Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Perceiving is believing: a Bayesian approach to explaining the positive symptoms of schizophrenia

Key Points

  • Hallucinations (false perceptions) and delusions (bizarre beliefs) are characteristic symptoms of schizophrenia and other psychotic illnesses.

  • In order to understand how disturbances in brain function may give rise to these complex symptoms, we require cognitive neuroscientific models of the normal processes that are involved in perception and belief.

  • Existing models treat perception and belief separately, leading to a need for a two-factor theory proposing that both are deranged in schizophrenia.

  • We suggest that recent advances invoking Bayesian theory in cognitive neuroscience offer a way of considering perception and belief as arising from the same process: error-dependent updating in a hierarchical Bayesian structure.

  • Within the framework of this Bayesian model, one can consider both hallucinations and delusions as emerging owing to disruptions in the same updating mechanism, without the need to posit coincident deficits in two separate systems.

  • According to this model, disruptions in prediction-error firing from lower-level systems in the hierarchy require higher-level systems to reject and change inferences in order to accommodate this error signal.

  • At lower levels this may lead to false perceptions but, if it continues, new and more bizarre beliefs will emerge because of a continued sense that the world is not well predicted or modelled by previous beliefs.

Abstract

Advances in cognitive neuroscience offer us new ways to understand the symptoms of mental illness by uniting basic neurochemical and neurophysiological observations with the conscious experiences that characterize these symptoms. Cognitive theories about the positive symptoms of schizophrenia — hallucinations and delusions — have tended to treat perception and belief formation as distinct processes. However, recent advances in computational neuroscience have led us to consider the unusual perceptual experiences of patients and their sometimes bizarre beliefs as part of the same core abnormality — a disturbance in error-dependent updating of inferences and beliefs about the world. We suggest that it is possible to understand these symptoms in terms of a disturbed hierarchical Bayesian framework, without recourse to separate considerations of experience and belief.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Abnormal response to saliency in midbrain regions of patients with schizophrenia: functional MRI blood-oxygen-level-dependent (BOLD) activity in the midbrain.
Figure 2: Abnormal connectivity associated with hallucinations.
Figure 3: An illustration of a hierarchical Bayesian scheme for reading.

Similar content being viewed by others

References

  1. McGrath, J., Saha, S., Chant, D. & Welham, J. Schizophrenia: a concise overview of incidence, prevalence, and mortality. Epidemiol. Rev. 30, 67–76 (2008).

    PubMed  Google Scholar 

  2. Crow, T. J. Molecular pathology of schizophrenia: more than one disease process? BMJ 280, 66–68 (1980). An influential paper that made the distinction between positive and negative symptoms.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Liddle, P. F. Schizophrenic syndromes, cognitive performance and neurological dysfunction. Psychol. Med. 17, 49–57 (1987). An empirical demonstration that the signs and symptoms of schizophrenia should be described in terms of three dimensions: psychomotor poverty, disorganization and reality distortion (hallucinations and delusions).

    CAS  PubMed  Google Scholar 

  4. Jaspers, K. General Psychopathology (Manchester Univ. Press, Manchester, 1962). The author of this book claimed that positive symptoms were 'not understandable'. We disagree.

    Google Scholar 

  5. Frith, C. Editorial: in praise of cognitive neuropsychiatry. Cognit. Neuropsychiatry 13, 1–7 (2008).

    Google Scholar 

  6. Kemp, R., Chua, S., McKenna, P. & David, A. Reasoning and delusions. Br. J. Psychiatry 170, 398–405 (1997).

    CAS  PubMed  Google Scholar 

  7. Schneider, K. Clinical Psychopathology (Grune & Stratton, New York, 1959). An influential attempt to list symptoms specific to schizophrenia.

    Google Scholar 

  8. Wing, J. K., Sartorius, N. & Üstun, T. B. (eds) Diagnosis and Clinical Measurement in Psychiatry. A Reference Manual for SCAN (Cambridge Univ. Press, Cambridge, UK, 1998).

    Google Scholar 

  9. Maher, B. A. Delusional thinking and perceptual disorder. J. Individ. Psychol. 30, 98–113 (1974). The original proposal that delusions are caused by anomalous perceptual experiences.

    CAS  PubMed  Google Scholar 

  10. Frith, C. D. Consciousness, information processing and schizophrenia. Br. J. Psychiatry 134, 225–235 (1979). This paper used the term consciousness when doing so was neither popular nor profitable.

    CAS  PubMed  Google Scholar 

  11. Hemsley, D. R. A simple (or simplistic?) cognitive model for schizophrenia. Behav. Res. Ther. 31, 633–645 (1993).

    CAS  PubMed  Google Scholar 

  12. Kapur, S. Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. Am. J. Psychiatry 160, 13–23 (2003). An influential synthesis of ideas concerning the role of dopamine in the generation of positive symptoms.

    PubMed  Google Scholar 

  13. Feinberg, I. Efference copy and corollary discharge: implications for thinking and its disorders. Schizophr. Bull. 4, 636–640 (1978). The original proposal that positive symptoms, in particular thought insertion, might be caused by a problem with corollary discharge.

    CAS  PubMed  Google Scholar 

  14. von Helmholtz, H. Handbuch der Physiologischen Optik (Voss, Leipzig, 1866). A work of genius that suggested, among many other things, that perception depends on inference.

    Google Scholar 

  15. Lindner, A., Thier, P., Kircher, T. T., Haarmeier, T. & Leube, D. T. Disorders of agency in schizophrenia correlate with an inability to compensate for the sensory consequences of actions. Curr. Biol. 15, 1119–1124 (2005).

    CAS  PubMed  Google Scholar 

  16. Blakemore, S. J., Wolpert, D. M. & Frith, C. D. Abnormalities in the awareness of action. Trends Cogn. Sci. 6, 237–242 (2002).

    PubMed  Google Scholar 

  17. Allen, P., Aleman, A. & McGuire, P. K. Inner speech models of auditory verbal hallucinations: evidence from behavioural and neuroimaging studies. Int. Rev. Psychiatry 19, 407–415 (2007).

    PubMed  Google Scholar 

  18. Green, P. & Preston, M. Reinforcement of vocal correlates of auditory hallucinations by auditory feedback: a case study. Br. J. Psychiatry 139, 204–208 (1981).

    CAS  PubMed  Google Scholar 

  19. Gould, L. N. Auditory hallucinations and subvocal speech. J. Nerv. Ment. Dis. 109, 418–427 (1949). The first demonstration that hallucinations can be associated with the patient's own speech.

    CAS  PubMed  Google Scholar 

  20. Junginger, J. & Rauscher, F. P. Vocal activity in verbal hallucinations. J. Psychiatr. Res. 21, 101–109 (1987).

    CAS  PubMed  Google Scholar 

  21. Green, M. F. & Kinsbourne, M. Subvocal activity and auditory hallucinations: clues for behavioral treatments? Schizophr. Bull. 16, 617–625 (1990).

    CAS  PubMed  Google Scholar 

  22. Sperry, R. W. Neural basis of the spontaneous optokinetic response produced by visual inversion. J. Cogn. Neurosci. 43, 482–489 (1950).

    CAS  Google Scholar 

  23. von Holst, E. & Mittelstaedt, H. Das reafferenzprinzip (Wechselwirkungen zwischen Zentralnervensystem und Peripherie). Naturwissenshaften 37, 464–476 (1950).

    Google Scholar 

  24. Crapse, T. B. & Sommer, M. A. Corollary discharge across the animal kingdom. Nature Rev. Neurosci. 9, 587–600 (2008).

    CAS  Google Scholar 

  25. Blakemore, S. J., Smith, J., Steel, R., Johnstone, C. E. & Frith, C. D. The perception of self-produced sensory stimuli in patients with auditory hallucinations and passivity experiences: evidence for a breakdown in self-monitoring. Psychol. Med. 30, 1131–1139 (2000). A demonstration that patients with schizophrenia can tickle themselves.

    CAS  PubMed  Google Scholar 

  26. Shergill, S. S., Samson, G., Bays, P. M., Frith, C. D. & Wolpert, D. M. Evidence for sensory prediction deficits in schizophrenia. Am. J. Psychiatry 162, 2384–2386 (2005).

    PubMed  Google Scholar 

  27. Ford, J. M. & Mathalon, D. H. Electrophysiological evidence of corollary discharge dysfunction in schizophrenia during talking and thinking. J. Psychiatr. Res. 38, 37–46 (2004).

    PubMed  Google Scholar 

  28. Sommer, M. A. & Wurtz, R. H. Brain circuits for the internal monitoring of movements. Annu. Rev. Neurosci. 31, 317–338 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Hohwy, J. & Frith, C. Can neuroscience explain consciousness? J. Conscious. Stud. 11, 180–198 (2004). An attempt to forge a link between neural processes and subjective experience.

    Google Scholar 

  30. Fienberg, S. E. When did Bayesian inference become “Bayesian”? Bayesian Anal. 1, 1–40 (2006).

    Google Scholar 

  31. Hemsley, D. R. & Garety, P. A. The formation and maintenance of delusions: a Bayesian analysis. Br. J. Psychiatry 149, 51–56 (1986). An influential demonstration that patients with delusions have problems with probabilistic inferences.

    CAS  PubMed  Google Scholar 

  32. Freeman, D., Garety, P. A., Kuipers, E., Fowler, D. & Bebbington, P. E. A cognitive model of persecutory delusions. Br. J. Clin. Psychol. 41, 331–347 (2002).

    PubMed  Google Scholar 

  33. Garety, P. A., Hemsley, D. R. & Wessely, S. Reasoning in deluded schizophrenic and paranoid patients. Biases in performance on a probabilistic inference task. J. Nerv. Ment. Dis. 179, 194–201 (1991).

    CAS  PubMed  Google Scholar 

  34. Bentall, R. P., Kaney, S. & Dewey, M. E. Paranoia and social reasoning: an attribution theory analysis. Br. J. Clin. Psychol. 30, 13–23 (1991).

    PubMed  Google Scholar 

  35. Warman, D. M. Reasoning and delusion proneness - confidence in decisions. J. Nerv. Ment. Dis. 196, 9–15 (2008).

    PubMed  Google Scholar 

  36. Woodward, T. S., Moritz, S., Menon, M. & Klinge, R. Belief inflexibility in schizophrenia. Cognit. Neuropsychiatry 13, 267–277 (2008).

    Google Scholar 

  37. Heerey, E. A., Bell-Warren, K. R. & Gold, J. M. Decision-making impairments in the context of intact reward sensitivity in schizophrenia. Biol. Psychiatry 64, 62–69 (2008).

    PubMed  PubMed Central  Google Scholar 

  38. Coltheart, M. Cognitive neuropsychiatry and delusional belief. Q. J. Exp. Psychol. (Colchester) 60, 1041–1062 (2007). A persuasive demonstration that perceptual anomalies are not sufficient to cause delusions.

    Google Scholar 

  39. Coltheart, M., Langdon, R. & McKay, R. Schizophrenia and monothematic delusions. Schizophr. Bull. 33, 642–647 (2007).

    PubMed  PubMed Central  Google Scholar 

  40. Turner, M. S., Cipolotti, L., Yousry, T. A. & Shallice, T. Confabulation: damage to a specific inferior medial prefrontal system. Cortex 44, 637–648 (2008).

    PubMed  Google Scholar 

  41. Cahill, C., Silbersweig, D. & Frith, C. D. Psychotic experiences induced in deluded patients using distorted auditory feedback. Cogn. Neuropsychiatry 1, 201–211 (1996).

    CAS  PubMed  Google Scholar 

  42. Blakemore, S. J., Oakley, D. A. & Frith, C. D. Delusions of alien control in the normal brain. Neuropsychologia 41, 1058–1067 (2003).

    PubMed  Google Scholar 

  43. Shergill, S. S., Bays, P. M., Frith, C. D. & Wolpert, D. M. Two eyes for an eye: the neuroscience of force escalation. Science 301, 187–187 (2003).

    CAS  PubMed  Google Scholar 

  44. Heinks-Maldonado, T. H., Mathalon, D. H., Gray, M. & Ford, J. M. Fine-tuning of auditory cortex during speech production. Psychophysiology 42, 180–190 (2005).

    PubMed  Google Scholar 

  45. Curio, G., Neuloh, G., Numminen, J., Jousmaki, V. & Hari, R. Speaking modifies voice-evoked activity in the human auditory cortex. Hum. Brain Mapp. 9, 183–191 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Houde, J. F., Nagarajan, S. S., Sekihara, K. & Merzenich, M. M. Modulation of the auditory cortex during speech: an MEG study. J. Cogn. Neurosci. 14, 1125–1138 (2002).

    PubMed  Google Scholar 

  47. Martikainen, M. H., Kaneko, K. & Hari, R. Suppressed responses to self-triggered sounds in the human auditory cortex. Cereb. Cortex 15, 299–302 (2005).

    PubMed  Google Scholar 

  48. Ford, J. M., Gray, M., Faustman, W. O., Roach, B. J. & Mathalon, D. H. Dissecting corollary discharge dysfunction in schizophrenia. Psychophysiology 44, 522–529 (2007).

    PubMed  Google Scholar 

  49. McGuire, P. K., Shah, G. M. & Murray, R. M. Increased blood flow in Broca's area during auditory hallucinations in schizophrenia. Lancet 342, 703–706 (1993). An early demonstration that hallucinations are associated with activity in speech-production regions of the brain.

    CAS  PubMed  Google Scholar 

  50. Shergill, S. S., Brammer, M. J., Williams, S. C. R., Murray, R. M. & McGuire, P. K. Mapping auditory hallucinations in schizophrenia using functional magnetic resonance imaging. Arch. Gen. Psychiatry 57, 1033–1038 (2000).

    CAS  PubMed  Google Scholar 

  51. Shergill, S. S., Bullmore, E., Simmons, A., Murray, R. & McGuire, P. Functional anatomy of auditory verbal imagery in schizophrenic patients with auditory hallucinations. Am. J. Psychiatry 157, 1691–1693 (2000).

    CAS  PubMed  Google Scholar 

  52. Ford, J. M. et al. Cortical responsiveness during talking and listening in schizophrenia: an event-related brain potential study. Biol. Psychiatry 50, 540–549 (2001).

    CAS  PubMed  Google Scholar 

  53. Shergill, S. S., Brammer, M. J., Williams, S. J., Murray, R. M. & McGuire, P. K. Mapping auditory hallucinations in schizophrenia using functional magnetic resonance imaging. Arch. Gen. Psychiatry 57, 1033–1038 (2000).

    CAS  PubMed  Google Scholar 

  54. Shergill, S. S. et al. Modality specific neural correlates of auditory and somatic hallucinations. J. Neurol. Neurosurg. Psychiatry 71, 688–690 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Shergill, S. S. et al. Temporal course of auditory hallucinations. Br. J. Psychiatry 185, 516–517 (2004).

    PubMed  Google Scholar 

  56. Lennox, B. R., Park, S. B., Medley, I., Morris, P. G. & Jones, P. B. The functional anatomy of auditory hallucinations in schizophrenia. Psychiatry Res. 100, 13–20 (2000).

    CAS  PubMed  Google Scholar 

  57. Ford, J. M., Roach, B. J., Faustmann, W. O. & Mathalon, D. H. Synch before you speak: auditory hallucinations in schizophrenia. Am. J. Psychiatry 164, 458–466 (2007). Evidence that hallucinations are associated with a reduction of long-range connectivity in the brain.

    PubMed  Google Scholar 

  58. Kubicki, M. et al. A review of diffusion tensor imaging studies in schizophrenia. J. Psychiatr. Res. 41, 15–30 (2007).

    PubMed  Google Scholar 

  59. Mechelli, A. et al. Misattribution of speech and impaired connectivity in patients with auditory verbal hallucinations. Hum. Brain Mapp. 28, 1213–1222 (2007). Structural evidence for connectivity problems in schizophrenia.

    PubMed  PubMed Central  Google Scholar 

  60. Barlow, H. The exploitation of regularities in the environment by the brain. Behav. Brain. Sci. 24, 602–607; discussion 652–671 (2001).

    CAS  PubMed  Google Scholar 

  61. Bayes, T. R. An essay towards solving a problem in the doctrine of chances. Philos. Trans. R. Soc. Lond. 53, 370–418 (1763). A work of genius providing the computational basis for the process of inference that underlies perception and belief formation.

    Google Scholar 

  62. Lubow, R. E. Latent inhibition. Psychol. Bull. 79, 398–407 (1973).

    CAS  PubMed  Google Scholar 

  63. Barlow, H. Conditions for versatile learning, Helmholtz's unconscious inference, and the task of perception. Vision Res. 30, 1561–1571 (1990). An important proposal about the mechanism of inference in the visual system.

    CAS  PubMed  Google Scholar 

  64. Yuille, A. & Kersten, D. Vision as Bayesian inference: analysis by synthesis? Trends Cogn. Sci. 10, 301–308 (2006). Review of the evidence that vision depends on inference.

    PubMed  Google Scholar 

  65. Vaitl, D. et al. Latent inhibition and schizophrenia: Pavlovian conditioning of autonomic responses. Schizophr. Res. 55, 147–158 (2002).

    CAS  PubMed  Google Scholar 

  66. Kamin, L. J. in Punishment and Aversive Behaviour (eds Campbell, B. A. & Church, R. M.) 279–296 (Appleton Century Crofts, New York, 1969).

    Google Scholar 

  67. Rescorla, R. A. & Wagner, A. R. in Classical Conditioning II (eds Black, A. H. & Prokasy, W. F.) 64–99 (Appleton Century Crofts, New York, 1972). The computational basis of learning by association.

    Google Scholar 

  68. Schultz, W. & Dickinson, A. Neuronal coding of prediction errors. Annu. Rev. Neurosci. 23, 473–500 (2000). An important account of the role of prediction errors in learning.

    CAS  PubMed  Google Scholar 

  69. Jones, S. H., Hemsley, D., Ball, S. & Serra, A. Disruption of the Kamin blocking effect in schizophrenia and in normal subjects following amphetamine. Behav. Brain Res. 88, 103–114 (1997).

    CAS  PubMed  Google Scholar 

  70. Hollerman, J. R. & Schultz, W. Dopamine neurons report an error in the temporal prediction of reward during learning. Nature Neurosci. 1, 304–309 (1998).

    CAS  PubMed  Google Scholar 

  71. Mirenowicz, J. & Schultz, W. Importance of unpredictability for reward responses in primate dopamine neurons. J. Neurophysiol. 72, 1024–1027 (1994).

    CAS  PubMed  Google Scholar 

  72. Waelti, P., Dickinson, A. & Schultz, W. Dopamine responses comply with basic assumptions of formal learning theory. Nature 412, 43–48 (2001).

    CAS  PubMed  Google Scholar 

  73. Pessiglione, M., Seymour, B., Flandin, G., Dolan, R. J. & Frith, C. D. Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans. Nature 442, 1042–1045 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Juckel, G. et al. Dysfunction of ventral striatal reward prediction in schizophrenia. Neuroimage 29, 409–416 (2006).

    PubMed  Google Scholar 

  75. Murray, G. K. et al. Substantia nigra/ventral tegmental reward prediction error disruption in psychosis. Mol. Psychiatry 13, 267–276 (2007). Evidence of abnormal neural correlates of prediction errors in schizophrenia.

    Google Scholar 

  76. Corlett, P. R. et al. Disrupted prediction error signal in psychosis: evidence for an associative account of delusions. Brain 130, 2387–2400 (2007).

    CAS  PubMed  Google Scholar 

  77. Jensen, J. et al. The formation of abnormal associations in schizophrenia: neural and behavioral evidence. Neuropsychopharmacology 33, 473–479 (2008).

    PubMed  Google Scholar 

  78. Dodd, M. L. et al. Pathological gambling caused by drugs used to treat Parkinson disease. Arch. Neurol. 62, 1377–1381 (2005).

    PubMed  Google Scholar 

  79. Friston, K., Kilner, J. & Harrison, L. A free energy principle for the brain. J. Physiol. (Paris) 100, 70–87 (2006). An important proposal that the brain consists of a hierarchy of Bayesian inferencing devices.

    Google Scholar 

  80. Murray, S. O., Kersten, D., Olshausen, B. A., Schrater, P. & Woods, D. L. Shape perception reduces activity in human primary visual cortex. Proc. Natl Acad. Sci. USA 99, 15164–15169 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Lee, T. S. & Mumford, D. Hierarchical Bayesian inference in the visual cortex. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 20, 1434–1448 (2003).

    PubMed  Google Scholar 

  82. Summerfield, C. & Koechlin, E. A neural representation of prior information during perceptual inference. Neuron 59, 336–347 (2008).

    CAS  PubMed  Google Scholar 

  83. Mackintosh, N. J. A theory of attention: variations in associability of stimuli with reinforcement. Psychol. Rev. 82, 276–298 (1975).

    Google Scholar 

  84. Pearce, J. M. & Hall, G. A model for Pavlovian learning: variations in the effectiveness of conditioned but not of unconditioned stimuli. Psychol. Rev. 87, 532–552 (1980).

    CAS  PubMed  Google Scholar 

  85. Courville, A. C., Daw, N. D. & Touretzky, D. S. Bayesian theories of conditioning in a changing world. Trends Cogn. Sci. 10, 294–300 (2006).

    PubMed  Google Scholar 

  86. Miller, R. Schizophrenic psychology, associative learning and the role of forebrain dopamine. Med. Hypotheses 2, 203–211 (1976).

    CAS  PubMed  Google Scholar 

  87. Hemsley, D. R. The development of a cognitive model of schizophrenia: placing it in context. Neurosci. Biobehav. Rev. 29, 977–988 (2005).

    PubMed  Google Scholar 

  88. Berridge, K. C. & Robinson, T. E. Parsing reward. Trends Neurosci. 26, 507–513 (2003).

    CAS  PubMed  Google Scholar 

  89. Murray, G. K. et al. Incentive motivation in first-episode psychosis: a behavioural study. BMC Psychiatry 8, 34 (2008).

    PubMed  PubMed Central  Google Scholar 

  90. Roiser, J. P. et al. Do patients with schizophrenia exhibit aberrant salience? Psychol. Med. 30 Jun 2008 (doi:10.1017/S0033291708003863).

    PubMed  PubMed Central  Google Scholar 

  91. Yu, A. J. & Dayan, P. Uncertainty, neuromodulation, and attention. Neuron 46, 681–692 (2005).

    CAS  PubMed  Google Scholar 

  92. Dakin, S., Carlin, P. & Hemsley, D. Weak suppression of visual context in chronic schizophrenia. Curr. Biol. 15, R822–R824 (2005).

    CAS  PubMed  Google Scholar 

  93. Chen, Y., Levy, D. L., Sheremata, S. & Holzman, P. S. Compromised late-stage motion processing in schizophrenia. Biol. Psychiatry 55, 834–841 (2004).

    PubMed  Google Scholar 

  94. McGhie, A. & Chapman, J. Disorders of attention and perception in early schizophrenia. Br. J. Psychiatry 34, 103–116 (1961). An influential survey of experiences in the early stages of psychosis.

    CAS  Google Scholar 

  95. Chapman, J. The early symptoms of schizophrenia. Br. J. Psychiatry 112, 225–251 (1966).

    CAS  PubMed  Google Scholar 

  96. Chadwick, P. K. The step ladder to the impossible: a first hand phenomenological account of a schizo-affective psychotic crisis. J. Ment. Health 2, 239–250 (1993). A fascinating personal account of a psychotic breakdown.

    Google Scholar 

  97. Brown, A. S. Prenatal infection as a risk factor for schizophrenia. Schizophr. Bull. 32, 200–202 (2006).

    PubMed  PubMed Central  Google Scholar 

  98. van Os, J., Krabbendam, L., Myin-Germeys, I. & Delespaul, P. The schizophrenia envirome. Curr. Opin. Psychiatry 18, 141–145 (2005).

    PubMed  Google Scholar 

  99. Burmeister, M., McInnis, M. G. & Zollner, S. Psychiatric genetics: progress amid controversy. Nature Rev. Genet. 9, 527–540 (2008).

    CAS  PubMed  Google Scholar 

  100. Steen, R. G., Mull, C., McClure, R., Hamer, R. M. & Lieberman, J. A. Brain volume in first-episode schizophrenia: systematic review and meta-analysis of magnetic resonance imaging studies. Br. J. Psychiatry 188, 510–518 (2006).

    PubMed  Google Scholar 

  101. Lewis, D. A., Glantz, L. A., Pierri, J. N. & Sweet, R. A. Altered cortical glutamate neurotransmission in schizophrenia: evidence from morphological studies of pyramidal neurons. Ann. NY Acad. Sci. 1003, 102–112 (2003).

    CAS  PubMed  Google Scholar 

  102. Kapur, S. & Mamo, D. Half a century of antipsychotics and still a central role for dopamine D2 receptors. Prog. Neuropsychopharmacol. Biol. Psychiatry 27, 1081–1090 (2003).

    CAS  PubMed  Google Scholar 

  103. Featherstone, R. E., Kapur, S. & Fletcher, P. J. The amphetamine-induced sensitized state as a model of schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 31, 1556–1571 (2007).

    CAS  PubMed  Google Scholar 

  104. Jentsch, J. D. & Roth, R. H. The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 20, 201–225 (1999).

    CAS  PubMed  Google Scholar 

  105. Corlett, P. R., Honey, G. D. & Fletcher, P. C. From prediction error to psychosis: ketamine as a pharmacological model of delusions. J. Psychopharmacol. 21, 238–252 (2007).

    CAS  PubMed  Google Scholar 

  106. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (American Psychiatric Association, Washington DC, 1994). The official definition of schizophrenia.

  107. Gottesmann, C. The dreaming sleep stage: a new neurobiological model of schizophrenia? Neuroscience 140, 1105–1115 (2006).

    CAS  PubMed  Google Scholar 

  108. Schwartz, S. & Maquet, P. Sleep imaging and the neuro-psychological assessment of dreams. Trends Cogn. Sci. 6, 23–30 (2002).

    PubMed  Google Scholar 

  109. Birchwood, M. Pathways to emotional dysfunction in first-episode psychosis. Br. J. Psychiatry 182, 373–375 (2003).

    PubMed  Google Scholar 

  110. Bentall, R. P., Corcoran, R., Howard, R., Blackwood, N. & Kinderman, P. Persecutory delusions: a review and theoretical integration. Clin. Psychol. Rev. 21, 1143–1192 (2001).

    CAS  PubMed  Google Scholar 

  111. Shimizu, M., Kubota, Y., Toichi, M. & Baba, H. Folie a deux and shared psychotic disorder. Curr. Psychiatry Rep. 9, 200–205 (2007).

    PubMed  Google Scholar 

  112. Macdonald, N. Living with schizophrenia. Can. Med. Assoc. J. 82, 218–221 (1960).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Ford, J. M., Mathalon, D. H., Whitfield, S., Faustman, W. O. & Roth, W. T. Reduced communication between frontal and temporal lobes during talking in schizophrenia. Biol. Psychiatry 51, 485–492 (2002).

    PubMed  Google Scholar 

  114. Mellor, C. S. First rank symptoms of schizophrenia. Br. J. Psychiatry 117, 15–23 (1970).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

C.D.F. is supported by the Wellcome Trust and the Danish National Research Foundation. P.C.F. is supported by the Bernard Wolfe Health Neuroscience Fund and by the Wellcome Trust. We are grateful to K. Friston and E. C. Johnstone for their comments on an earlier draft of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris D. Frith.

Related links

Related links

FURTHER INFORMATION

Paul Fletcher's homepage

Chris Frith's homepage

Interacting Minds

Glossary

Cognitive behavioural therapy

A form of psychotherapy in which the patient is encouraged to examine the cognitive processes by which they arrive at a particular state of mind, and to change these processes together with the accompanying behaviours that may reinforce them.

Corollary discharge

The estimate of sensory feedback that is derived from the internal copy of the motor signal (the efference copy).

Efference copy

An internal copy of a motor signal that can be used to predict the sensory consequences of the movement.

Latent inhibition

The phenomenon whereby a stimulus that has been previously presented but has not had any predictive value becomes more difficult to associate with an outcome when presented at a later stage at which it does have predictive value. That is, learning related to the pre-exposed stimulus is slow compared with learning related to new stimuli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fletcher, P., Frith, C. Perceiving is believing: a Bayesian approach to explaining the positive symptoms of schizophrenia. Nat Rev Neurosci 10, 48–58 (2009). https://doi.org/10.1038/nrn2536

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2536

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing