Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Sleep viewed as a state of adaptive inactivity

This article has been updated

Abstract

 See more Darwin-related content in our Nature Publishing Group collection.

Sleep is often viewed as a vulnerable state that is incompatible with behaviours that nourish and propagate species. This has led to the hypothesis that sleep has survived because it fulfills some universal, but as yet unknown, vital function. I propose that sleep is best understood as a variant of dormant states seen throughout the plant and animal kingdoms and that it is itself highly adaptive because it optimizes the timing and duration of behaviour. Current evidence indicates that ecological variables are the main determinants of sleep duration and intensity across species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A continuum of states, from adaptive inactivity to high activity, in homeotherms.
Figure 2: Diversity of sleep in tetrapods.

Similar content being viewed by others

Change history

  • 06 August 2009

    In the version of this article initially published online, figure 2 read "Similar phenomena seen in all other land mammals examined" in the "Comments" row of the columns headed "Cat (Felis catus)" and "Virginia opossum (Didelphis virginiana)". The error has been corrected in the HTML and PDF versions

References

  1. Berger, R. J. & Phillips, N. H. Comparative physiology of sleep, thermoregulation and metabolism from the perspective of energy conservation. Prog. Clin. Biol. Res. 345, 41–50 (1990).

    CAS  PubMed  Google Scholar 

  2. Meddis, R. On the function of sleep. Anim. Behav. 23, 676–691 (1975).

    CAS  PubMed  Google Scholar 

  3. Savage, V. M. & West, G. B. A quantitative, theoretical framework for understanding mammalian sleep. Proc. Natl Acad. Sci. USA 104, 1051–1056 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Siegel, J. M. Clues to the functions of mammalian sleep. Nature 437, 1264–1271 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Siegel, J. M. Do all animals sleep? Trends Neurosci. 31, 208–213 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Swoap, S. J. The pharmacology and molecular mechanisms underlying temperature regulation and torpor. Biochem. Pharmacol. 76, 817–824 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Hissa, R. et al. Seasonal patterns in the physiology of the European brown bear (Ursus arctos arctos) in Finland. Comp. Biochem. Physiol. A Physiol. 109, 781–791 (1994).

    CAS  PubMed  Google Scholar 

  8. Kennedy, C. et al. Local cerebral glucose utilization in non-rapid eye movement sleep. Nature 297, 325–327 (1982).

    CAS  PubMed  Google Scholar 

  9. Maquet, P. et al. Cerebral glucose utilization during sleep-wake cycle in man determined by positron emission tomography and [18F]2-fluoro-2-deoxy-D-glucose method. Brain Res. 513, 136–143 (1990).

    CAS  PubMed  Google Scholar 

  10. Nofzinger, E. A. et al. Human regional cerebral glucose metabolism during non-rapid eye movement sleep in relation to waking. Brain 125, 1105–1115 (2002).

    PubMed  Google Scholar 

  11. Siegel, J. M. & Tomaszewski, K. S. Behavioral organization of reticular formation: studies in the unrestrained cat. I. Cells related to axial, limb, eye, and other movements. J. Neurophysiol. 50, 696–716 (1983).

    CAS  PubMed  Google Scholar 

  12. Raichle, M. E. & Mintun, M. A. Brain work and brain imaging. Annu. Rev. Neurosci. 29, 449–476 (2006).

    CAS  PubMed  Google Scholar 

  13. Schulz, L. O., Nyomba, B. L., Alger, S., Anderson, T. E. & Ravussin, E. Effect of endurance training on sedentary energy expenditure measured in a respiratory chamber. Am. J. Physiol. 260, E257–E261 (1991).

    CAS  PubMed  Google Scholar 

  14. Sterman, M. B. in Sleep and the Maturing Nervous System (ed. Clemente, C. D.) 175–197 (Academic, New York, 1972).

    Google Scholar 

  15. Hoppenbrouwers, T. & Sterman, M. B. Development of sleep state patterns in the kitten. Exp. Neurol. 49, 822–838 (1975).

    CAS  PubMed  Google Scholar 

  16. Stevenson, M. H. & McGinty, D. J. Polygraphic studies of kitten development: respiratory rate and variability during sleep-waking states. Dev. Psychobiol. 11, 393–403 (1978).

    CAS  PubMed  Google Scholar 

  17. Tamasy, V., Koranyi, L. & Lissak, K. Early postnatal development of wakefulness-sleep cycle and neuronal responsiveness: a multiunit activity study on freely moving newborn rat. Electroencephalogr. Clin. Neurophysiol. 49, 102–111 (1980).

    CAS  PubMed  Google Scholar 

  18. Hakamada, S., Watanabe, K., Hara, K. & Miyazaki, S. Development of the motor behavior during sleep in newborn infants. Brain Dev. 3, 345–350 (1981).

    CAS  PubMed  Google Scholar 

  19. Siegel, J. M. Functional implications of sleep development. PLoS Biol. 3, e178 (2005).

    PubMed Central  PubMed  Google Scholar 

  20. Carskadon, M. A. & Dement, W. C. in Principles and Practice of Sleep Medicine (eds Kryger, M. H., Roth, T. & Dement, W. C.) 16–25 (Saunders, Philadelphia, 1994).

    Google Scholar 

  21. Zepelin, H. in Principles and Practice of Sleep Medicine (eds Kryger, M. H., Roth, T. & Dement, W. C.) 82–92 (Saunders, Philadelphia, 2000).

    Google Scholar 

  22. Zepelin, H., Siegel, J. M. & Tobler, I. in Principles and Practice of Sleep Medicine (eds Kryger, M. H., Roth, T. & Dement, W. C.) 91–100 (Elsevier Saunders, Philadelphia, 2005).

    Google Scholar 

  23. Capellini, I., Nunn, C. L., McNamara, P., Preston, B. T. & Barton, R. A. Energetic constraints, not predation, influence the evolution of sleep patterning in mammals. Funct. Ecol. 22, 847–853 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).

    CAS  PubMed  Google Scholar 

  25. Lesku, J. A., Roth, T. C., Amlaner, C. J. & Lima, S. L. A phylogenetic analysis of sleep architecture in mammals: the integration of anatomy, physiology, and ecology. Am. Nat. 168, 441–453 (2006).

    PubMed  Google Scholar 

  26. Capellini, I., Barton, R. A., McNamara, P., Preston, B. T. & Nunn, C. L. Phylogenetic analysis of the ecology and evolution of mammalian sleep. Evolution 62, 1764–1776 (2008).

    PubMed Central  PubMed  Google Scholar 

  27. Roth, T. C., Lesku, J. A., Amlaner, C. J. & Lima, S. L. A phylogenetic analysis of the correlates of sleep in birds. J. Sleep Res. 15, 395–402 (2006).

    PubMed  Google Scholar 

  28. Rechtschaffen, A. & Bergmann, B. M. Sleep deprivation in the rat: an update of the 1989 paper. Sleep 25, 18–24 (2002).

    PubMed  Google Scholar 

  29. Newman, S. M., Paletz, E. M., Rattenborg, N. C., Obermeyer, W. H. & Benca, R. M. Sleep deprivation in the pigeon using the disk-over-water method. Physiol. Behav. 93, 50–58 (2007).

    PubMed  Google Scholar 

  30. Born, J., Muth, S. & Fehm, H. L. The significance of sleep onset and slow wave sleep for nocturnal release of growth hormone (GH) and cortisol. Psychoneuroendocrinology 13, 233–243 (1988).

    CAS  PubMed  Google Scholar 

  31. Takahashi, Y., Ebihara, S., Nakamura, Y. & Takahashi, K. A model of human sleep-related growth hormone secretion in dogs: effects of 3, 6, and 12 hours of forced wakefulness on plasma growth hormone, cortisol, and sleep stages. Endocrinology 109, 262–272 (1981).

    CAS  PubMed  Google Scholar 

  32. Willoughby, J. O., Martin, J. B., Renaud, L. P. & Brazeau, P. Pulsatile growth hormone release in the rat: failure to demonstrate a correlation with sleep phases. Endocrinology 98, 991–996 (1976).

    CAS  PubMed  Google Scholar 

  33. Redman, J. R. Circadian entrainment and phase shifting in mammals with melatonin. J. Biol. Rhythms 12, 581–587 (1997).

    CAS  PubMed  Google Scholar 

  34. Hirshkowitz, M. & Schmidt, M. H. Sleep-related erections: clinical perspectives and neural mechanisms. Sleep Med. Rev. 9, 311–329 (2005).

    PubMed  Google Scholar 

  35. Affanni, J. M., Cervino, C. O. & Marcos, H. J. Absence of penile erections during paradoxical sleep. Peculiar penile events during wakefulness and slow wave sleep in the armadillo. J. Sleep Res. 10, 219–228 (2001).

    CAS  PubMed  Google Scholar 

  36. Franken, P., Chollet, D. & Tafti, M. The homeostatic regulation of sleep need is under genetic control. J. Neurosci. 21, 2610–2621 (2001).

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Warren, W. C. et al. Genome analysis of the platypus reveals unique signatures of evolution. Nature 453, 175–183 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Siegel, J. M., Manger, P., Nienhuis, R., Fahringer, H. M. & Pettigrew, J. The echidna Tachyglossus aculeatus combines REM and nonREM aspects in a single sleep state: implications for the evolution of sleep. J. Neurosci. 16, 3500–3506 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Nicol, S. C., Andersen, N. A., Phillips, N. H. & Berger, R. J. The echidna manifests typical characteristics of rapid eye movement sleep. Neurosci. Lett. 283, 49–52 (2000).

    CAS  PubMed  Google Scholar 

  40. Siegel, J. M. et al. Sleep in the platypus. Neuroscience 91, 391–400 (1999).

    CAS  PubMed  Google Scholar 

  41. Ayala-Guerrero, F. & Huitron-Resendiz, S. Sleep patterns in the lizard Ctenosaura pectinata. Physiol. Behav. 49, 1305–1307 (1991).

    CAS  PubMed  Google Scholar 

  42. DeVera, L., Gonzalez, J. & Rial, R. V. Reptilean waking EEG: slow waves, spindles and evoked potentials. Electroencephalogr. Clin. Neurophysiol. 90, 298–303 (1994).

    CAS  Google Scholar 

  43. Flanigan, W. F. Sleep and wakefulness in iguanid lizards, Ctenosaura pectinata and Iguana iguana. Brain Behav. Evol. 8, 401–436 (1973).

    PubMed  Google Scholar 

  44. Hobson, J. A. Electrographic correlates of behavior in the frog with special reference to sleep. Electroencephalogr. Clin. Neurophysiol. 22, 113–121 (1967).

    CAS  PubMed  Google Scholar 

  45. Hobson, J. A., Goin, O. B. & Goin, C. J. Electrographic correlates of behavior in tree frogs. Nature 220, 386–387 (1968).

    CAS  PubMed  Google Scholar 

  46. Huntley, A. C. Electrophysiological and behavioral correlates of sleep in the desert iguana, Dipsosaurus dorsalis hallowell. Comp. Biochem. Physiol. A Comp. Physiol. 86, 325–330 (1987).

    CAS  PubMed  Google Scholar 

  47. Tauber, E. S., Rojas-Ramirez, J. & Hernandez-Peon, R. Electrophysiological and behavioral correlates of wakefulness and sleep in the lizard (Ctenosaura pectinata). Electroencephalogr. Clin. Neurophysiol. 24, 424–443 (1968).

    CAS  PubMed  Google Scholar 

  48. Eiland, M. M., Lyamin, O. I. & Siegel, J. M. State-related discharge of neurons in the brainstem of freely moving box turtles, Terrapene carolina major. Arch. Ital. Biol. 139, 23–36 (2001).

    CAS  PubMed  Google Scholar 

  49. Pryaslova, J. P., Lyamin, O. I., Siegel, J. M. & Mukhametov, L. M. Behavioral sleep in the walrus. Behav. Brain Res. 19, 80–87 (2009).

    Google Scholar 

  50. Lyamin, O. I., Mukhametov, L. M. & Siegel, J. M. Relationship between sleep and eye state in cetaceans and pinnipeds. Arch. Ital. Biol. 142, 557–568 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Mukhametov, L. M. Sleep in marine mammals. Exp. Brain Res. 8, 227–238 (2007).

    Google Scholar 

  52. Shpak, O. V., Lyamin, O. I., Siegel, J. M. & Mukhametov, L. M. Rest and activity states in the Commerson's dolphin (Cephalorhynchus commersoni). Zh. Evol. Biokhim. Fiziol. 45, 97–104 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Siegel, J. M., Tomaszewski, K. S. & Wheeler, R. L. Behavioral organization of reticular formation: studies in the unrestrained cat: II. Cells related to facial movements. J. Neurophysiol. 50, 717–723 (1983).

    CAS  PubMed  Google Scholar 

  54. Siegel, J. M. in The Physiologic Nature of Sleep (eds Parmeggiani, P. L. & Velluti, R. A.) 281–302 (Imperial College Press, London, 2005).

    Google Scholar 

  55. Lapierre, J. L. et al. Cortical acetylcholine release is lateralized during asymmetrical slow-wave sleep in northern fur seals. J. Neurosci. 27, 11999–12006 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Gulevich, G., Dement, W. C. & Johnson, L. Psychiatric and EEG observations on a case of prolonged (264 hours) wakefulness. Arch. Gen. Psychiatry 15, 29–35 (1966).

    CAS  PubMed  Google Scholar 

  57. Trachsel, L., Tobler, I. & Borbely, A. A. Sleep regulation in rats: effects of sleep deprivation, light, and circadian phase. Am. J. Physiol. Regul. Integr. Comp. Physiol. 251, R1037–R1044 (1986).

    CAS  Google Scholar 

  58. Rechtschaffen, A., Bergmann, B. M., Gilliland, M. A. & Bauer, K. Effects of method, duration, and sleep stage on rebounds from sleep deprivation in the rat. Sleep 22, 11–31 (1999).

    CAS  PubMed  Google Scholar 

  59. Tobler, I. in Principles and Practice of Sleep Medicine (eds Kryger, M. H., Roth, T. & Dement, W. C.) 77–90 (Elsevier Saunders, Philadelphia, 2005).

    Google Scholar 

  60. Lyamin, O. I. & Mukhametov, L. M. in The Northern Fur Seal. Systematic, Morphology, Ecology, Behavior (eds Sokolov, V. E., Aristov, A. A. & Lisitzjna, T. U.) 280–302 (Nauka, Moscow, 1998).

    Google Scholar 

  61. Oleksenko, A. I., Mukhametov, L. M., Polykova, I. G., Supin, A. Y. & Kovalzon, V. M. Unihemispheric sleep deprivation in bottlenose dolphins. J. Sleep Res. 1, 40–44 (1992).

    CAS  PubMed  Google Scholar 

  62. Ridgway, S. et al. Dolphin continuous auditory vigilance for five days. J. Exp. Biol. 209, 3621–3628 (2006).

    PubMed  Google Scholar 

  63. Ridgway, S. et al. Dolphins maintain cognitive performance during 72 to 120 hours of continuous auditory vigilance. J. Exp. Biol. 212, 1519–1527 (2009).

    PubMed  Google Scholar 

  64. Lyamin, O., Pryaslova, J., Lance, V. & Siegel, J. Animal behaviour: continuous activity in cetaceans after birth. Nature 435, 1177 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Bonnet, M. H. Sleep deprivation (eds Kryger, M. H., Roth, T. & Dement, W. C.) 53–71 (Saunders, Philadelphia, 2000).

    Google Scholar 

  66. Rattenborg, N. C. et al. Migratory sleeplessness in the white-crowned sparrow (Zonotrichia leucophrys gambelii). PLoS Biol. 2, E212 (2004).

    PubMed Central  PubMed  Google Scholar 

  67. Yokogawa, T. et al. Characterization of sleep in zebrafish and insomnia in hypocretin receptor mutants. PLoS Biol. 5, 2379–2397 (2007).

    CAS  Google Scholar 

  68. Bodosi, B. et al. An ether stressor increases REM sleep in rats: possible role of prolactin. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279, R1590–R1598 (2000).

    CAS  PubMed  Google Scholar 

  69. Rampin, C., Cespuglio, R., Chastrette, N. & Jouvet, M. Immobilization stress induces a paradoxical sleep rebound in rat. Neurosci. Lett. 126, 113–118 (1991).

    CAS  PubMed  Google Scholar 

  70. Zhang, J. X., Valatx, J. L. & Jouvet, M. Hypophysectomy in monosodium glutamate-pretreated rats suppresses paradoxical sleep rebound. Neurosci. Lett. 86, 94–98 (1988).

    CAS  PubMed  Google Scholar 

  71. Horner, R. L., Sanford, L. D., Pack, A. I. & Morrison, A. R. Activation of a distinct arousal state immediately after spontaneous awakening from sleep. Brain Res. 778, 127–134 (1997).

    CAS  PubMed  Google Scholar 

  72. Snyder, F. Toward an evolutionary theory of dreaming. Am. J. Psychiatry 123, 121–136 (1966).

    CAS  PubMed  Google Scholar 

  73. Tobler, I. Behavioral sleep in the Asian elephant in captivity. Sleep 15, 1–12 (1992).

    CAS  PubMed  Google Scholar 

  74. van Oort, B. E., Tyler, N. J., Gerkema, M. P., Folkow, L. & Stokkan, K. A. Where clocks are redundant: weak circadian mechanisms in reindeer living under polar photic conditions. Naturwissenschaften 94, 183–194 (2007).

    PubMed  Google Scholar 

  75. Keisler, A., Ashe, J. & Willingham, D. T. Time of day accounts for overnight improvement in sequence learning. Learn. Mem. 14, 669–672 (2007).

    PubMed  Google Scholar 

  76. Rasch, B., Pommer, J., Diekelmann, S. & Born, J. Pharmacological REM sleep suppression paradoxically improves rather than impairs skill memory. Nature Neurosci. 12, 396–397 (2008).

    PubMed  Google Scholar 

  77. Rickard, T. C., Cai, D. J., Rieth, C. A., Jones, J. & Ard, M. C. Sleep does not enhance motor sequence learning. J. Exp. Psychol. Learn. Mem. Cogn. 34, 834–842 (2008).

    PubMed  Google Scholar 

  78. Siegel, J. M. The REM sleep-memory consolidation hypothesis. Science 294, 1058–1063 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Song, S., Howard, J. H. Jr & Howard, D. V. Sleep does not benefit probabilistic motor sequence learning. J. Neurosci. 27, 12475–12483 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Vertes, R. P. Memory consolidation in sleep; dream or reality. Neuron 44, 135–148 (2004).

    CAS  PubMed  Google Scholar 

  81. Sheth, B. R., Nguyen, N. & Janvelyan, D. Does sleep really influence face recognition memory? PLoS ONE 4, e5496 (2009).

    PubMed Central  PubMed  Google Scholar 

  82. Guzman-Marin, R. et al. Rapid eye movement sleep deprivation contributes to reduction of neurogenesis in the hippocampal dentate gyrus of the adult rat. Sleep 31, 167–175 (2008).

    PubMed Central  PubMed  Google Scholar 

  83. Vyazovskiy, V. V., Cirelli, C., Pfister-Genskow, M., Faraguna, U. & Tononi, G. Molecular and electrophysiological evidence for net synaptic potentiation in wake and depression in sleep. Nature Neurosci. 11, 200–208 (2008).

    CAS  PubMed  Google Scholar 

  84. Imeri, L. & Opp, M. R. How (and why) the immune system makes us sleep. Nature Rev. Neurosci. 10, 199–210 (2009).

    CAS  Google Scholar 

  85. Marshall, L. & Born, J. Brain-immune interactions in sleep. Int. Rev. Neurobiol. 52, 93–131 (2002).

    CAS  PubMed  Google Scholar 

  86. Opp, M. R. Sleeping to fuel the immune system: mammalian sleep and resistance to parasites. BMC Evol. Biol. 9, 8 (2009).

    PubMed Central  PubMed  Google Scholar 

  87. Preston, B., Capellini, I., McNamara, P., Barton, R. & Nunn, C. Parasite resistance and the adaptive significance of sleep. BMC Evol. Biol. 9, 7 (2009).

    PubMed Central  PubMed  Google Scholar 

  88. Eiland, M. M. et al. Increases in amino-cupric-silver staining of the supraoptic nucleus after sleep deprivation. Brain Res. 945, 1–8 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Ramanathan, L., Gulyani, S., Nienhuis, R. & Siegel, J. M. Sleep deprivation decreases superoxide dismutase activity in rat hippocampus and brainstem. Neuroreport 13, 1387–1390 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Krueger, J. M. et al. Sleep as a fundamental property of neuronal assemblies. Nature Rev. Neurosci. 9, 910–919 (2008).

    CAS  Google Scholar 

  91. Shen-Miller, J. et al. Long-living lotus: germination and soil γ-irradiation of centuries-old fruits, and cultivation, growth, and phenotypic abnormalities of offspring. Am. J. Bot. 89, 236–247 (2002).

    CAS  PubMed  Google Scholar 

  92. Porsild, A. E., Harington, C. R. & Mulligan, G. A. Lupinus arcticus Wats. Grown from seeds of pleistocene age. Science 158, 113–114 (1967).

    CAS  PubMed  Google Scholar 

  93. Ricci, C., Caprioli, M. & Fontaneto, D. Stress and fitness in parthenogens: is dormancy a key feature for bdelloid rotifers? BMC Evol. Biol. 7 (Suppl. 2), S9 (2007).

    PubMed Central  PubMed  Google Scholar 

  94. Di Cristina, M. et al. Temporal and spatial distribution of Toxoplasma gondii differentiation into bradyzoites and tissue cyst formation in vivo. Infect. Immun. 76, 3491–3501 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Pozio, E. Foodborne and waterborne parasites. Acta Microbiol. Pol. 52 (Suppl.), 83–96 (2003).

    PubMed  Google Scholar 

  96. Allen, M. J. What makes a fly enter diapause? Fly (Austin) 1, 307–310 (2007).

    Google Scholar 

  97. Fishman, A. P., Galante, R. J., Winokur, A. & Pack, A. I. Estivation in the African lungfish. Proc. Am. Philos. Soc. 136, 61–72 (1992).

    Google Scholar 

  98. Roe, J. H., Georges, A. & Green, B. Energy and water flux during terrestrial estivation and overland movement in a freshwater turtle. Physiol. Biochem. Zool. 81, 570–583 (2008).

    PubMed  Google Scholar 

  99. Gais, S., Molle, M., Helms, K. & Born, J. Learning-dependent increases in sleep spindle density. J. Neurosci. 22, 6830–6834 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Wagner, U., Gais, S. & Born, J. Emotional memory formation is enhanced across sleep intervals with high amounts of rapid eye movement sleep. Learn. Mem. 8, 112–119 (2001).

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Mednick, S., Nakayama, K. & Stickgold, R. Sleep-dependent learning: a nap is as good as a night. Nature Neurosci. 6, 697–698 (2003).

    CAS  PubMed  Google Scholar 

  102. Crick, F. & Mitchison, G. The function of dream sleep. Nature 304, 111–114 (1983).

    CAS  PubMed  Google Scholar 

  103. Tononi, G. & Cirelli, C. Sleep and synaptic homeostasis: a hypothesis. Brain Res. Bull. 62, 143–150 (2003).

    PubMed  Google Scholar 

  104. Roffwarg, H. P., Muzio, J. N. & Dement, W. C. Ontogenetic development of the human sleep-dream cycle. Science 152, 604–619 (1966).

    CAS  PubMed  Google Scholar 

  105. Aton, S. J. et al. Mechanisms of sleep-dependent consolidation of cortical plasticity. Neuron 61, 454–466 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Ephron, H. S. & Carrington, P. Rapid eye movement sleep and cortical homeostasis. Psychol. Rev. 73, 500–526 (1966).

    CAS  PubMed  Google Scholar 

  107. Freud, S. The interpretation of dreams (Deuticke, Leipzig & Vienna, 1899).

    Google Scholar 

  108. Ramanathan, L., Gozal, D. & Siegel, J. M. Antioxidant responses to chronic hypoxia in the rat cerebellum and pons. J. Neurochem. 93, 47–52 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Ramm, P. & Frost, B. J. Cerebral and local cerebral metabolism in the cat during slow wave and REM sleep. Brain Res. 365, 112–124 (1986).

    CAS  PubMed  Google Scholar 

  110. Siegel, J. M. & Rogawski, M. A. A function for REM sleep: regulation of noradrenergic receptor sensitivity. Brain Res. Rev. 13, 213–233 (1988).

    CAS  Google Scholar 

  111. McGinty, D. & Szymusiak, R. Keeping cool: a hypothesis about the mechanisms and functions of slow-wave sleep. Trends Neurosci. 13, 480–487 (1990).

    CAS  PubMed  Google Scholar 

  112. Cirelli, C. et al. Reduced sleep in Drosophila Shaker mutants. Nature 434, 1087–1092 (2005).

    CAS  PubMed  Google Scholar 

  113. Koh, K. et al. Identification of SLEEPLESS, a sleep-promoting factor. Science 321, 372–376 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Zepelin, H. & Rechtschaffen, A. Mammalian sleep, longevity and energy metabolism. Brain Behav. Evol. 10, 425–470 (1974).

    CAS  PubMed  Google Scholar 

  115. Kripke, D. F. Sleep and mortality. Psychosom. Med. 65, 74 (2003).

    PubMed  Google Scholar 

  116. Patel, S. R. et al. A prospective study of sleep duration and mortality risk in women. Sleep 27, 440–444 (2004).

    PubMed  Google Scholar 

  117. Tamakoshi, A. & Ohno, Y. Self-reported sleep duration as a predictor of all-cause mortality: results from the JACC study, Japan. Sleep 27, 51–54 (2004).

    PubMed  Google Scholar 

  118. Everson, C. A., Thalacker, C. D. & Hogg, N. Phagocyte migration and cellular stress induced in liver, lung, and intestine during sleep loss and sleep recovery. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295, R2067–R2074 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Van Cauter, E. & Knutson, K. L. Sleep and the epidemic of obesity in children and adults. Eur. J. Endocrinol. 159, S59–S66 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Allison, T. & Cicchetti, D. V. Sleep in mammals: ecological and constitutional correlates. Science 194, 732–734 (1976).

    CAS  PubMed  Google Scholar 

  121. Walker, J. M. & Berger, R. J. The ontogenesis of sleep states, thermogenesis and thermoregulation in the Virginia opossum. Dev. Psychobiol. 13, 443–454 (1980).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author's work is supported by the Medical Research Service of the Veterans Affairs Greater Los Angeles Healthcare System, grants NS14610, HL41370, MH64109 and NSF0234687. I thank G. Barber and W. Domhoff for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerome M. Siegel.

Related links

Related links

FURTHER INFORMATION

Jerome M. Siegel's homepage

Food In The Fort blog

Sleep in the Monotremes Platypus and Echidna video

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siegel, J. Sleep viewed as a state of adaptive inactivity. Nat Rev Neurosci 10, 747–753 (2009). https://doi.org/10.1038/nrn2697

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2697

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing