Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Innovation
  • Published:

Imaging mass spectrometry in microbiology

Key Points

  • Imaging mass spectrometry (IMS) provides atomic and/or molecular information in two dimensions and has the potential to characterize microorganisms at the molecular level in three dimensions.

  • The type of atomic or molecular information that can be gained from IMS depends on the capabilities and characteristics of the ionization source used.

  • IMS approaches include dynamic secondary-ion mass spectrometry (SIMS), matrix-assisted laser desorption/ionization (MALDI), laser desorption/ionization (LDI), desorption electrospray ionization (DESI), nanospray DESI (nanoDESI) and laser ablation–inductively coupled plasma (LA–ICP) IMS methods.

  • IMS approaches can be used to analyse a range of microbial samples, from single cells to complex microbial communities, as well as the ecological niche of a microorganism.

Abstract

Imaging mass spectrometry tools allow the two-dimensional visualization of the distribution of trace metals, metabolites, surface lipids, peptides and proteins directly from biological samples without the need for chemical tagging or antibodies, and are becoming increasingly useful for microbiology applications. These tools, comprising different imaging mass spectrometry techniques, are ushering in an exciting new era of discovery by enabling the generation of chemical hypotheses based on the spatial mapping of atoms and molecules that can correlate to or transcend observed phenotypes. In this Innovation article, we explore the wide range of imaging mass spectrometry techniques that is available to microbiologists and describe the unique applications of these tools to microbiology with respect to the types of samples to be investigated.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the workflow in imaging mass spectrometry.
Figure 2: Examples of subcellular imaging mass spectrometry.
Figure 3: Examples of imaging mass spectrometry for single and interacting colonies.
Figure 4: Example of imaging mass spectrometry for microbial communities.
Figure 5: Examples of imaging mass spectrometry of host–microorganism interactions.

Similar content being viewed by others

References

  1. Amstalden van Hove, E. R., Smith, D. F. & Heeren, R. M. A. A concise review of mass spectrometry imaging. J. Chromatogr. A 1217, 3946–3654 (2010). An expert but concise review of some of the IMS tools that can be used, describing their applications in other fields such as pathology.

    Article  CAS  PubMed  Google Scholar 

  2. Winograd, N. & Garrison, N. J. Biological cluster mass spectrometry. Annu. Rev. Phys. Chem. 61, 305–322 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schwamborn, K. & Caprioli, R. M. Molecular imaging by mass spectrometry: looking beyond classical histology. Nature Rev. Cancer 10, 639–646 (2010). A comprehensive review, by one of the main developers of the MALDI-based imaging field, describing the use of IMS in cancer investigations.

    Article  CAS  Google Scholar 

  4. McDonnell, L. A. & Heeren, R. M. A. Imaging mass spectrometry. Mass Spectrom. Rev. 26, 606–643 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Boxer, S. G., Kraft, M. L. & Weber, P. K. Advances in imaging secondary ion mass spectrometry for biological samples. Annu. Rev. Biophys. 38, 53–74 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Quintana, C. et al. Morphological and chemical studies of pathological human and mice brain at the subcellular level: correlation between light, electron, and NanoSIMS microscopies. Microsc. Res. Techn. 70, 281–295 (2007).

    Article  CAS  Google Scholar 

  7. Castaing, R. & Slodzian, G. Microanalysis by secondary ionic emission. J. Microsc. 1, 395–410 (1962).

    CAS  Google Scholar 

  8. Lacoste, T. D. et al. Ultrahigh-resolution multicolor colocalization of single fluorescent probes. Proc. Natl Acad. Sci. USA 97, 9461–9466 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Watrous, J. D., Alexandrov, T. & Dorrestein, P. C. The evolving field of imaging mass spectrometry and its impact on future biological research. J. Mass Spectrom. 46, 209–222 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Solon, E. G., Schweitzer, A., Stoeckli, M. & Prideaux, B. Autoradiography, MALDI-MS, and SIMS-MS imaging in pharmaceutical discovery and development. AAPS J. 12, 11–26 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Francese, S. et al. MALDI mass spectrometry imaging, from its origins up to today: the state of the art. Comb. Chem. High Throughput Screen. 12, 156–174 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Heeren, R. M. A., Smith, D. F., Stauber, J., Kukrer-Kaletas, B. & MacAleese, L. Imaging mass spectrometry: hype or hope? J. Am. Soc. Mass Spectrom. 20, 1006–1014 (2009). As there are challenges with IMS, this article is an important and critical review of the current capabilities of this technique.

    Article  CAS  PubMed  Google Scholar 

  13. Svatoš, A. Mass spectrometric imaging of small molecules. Trends Biotechnol. 28, 425–434 (2010).

    Article  PubMed  CAS  Google Scholar 

  14. Nemes, P. & Vertes, A. Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry. Anal. Chem. 79, 8098–8106 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Liu, Q., Xiao, Y., Pagan-Miranda, C., Chiu, Y. M. & He, L. Metabolite imaging using matrix-enhanced surface-assisted laser desorption/ionization mass spectrometry (ME-SALDI-MS). J. Am. Soc. Mass Spectrom. 20, 80–88 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Liu, Y. et al. Imaging mass spectrometry with a low temperature plasma probe for the analysis of works of art. Angew. Chem. Int. Ed. Engl. 49, 4435–4437 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Li, Y., Shrestha, B. & Vertes, A. Atmosphereic pressure infrared MALDI imaging mass spectrometry for plant metabolomics. Anal. Chem. 80, 407–420 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Fraser, C. M. et al. The minimal gene complement of Mycoplasma genitalium. Science 270, 397–403 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Hoshi, T. & Kudo, M. High resolution static SIMS imaging by time of flight SIMS. Appl. Surf. Sci. 203, 818–824 (2003).

    Article  Google Scholar 

  20. Bickel, G. A. & Adams, H. M. Surface profiling of lithium with a laser desorption mass spectrometer microprobe. Appl. Opt. 38, 1488–1493 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Becker, J. S. et al. Bioimaging of metals by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Mass Spectrom. Rev. 29, 156–175 (2010).

    CAS  PubMed  Google Scholar 

  22. Spengler, B. & Hubert, M. Scanning microprobe matrix-assisted laser desorption ionization (SMALDI) mass spectrometry: instrumentation for sub-micrometer resolved LDI and MALDI surface analysis. J. Am. Soc. Mass Sprectrom. 13, 735–748 (2002).

    Article  CAS  Google Scholar 

  23. Kertesz, V. & Van Berkel, G. J. Improved imaging resolution in desorption electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 22, 2639–2644 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Liebl, H. Ion microprobe mass analyzer. J. Appl. Phys. 38, 5277–5283 (1967).

    Article  CAS  Google Scholar 

  25. Heeren, R. M. A. et al. Why don't biologists use SIMS?: A critical evaluation of imaging MS. Appl. Surf. Sci. 252, 6827–6835 (2006).

    Article  CAS  Google Scholar 

  26. Hoppe, P. NanoSIMS perspectives for nuclear astrophysics. New Astro. Rev. 46, 589–595 (2002).

    Article  CAS  Google Scholar 

  27. Hillion, F. et al. in Secondary Ion Mass Spectrometry: Sims IX Proceedings of the Ninth International Conference on Secondary Ion Mass Spectrometry (eds Benninghoven, A. et al.) 254 (Wiley & Sons, 1993).

    Google Scholar 

  28. McDonnel, L. A., Heeren, R. M. A., de Lange, R. P. J. & Fletcher, I. W. Higher sensitivity secondary ion mass spectrometry of biological molecules for high resolution, chemical specific imaging. J. Am. Soc. Mass Spectrom. 17, 1195–1202 (2006).

    Article  CAS  Google Scholar 

  29. Wu, K. J. & Odom, R. W. Matrix enhanced secondary ion mass spectrometry: a method for molecular analysis on solid surfaces. Anal. Chem. 68, 573–582 (1996).

    Article  Google Scholar 

  30. Ghosal, S. et al. Imaging and 3D elemental characterization of intact bacterial spores by high resolution secondary ion mass spectrometry. Anal. Chem. 80, 5986–5992 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Pumphrey, G. M., Hanson, B. T., Chandra, S. & Madson, E. L. Dynamic secondary ion mass spectrometry imaging of microbial populations utilizing 13C-labelled substrates in pure culture and in soil. Environ. Microbiol. 11, 220–229 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Popa, R. et al. Carbon and nitrogen fixation and metabolite exchange in and between individual cells of Anabaena oscillarioides. ISME J. 1, 354–360 (2009).

    Article  CAS  Google Scholar 

  33. Finzi-Hart, J. A. et al. Fixation and fate of C and N in the cyanobacterium Trichodesmium using nanometer-scale secondary ion mass spectrometry. Proc. Natl Acad. Sci. USA 106, 6345–6350 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dekas, A. E., Poretsky, R. S. & Orphan, V. J. Deep-sea archaea fix and share nitrogen in methane-consuming microbial consortia. Science 326, 422–426 (2009). An excellent article that describes the use of SIMS IMS to study nitrogen fixation in communities.

    Article  CAS  PubMed  Google Scholar 

  35. Orphan, V. J., House, C. H., Hinrichs, K. U., McKeegan, K. D. & DeLong, E. F. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293, 418–419 (2001).

    Article  Google Scholar 

  36. Musat, N. et al. A single-cell view on the ecophysiology of anaerobic phototrophic bacteria. Proc. Natl Acad. Sci. USA 105, 17861–17866 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chandra, S., Pumphrey, G., Abraham, J. M. & Madsen, E. L. Dynamic SIMS ion microscopy imaging of individual bacterial cells for studies of isotopically labeled molecules. Appl. Surf. Sci. 255, 847–851 (2008).

    Article  CAS  Google Scholar 

  38. Cliff, J. B., Gaspar, D. J., Bottomley, P. J. & Myrold, D. D. Exploration of inorganic C and N assimilation by soil microbes with time-of-flight secondary ion mass spectrometry. Appl. Environ. Microbiol. 68, 4067–4073 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. DeRito, C. M., Pumphrey, G. M. & Madsen, E. L. Use of field-based stable isotope probing to identify adapted populations and track carbon flow through a phenol-degrading soil microbial community. Appl. Environ. Microbiol. 71, 7858–7865 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lechene, C. P., Luyten, Y., McMahon, D. & Distel, D. L. Quantitative imaging of nitrogen fixation by individual bacteria within animal cells. Science 317, 1563–1566 (2007). This article describes the use of SIMS IMS to study nitrogen fixation in an entire host, and therefore highlights what the future holds for the creative use of IMS in biology.

    Article  CAS  PubMed  Google Scholar 

  41. Lechene, C. et al. High-resolution quantitative imaging of mammalian and bacterial cells using stable isotope mass spectrometry. J. Biol. 5, 20 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ploug, H. et al. Carbon and nitrogen fluxes associated with the cyanobacterium Aphanizomenon sp. in the Baltic Sea. ISME J. 4, 1215–1223 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Halm, H. et al. Co-occurrence of denitrification and nitrogen fixation in an meromictic lake, Lake Cadagno (Switzerland). Environ. Microbiol. 11, 1945–1958 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Debois, D. et al. In situ localisation and quantification of surfactins in a Bacillus subtilis swarming community by imaging mass spectrometry. Proteomics 8, 3682–3691 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Vaidyanathan, S. et al. Subsurface biomolecular imaging of streptomyces coelicolor using secondary ion mass spectrometry. Anal. Chem. 80, 1942–1951 (2008). One of the first papers to describe the application of SIMS–TOF imaging to the study of microorganisms in a way that allows some intact molecules to be observed. This is an important milestone for SIMS IMS in microbiology.

    Article  CAS  PubMed  Google Scholar 

  46. Latimer, J. et al. A novel method for exploring elemental composition of microbial communities: laser ablation-inductively coupled plasma-mass spectrometry of intact bacterial colonies. J. Microbiol. Methods 79, 329–335 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Edirisinghe, P. D. et al. Detection of in situ derivatized peptides in microbial biofilms by laser desorption 7.87 eV postionizaton mass spectrometry. Anal. Chem. 79, 508–514 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Thiel, V., Toporski, J., Schumann, G., Sjovall, P. & Lausmaa, J. Analysis of archaeal core ether lipids using time of flight–secondary ion mass spectrometry (ToF-SIMS): exploring a new prospect for the study of biomarkers in geobiology. Geobiology 5, 75–83 (2007).

    Article  CAS  Google Scholar 

  49. Benninghoven, A. Analysis of submonolayers on silver by negative secondary ion emission. Physica Status Solidi A Appl. Res. 34, K169–K171 (1967).

    Article  Google Scholar 

  50. Benninghoven, A. New developments in the surface analysis of solids. Appl. Phys. A Mater. Sci. Process. 1, 3–16 (1973).

    CAS  Google Scholar 

  51. Tyler, B. J., Rangaranjan, S., Moller, J., Beumer, A. & Arlinghaus, H. F. TOF-SIMS imaging of chlorhexidine-digluconate transport in frozen hydrated biofilms of the fungus Candida albicans. Appl. Surf. Sci. 252, 6712–6715 (2006).

    Article  CAS  Google Scholar 

  52. Watrous, J., Hendricks, N., Meehan, M. & Dorrestein, P. C. Capturing bacterial metabolic exchange using thin film desorption electrospray ionization-imaging mass spectrometry. Anal. Chem. 82, 1598–1600 (2010). The first application of DESI IMS to the study of metabolic exchange within microbial colonies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Takats, Z., Wiseman, J. M., Gologan, B. & Cooks, R. G. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306, 471–473 (2004). The first paper to describe the development of DESI MS and also to suggest that imaging would be feasible.

    Article  CAS  PubMed  Google Scholar 

  54. Wiseman, J. M., Ifa, D. R., Venter, A. & Cooks, R. G. Ambient molecular imaging with desorption electrospray ionization mass spectrometry. Nature Protoc. 3, 517–524 (2008).

    Article  CAS  Google Scholar 

  55. Costa, A. B. & Cooks, R. G. Simulated splashes: elucidating the mechanism of desorption electrospray ionization mass spectrometry. Chem. Phys. Let. 464, 1–8 (2008).

    Article  CAS  Google Scholar 

  56. Huang, G., Chen, H., Zhang, X., Cooks, R. G. & Ouyang, Z. Rapid screening of anabolic steroids in urine by reactive desorption electrospray ionization. Anal. Chem. 79, 8327–8332 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Nyadong, L. et al. Reactive desorption electrospray ionization mass spectrometry (DESI-MS) of natural products of a marine alga. Anal. Bioanal. Chem. 394, 245–254 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yang, Y.-L., Xu, Y., Straight, P. & Dorrestein, P. C. Translating metabolic exchange with imaging mass spectrometry. Nature Chem. Biol. 5, 885–887 (2009). The first report describing the use of IMS to study the metabolic interactions between two microorganisms.

    Article  CAS  Google Scholar 

  59. Liu, W. T. et al. Imaging mass spectrometry of intraspecies metabolic exchange revealed the cannibalistic factors of Bacillus subtilis. Proc. Natl Acad. Sci. USA 107, 16286–16290 (2010). The first study to use IMS to discover specific factors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Roach, P., Laskin, J. & Laskin, A. Nanospray desorption electrospray ionization: an ambient method for liquid-extraction surface sampling in mass spectrometry. Analyst 135, 2233–2236 (2010). The development of nanoDESI, a tool that the authors of this paper believe will become a common tool for studying metabolic exchange.

    Article  CAS  PubMed  Google Scholar 

  61. Esquenazi, E. et al. Visualizing the spatial distribution of secondary metabolites produced by marine cyanobacteria and sponges via MALDI-TOF imaging. Mol. Biosyst. 4, 562–570 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yang, Y.-L. et al. Connecting chemotypes and phenotypes of cultured marine microbial assemblages by imaging mass spectrometry. Angew. Chem. 50, 5839–5842 (2011). The first investigation to show that IMS can be used to study complex microbial interactions.

    Article  CAS  Google Scholar 

  63. Caprioli, R. M., Farmer, T. B. & Gile, J. Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal. Chem. 69, 4751–4760 (1997).

    Article  CAS  PubMed  Google Scholar 

  64. Schreimer, D. C. & Li, L. Detection of high molecular weight narrow polydisperse polymers up to 1.5 million Daltons by MALDI mass spectrometry. Anal. Chem. 68, 2721–2725 (1996).

    Article  Google Scholar 

  65. Kindness, A., Sekaran, C. N. & Feldmann, J. Two dimensional mapping of copper and zinc in liver sections by laser ablation-inductive coupled plasma mass spectrometry. Clin. Chem. 49, 1916–1923 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Cvetkovic, A. et al. Microbial metalloproteins are largely uncharacterized. Nature 466, 779–782 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Savina, M. R. & Lykke, K. R. Microscopic chemical imaging with laser desorption mass spectrometry. Anal. Chem. 69, 3741–3746 (1997).

    Article  CAS  Google Scholar 

  68. Akhmetov, A., Moore, J. F., Gasper, G. L., Koin, P. J. & Hanley, L. Laser desorption postionization for imaging MS of biological material. J. Mass Spectrom. 45, 137–145 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Straight, P. D., Willey, J. M. & Kolter, R. Interactions between Streptomyces coelicolor and Bacillus subtilis: role of surfactants in raising aerial structures. J. Bacteriol. 188, 4918–4925 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. González-Pastor, J. E., Hobbs, E. C. & Losick R. Cannibalism by sporulating bacteria. Science 301, 510–513 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Ellermeier, C. D., Hobbs, E. C., Gonzalez-Pastor, J. E. & Losick, R. A three-protein signaling pathway governing immunity to a bacterial cannibalism toxin. Cell 124, 549–559 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Li, T. et al. Simultaneous analysis of microbial identity and function using NanoSIMS. Environ. Microbiol. 10, 580–588 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Fike, D. A., Gammon, C. L., Ziebes, W. & Orphan, V. J. Micron-scale mapping of sulfur cycling across the oxycline of a cyanobacterial mat: a paired nanoSIMS and CARD-FISH approach. ISME J. 2, 749–759 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Behrens, S. et al. Linking microbial phylogeny to metabolic activity at the single-cell level by using enhanced element labeling-catalyzed reporter deposition fluorescence in situ hybridization (EL-FISH) and nanoSIMS. Appl. Environ. Microb. 74, 3143–3150 (2008). References 72–74 describe a series of studies from three independent laboratories that devise the same approach to study the metabolism of microbial cells and that are able to pinpoint which cells are responsible for specific metabolic reactions through the use of FISH and SIMS IMS.

    Article  CAS  Google Scholar 

  75. Truede. et al. Consumption of methane and CO2 by methanotrophic microbial mats from gas seeps of the anoxic Black Sea. Appl. Environ. Microbiol. 73, 2271–2283 (2007).

  76. Wagner, M. Single-cell ecophysiology of microbes as revealed by Raman microspectroscopy or secondary ion mass spectrometry imaging. Annu. Rev. Microbiol. 63, 411–429 (2009). A useful review of the current state of SIMS IMS.

    Article  CAS  PubMed  Google Scholar 

  77. Thiel, V. et al. Biomarkers at the microscopic range: ToF-SIMS molecular imaging of Archaea-derived lipids in a microbial mat. Geobiology 5, 413–417 (2007).

    Article  CAS  Google Scholar 

  78. Corbin, B. D. et al. Metal chelation and inhibition of bacterial growth in tissue abscesses. Science 319, 962–965 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Schoenian, I. et al. Chemical basis of the synergism and antagonism in microbial communities in the nests of leaf-cutting ants. Proc. Natl Acad. Sci. USA 108, 1955–1960 (2011). This work uses IMS directly on biological samples: direct IMS of ants demonstrates the presence of antibiotics that are produced by associated microorganisms. This is another article that shows what IMS will be capable of in the future.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kroiss, J. et al. Symbiotic streptomycetes provide antibiotic combination prophylaxis for wasp offspring. Nature Chem. Biol. 6, 261–263 (2010).

    Article  CAS  Google Scholar 

  81. Lane, A. L. et al. Desorption electrospray ionization mass spectrometry reveals surface-mediated antifungal chemical defense of a tropical seaweed. Proc. Natl Acad. Sci. USA 106, 7314–7319 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Olson, M. S., Ford, R. M., Smith, J. A. & Fernandez, E. J. Quantification of bacterial chemotaxis in porous media using magnetic resonance imaging. Environ. Sci. Technol. 38, 3864–3870 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Wang, J., Zhang, X., Zhao, D., Wang, Q. & Li, D. Magnetic resonance imaging (MRI) in detection of Bifidobacterium longum and Clostridium novyi-NT labelled with superparamagnetic iron oxide (SPIO) nanoparticles. Preprint at http://precedings.nature.com/documents/3435/version/1.

  84. Tayfun, C. et al. Diagnostic value of MRI in tuberculosis meningitis. Eur. Radiol. 6, 380–386 (1996).

    Article  CAS  PubMed  Google Scholar 

  85. Dufrene, Y. F. Atomic force microscopy: a powerful tool in microbiology. J. Bacteriol. 184, 5205–5213 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rogers, S. W., Moorman, T. B. & Ong, S. K. Fluorescence in situ hybridization (FISH) and microautoradiography (MAR) applied to ecophysiology in soil. Soil Sci. Soc. Am. J. 71, 620–631 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Laskin and V. Orphan for providing comments on the SIMS IMS sections. We also thank all the authors who provided us with the original images from their articles for this publication. The P.C.D. laboratory is supported by US National Institutes of Health (NIH) grants GM094802, GM08283 and AI095125, and by the Beckman foundation. J.D.W. is supported by the NIH Molecular Biosciences Training Grant Program (grant GM08326).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pieter C. Dorrestein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Pieter C. Dorrestein's homepage

Glossary

False-colour image

A two-dimensional display of imaging data in which the signal intensity of an ion at a given location in the measurement area is represented by the colour intensity of its representative pixel, as per the colour scale used.

Ionization sources

The portions of mass spectrometers that produce ions from chemical surfaces and introduce them into the mass analysers.

Mass spectrum

A two-dimensional plot of intensity versus mass-to-charge (m/z) ratio for all of the ions that are detected for each mass measurement.

Spatial resolution

In imaging mass spectrometry, the lateral distance between individual mass measurements; this distance subsequently determines the pixel size in the resulting image.

Sputtering

The ionization process that occurs in secondary-ion mass spectrometry, whereby secondary ions are ejected from the sample surface as a result of a collision with highly energetic particles from the primary-ion beam.

Time-of-flight

(TOF). A type of mass analyser that separates ions based on the time that it takes them to traverse a defined flight path in the mass spectrometer.

xy stage

A motorized platform in the ionization source that is capable of computer-controlled motion in the xy coordinate plane; the sample is mounted on this platform.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watrous, J., Dorrestein, P. Imaging mass spectrometry in microbiology. Nat Rev Microbiol 9, 683–694 (2011). https://doi.org/10.1038/nrmicro2634

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2634

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research