abedin, M. & King, N. The premetazoan ancestry of cadherins. Science 319, 946–948 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Arikkath, J. & Reichardt, L. F. Cadherins and catenins at synapses: roles in synaptogenesis and synaptic plasticity. Trends Neurosci. 31, 487–494 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nichols, S. A., Dirks, W., Pearse, J. S. & King, N. Early evolution of animal cell signaling and adhesion genes. Proc. Natl Acad. Sci. USA 103, 12451–12456 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jessell, T. M. & Sanes, J. R. Development. The decade of the developing brain. Curr. Opin. Neurobiol. 10, 599–611 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Leys, S. P. & Degnan, B. M. Cytological basis of photoresponsive behavior in a sponge larva. Biol. Bull. 201, 323–338 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Muller, W. E. Review: How was metazoan threshold crossed? The hypothetical Urmetazoa. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 129, 433–460 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Perovic, S., Krasko, A., Prokic, I., Muller, I. M. & Muller, W. E. Origin of neuronal-like receptors in Metazoa: cloning of a metabotropic glutamate/GABA-like receptor from the marine sponge Geodia cydonium. Cell Tissue Res. 296, 395–404 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Leys, S. P., Mackie, G. O. & Meech, R. W. Impulse conduction in a sponge. J. Exp. Biol. 202, 1139–1150 (1999).

    Article  PubMed  Google Scholar 

  37. Lin, C. H. et al. A role for the PI-3 kinase signaling pathway in fear conditioning and synaptic plasticity in the amygdala. Neuron 31, 841–851 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Sweatt, J. D. Protooncogenes subserve memory formation in the adult CNS. Neuron 31, 671–674 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Elias, G. M. & Nicoll, R. A. Synaptic trafficking of glutamate receptors by MAGUK scaffolding proteins. Trends Cell Biol. 17, 343–352 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Kessels, H. W. & Malinow, R. Synaptic AMPA receptor plasticity and behavior. Neuron 61, 340–350 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nakazawa, K., McHugh, T. J., Wilson, M. A. & Tonegawa, S. NMDA receptors, place cells and hippocampal spatial memory. Nature Rev. Neurosci. 5, 361–372 (2004).

    Article  CAS  Google Scholar 

  42. Craig, A. M. & Kang, Y. Neurexin-neuroligin signaling in synapse development. Curr. Opin. Neurobiol. 17, 43–52 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hedges, S. B., Dudley, J. & Kumar, S. TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics 22, 2971–2972 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. De Robertis, E. M. Evo-devo: variations on ancestral themes. Cell 132, 185–195 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sanchez-Soriano, N. et al. Are dendrites in Drosophila homologous to vertebrate dendrites? Dev. Biol. 288, 126–138 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Walker, R. J., Brooks, H. L. & Holden-Dye, L. Evolution and overview of classical transmitter molecules and their receptors. Parasitology 113, S3–S33 (1996).

    Article  PubMed  Google Scholar 

  47. Littleton, J. T. & Ganetzky, B. Ion channels and synaptic organization: analysis of the Drosophila genome. Neuron 26, 35–43 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Naisbitt, S. et al. Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. Neuron 23, 569–582 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Sheng, M. & Kim, E. The Shank family of scaffold proteins. J. Cell Sci. 113, 1851–1856 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Gerrow, K. et al. A preformed complex of postsynaptic proteins is involved in excitatory synapse development. Neuron 49, 547–562 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Ryan, T. J., Emes, R. D., Grant, S. G. & Komiyama, N. H. Evolution of NMDA receptor cytoplasmic interaction domains: implications for organisation of synaptic signalling complexes. BMC Neurosci. 9, 6 (2008). This paper identifies the deuterostome specific elongated NR2 intracellular domain and discusses it implications for NMDA receptor evolution

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. te Velthuis, A. J., Admiraal, J. F. & Bagowski, C. P. Molecular evolution of the MAGUK family in metazoan genomes. BMC Evol. Biol. 7, 129 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Sprengel, R. et al. Importance of the intracellular domain of NR2 subunits for NMDA receptor function in vivo. Cell 92, 279–289 (1998). This study establishes the indispensable role of the vertebrate NR2 intracellular carboxy-terminal domain in NMDA receptor function

    Google Scholar 

  54. McLysaght, A., Hokamp, K. & Wolfe, K. H. Extensive genomic duplication during early chordate evolution. Nature Genet. 31, 200–204 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Okamura, Y. et al. Comprehensive analysis of the ascidian genome reveals novel insights into the molecular evolution of ion channel genes. Physiol. Genomics 22, 269–282 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Cull-Candy, S., Brickley, S. & Farrant, M. NMDA receptor subunits: diversity, development and disease. Curr. Opin. Neurobiol. 11, 327–335 (2001).

    Google Scholar 

  57. Kim, M. J., Dunah, A. W., Wang, Y. T. & Sheng, M. Differential roles of NR2A- and NR2B-containing NMDA receptors in Ras-ERK signaling and AMPA receptor trafficking. Neuron 46, 745–760 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Prybylowski, K. et al. The synaptic localization of NR2B-containing NMDA receptors is controlled by interactions with PDZ proteins and AP-2. Neuron 47, 845–857 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Townsend, M., Liu, Y. & Constantine-Paton, M. Retina-driven dephosphorylation of the NR2A subunit correlates with faster NMDA receptor kinetics at developing retinocollicular synapses. J. Neurosci. 24, 11098–11107 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Li, B. S. et al. Regulation of NMDA receptors by cyclin-dependent kinase-5. Proc. Natl Acad. Sci. USA 98, 12742–12747 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sans, N. et al. A developmental change in NMDA receptor-associated proteins at hippocampal synapses. J. Neurosci. 20, 1260–1271 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Funke, L., Dakoji, S. & Bredt, D. S. Membrane-associated guanylate kinases regulate adhesion and plasticity at cell junctions. Annu. Rev. Biochem. 74, 219–245 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Wang, D. et al. CD3/CD28 costimulation-induced NF-κB activation is mediated by recruitment of protein kinase C-τ, Bcl10, and IκB kinase β to the immunological synapse through CARMA1. Mol. Cell Biol. 24, 164–171 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Migaud, M. et al. Enhanced long-term potentiation and impaired learning in mice with mutant postsynaptic density-95 protein. Nature 396, 433–439 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Cuthbert, P. C. et al. Synapse-associated protein 102/dlgh3 couples the NMDA receptor to specific plasticity pathways and learning strategies. J. Neurosci. 27, 2673–2682 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Carlisle, H. J., Fink, A. E., Grant, S. G. & O'Dell, T. J. Opposing effects of PSD-93 and PSD-95 on long-term potentiation and spike timing-dependent plasticity. J. Physiol. 586, 5885–5900 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Xia, S. et al. NMDA receptors mediate olfactory learning and memory in Drosophila. Curr. Biol. 15, 603–615 (2005). The first study to clearly demonstrate that NMDA receptors mediate learning in an invertebrate organism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Martyniuk, C. J., Aris-Brosou, S., Drouin, G., Cahn, J. & Trudeau, V. L. Early evolution of ionotropic GABA receptors and selective regimes acting on the mammalian-specific τ and ɛ subunits. PLoS ONE 2, e894 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Tsang, S. Y., Ng, S. K., Xu, Z. & Xue, H. The evolution of GABAA receptor-like genes. Mol. Biol. Evol. 24, 599–610 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Simon, J., Wakimoto, H., Fujita, N., Lalande, M. & Barnard, E. A. Analysis of the set of GABA(A) receptor genes in the human genome. J. Biol. Chem. 279, 41422–41435 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Mitri, C., Parmentier, M. L., Pin, J. P., Bockaert, J. & Grau, Y. Divergent evolution in metabotropic glutamate receptors. A new receptor activated by an endogenous ligand different from glutamate in insects. J. Biol. Chem. 279, 9313–9320 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Dillon, J., Hopper, N. A., Holden-Dye, L. & O'Connor, V. Molecular characterization of the metabotropic glutamate receptor family in Caenorhabditis elegans. Biochem. Soc. Trans. 34, 942–948 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Yanay, C., Morpurgo, N. & Linial, M. Evolution of insect proteomes: insights into synapse organization and synaptic vesicle life cycle. Genome Biol. 9, R27 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Fraser, H. B., Hirsh, A. E., Steinmetz, L. M., Scharfe, C. & Feldman, M. W. Evolutionary rate in the protein interaction network. Science 296, 750–752 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Hadley, D. et al. Patterns of sequence conservation in presynaptic neural genes. Genome Biol. 7, R105 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Winter, E. E., Goodstadt, L. & Ponting, C. P. Elevated rates of protein secretion, evolution, and disease among tissue-specific genes. Genome Res. 14, 54–61 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sugino, K. et al. Molecular taxonomy of major neuronal classes in the adult mouse forebrain. Nature Neurosci. 9, 99–107 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Ohno, S. Evolution by gene duplication (Allen & Unwin, 1970).

    Book  Google Scholar 

  79. Thompson, C. L. et al. Genomic anatomy of the hippocampus. Neuron 60, 1010–1021 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Heiman, M. et al. A translational profiling approach for the molecular characterization of CNS cell types. Cell 135, 738–748 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Doyle, J. P. et al. Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell 135, 749–762 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Varki, A., Geschwind, D. H. & Eichler, E. E. Explaining human uniqueness: genome interactions with environment, behaviour and culture. Nature Rev. Genet. 9, 749–763 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Mekel-Bobrov, N. & Lahn, B. T. What makes us human: revisiting an age-old question in the genomic era. J. Biomed. Discov. Collab. 1, 18 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Sikela, J. M. The jewels of our genome: the search for the genomic changes underlying the evolutionarily unique capacities of the human brain. PLoS Genet. 2, e80 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Gilbert, S. L., Dobyns, W. B. & Lahn, B. T. Genetic links between brain development and brain evolution. Nature Rev. Genet. 6, 581–590 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Dorus, S. et al. Accelerated evolution of nervous system genes in the origin of Homo sapiens. Cell 119, 1027–1040 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Gardner, P. P. & Vinther, J. Mutation of miRNA target sequences during human evolution. Trends Genet. 24, 262–265 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Andres, A. M. et al. Positive selection in MAOA gene is human exclusive: determination of the putative amino acid change selected in the human lineage. Hum. Genet. 115, 377–386 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Caspi, A. et al. Role of genotype in the cycle of violence in maltreated children. Science 297, 851–854 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Buckholtz, J. W. & Meyer-Lindenberg, A. MAOA and the neurogenetic architecture of human aggression. Trends Neurosci. 31, 120–129 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Ding, Y. C. et al. Evidence of positive selection acting at the human dopamine receptor D4 gene locus. Proc. Natl Acad. Sci. USA 99, 309–314 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Swanson, J. et al. Attention deficit/hyperactivity disorder children with a 7-repeat allele of the dopamine receptor D4 gene have extreme behavior but normal performance on critical neuropsychological tests of attention. Proc. Natl Acad. Sci. USA 97, 4754–4759 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wang, E. et al. The genetic architecture of selection at the human dopamine receptor D4 (DRD4) gene locus. Am. J. Hum. Genet. 74, 931–944 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lo, W. S. et al. Association of SNPs and haplotypes in GABAA receptor β2 gene with schizophrenia. Mol. Psychiatry 9, 603–608 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Lo, W. S. et al. Positive selection within the Schizophrenia-associated GABA(A) receptor β2 gene. PLoS ONE 2, e462 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Zhao, C. et al. Two isoforms of GABA(A) receptor β2 subunit with different electrophysiological properties: Differential expression and genotypical correlations in schizophrenia. Mol. Psychiatry 11, 1092–1105 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Crow, T. J. The 'big bang' theory of the origin of psychosis and the faculty of language. Schizophr Res. 102, 31–52 (2008).

    Article  PubMed  Google Scholar 

  98. Pearlson, G. D. & Folley, B. S. Schizophrenia, psychiatric genetics, and Darwinian psychiatry: an evolutionary framework. Schizophr Bull. 34, 722–733 (2008).

    Article  PubMed  Google Scholar 

  99. Nieoullon, A. & Coquerel, A. Dopamine: a key regulator to adapt action, emotion, motivation and cognition. Curr. Opin. Neurol. 16 (Suppl 2), 3–9 (2003).

    Article  Google Scholar 

  100. Caceres, M. et al. Elevated gene expression levels distinguish human from non-human primate brains. Proc. Natl Acad. Sci. USA 100, 13030–13035 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Enard, W. et al. Intra- and interspecific variation in primate gene expression patterns. Science 296, 340–343 (2002).

    Article  CAS  PubMed  Google Scholar 

  102. Valor, L. M., Charlesworth, P., Humphreys, L., Anderson, C. N. & Grant, S. G. Network activity-independent coordinated gene expression program for synapse assembly. Proc. Natl Acad. Sci. USA 104, 4658–4663 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Mattson, M. P. & Bruce-Keller, A. J. Compartmentalization of signaling in neurons: evolution and deployment. J. Neurosci. Res. 58, 2–9 (1999).

    Article  CAS  PubMed  Google Scholar 

  104. Hedges, S. B. & Kumar, S. The Timetree of Life (Oxford University Press, Oxford, 2009).

    Google Scholar 

  105. Kohr, G. NMDA receptor function: subunit composition versus spatial distribution. Cell Tissue Res. 326, 439–446 (2006).

    Article  PubMed  CAS  Google Scholar 

  106. Dechant, R. & Peter M. Nutrient signals driving cell growth. Curr. Opin. Cell Biol. 20, 678–687 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Park, J. I., Grant, C. M. & Dawes, I. W. The high-affinity cAMP phosphodiesterase of Saccharomyces cerevisiae is the major determinant of cAMP levels in stationary phase: involvement of different branches of the Ras-cyclic AMP pathway in stress responses. Biochem. Biophys. Res. Commun. 327, 311–319 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Kraus, P. R. & Heitman J. Coping with stress: calmodulin and calcineurin in model and pathogenic fungi. Biochem. Biophys. Res. Commun. 311, 1151–1157 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Zeitlinger, J. et al. Program-specific distribution of a transcription factor dependent on partner transcription factor and MAPK signaling. Cell 113, 395–404 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Slessareva, J. E. & Dohlman H. G. G protein signaling in yeast: new components, new connections, new compartments. Science 314, 1412–1413 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Sato, T. K. Vam7p, a SNAP-25-like molecule, and Vam3p, a syntaxin homolog, function together in yeast vacuolar protein trafficking. Mol. Cell Biol. 18, 5308–5319 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Denis, V. & Cyert M. S. Internal Ca2+ release in yeast is triggered by hypertonic shock and mediated by a TRP channel homologue. J. Cell Biol. 156, 29–34 (2002).

    CAS  Google Scholar 

  113. Li, W. et al. Signaling properties of a non-metazoan Src kinase and the evolutionary history of Src negative regulation. J. Biol. Chem. 283, 15491–15501 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Cai, X. Unicellular Ca2+ signaling 'toolkit' at the origin of metazoa. Mol. Biol. Evol. 25, 1357–1361 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Baines, A. J. Evolution of spectrin function in cytoskeletal and membrane networks. Biochem. Soc. Trans. 37, 796–803 (2009).

    Article  CAS  PubMed  Google Scholar 

  116. Kosik, K. S. Exploring the early origins of the synapse by comparative genomics. Biol. Lett (2008).

  117. Adell, T. et al. Evolution of metazoan cell junction proteins: the scaffold protein MAGI and the transmembrane receptor tetraspanin in the demosponge Suberites domuncula. J. Mol. Evol. 59, 41–50 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Nakazawa, K. et al. NMDA receptors, place cells and hippocampal spatial memory. Nature Rev. Neurosci. 5, 361–372 (2004).

    Article  CAS  Google Scholar 

  119. Kessels, H. W. & Malinow, R. Synaptic AMPA receptor plasticity and behavior. Neuron 61, 340–350 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Jane, D. E. Kainate receptors: pharmacology, function and therapeutic potential. Neuropharmacology 56, 90–113 (2009).

    Article  CAS  PubMed  Google Scholar 

  121. Lee, J. et al. Pre- and post-synaptic mechanisms of synaptic strength homeostasis revealed by slowpoke and shaker K+ channel mutations in Drosophila. Neuroscience 154, 1283–1296 (2008).

    Article  CAS  PubMed  Google Scholar 

  122. Calin-Jageman, I. et al. Erbin enhances voltage-dependent facilitation of Cav1.3 Ca2+ channels through relief of an autoinhibitory domain in the Cav1.3 α1 subunit. J. Neurosci. 27, 1374–1385 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Atasoy, D. et al. Deletion of CASK in mice is lethal and impairs synaptic function. Proc. Natl Acad. Sci. USA 104, 2525–2530 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Genes to Cognition Programme for useful discussions. T.J.R. was supported by a Wellcome Trust Ph.D. Studentship at time of writing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seth G. N. Grant.

Supplementary information

Supplementary information S1 (table)

Protein classes in mouse PSD and MASC (PDF 84 kb)

Supplementary information S2 (Box)

The phylogenetic history of Porifera (sponges) (PDF 111 kb)

Supplementary information S3 (Box)

GABA and metabotropic receptors in Dictyostelium discoideum (PDF 130 kb)

Related links

Related links

FURTHER INFORMATION

Seth G. N. Grant's homepage

Timetree

Glossary

Postsynaptic proteome

The complete set of proteins currently identified at the postsynaptic side of the synapse.

MAGUK

Membrane-associated guanylate kinase (MAGUK) proteins act as scaffolds for the clustering of receptors, ion channels and associated signalling proteins at postsynaptic sites.

Ursynapse

The last common ancestor of all synapses. This was the platform from which diversity of synaptic proteins between different organisms and different synapse types evolved.

Orthologues

Homologous genes that separated due to a speciation event.

Protosynapse

Those synaptic components that were present before the emergence of synapses and most likely contributed to their evolution.

Bilaterians

Animals belonging to the phylum Bilateria. These are a clade of animals with bilateral symmetry that possess complex nervous systems. They are divided into protostomes and deuterostomes.

Outgroup

A group of organisms that serves as a reference group for determination of the evolutionary relationship between monophyletic groups of organisms.

Choanoflagellates

Organisms belonging to the phylum Choanoflagellata. These are unicellular eukaryotes that can exist in both free-living and colonial forms, and are multicellular metazoans considered to be the closest unicellular relative of multicellular metazoans.

Porifera

Phylum of multicellular animals (poriferans or sponges) that lack a nervous system.

Demosponge

Organism belonging to the primary class of Porifera. Demosponges account for 90% all sponge species.

Cnidarian

Animal belonging to the phylum Cnidaria. Cnidarians are animals with radial symmetry including jellyfish, coral, hyrda and anemones. Cnidarian nervous systems consist of diffuse neuronal net-like structures.

Clade

An evolutionary group consisting of a given single common ancestor and all of its descendants.

Protostomes

Animals belonging to the phylum Protostomia, an animal clade that includes the superphyla Ecdysozoa (arthropods and nematodes) and Lophotrochozoa.

Deuterostomes

Animals belonging to the superphylum Deuterostomia that includes the subphylum Vertebrata.

Homologues

Set of genes or proteins that are related by descent, that is, they share a common ancestor.

Genome duplication

Duplication of an entire genome that results in an abundance of duplicated genes, most of which are lost. Two rounds of genome duplication are believed to have occurred at the base of the chordate lineage.

Gene duplication

Duplication of a given gene owing to replication errors and resulting in two redundant copies of the original gene.

Paralogues

Homologous genes that separated because of a gene duplication event.

Immunological synapse

A region that can form between two cells of the immune system in close contact. The immunolgical synapse originally reffered to the interaction between a T cell and an antigen-presenting cell.

Positive selection

Positive selection is said to occur when a given genetic variant rises to prevalence in a population by increasing the reproductive fitness of the organism in a given environment. Positive selection at the level of amino acid sequence is identified by the dN/dS ratio.

Non-synonymous nucleotide substitution

A nucleotide substitution in the coding sequence of a gene that alters the amino acid sequence of the protein.

Synonymous nucleotide substitution

A nucleotide substitution in the coding sequence of a gene that does not alter the amino acid sequence of the protein.

dN/dS ratio

The ratio of non-synonymous nucleotide substitutions to synonymous nucleotide substitution for a given protein-coding gene. A dN/dS ratio of <1 implies purifying selection or conservative evolution, 0 implies relaxation of constraint or neutral evolution, >1 implies positive selection or adaptive evolution. This measure is based on Kimura's theory of molecular evolution, which argues that the vast majority of nucleotide sequence changes are functionally neutral.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryan, T., Grant, S. The origin and evolution of synapses. Nat Rev Neurosci 10, 701–712 (2009). https://doi.org/10.1038/nrn2717

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2717

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing