Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

How does a hypha grow? The biophysics of pressurized growth in fungi

Key Points

  • Turgor (hydrostatic pressure within the cell) is a major driving force for cell expansion in fungi and in other walled cells. It is created by the accumulation of solutes inside the cell.

  • The thermodynamics of pressure, cell volume and solute uptake are complicated by the dynamic process of cell expansion; all three parameters must change in a coordinated fashion in order to create a steady-state equilibrium that maintains the driving forces required for continued growth, including water uptake. The rate of growth is controlled by changes in cell wall extensibility.

  • Tip-localized Ca2+ gradients play a part inside the cell during cell expansion.

  • The maintenance of turgor during growth relies on signal transduction pathways, and particularly on an osmotic mitogen-activated protein kinase cascade that regulates the accumulation of solutes (including ion uptake from the external medium).

  • Pressure gradients within the cell also have a role during cell growth, by moving cytoplasm towards the growing tip. Essentially, mass flow operates in a microfluidics environment that encompasses the mycelial network. This is separate from the intracellular transport that is mediated by the cytoskeleton and molecular motors. The rate of cytoplasmic flow depends on pressure gradients that are small in magnitude but affect flow over relatively long distances.

  • External ionic currents that extend over long distances are a manifestation of the macroscale polar aspects of fungal growth, and they point to coordinated contributions from the mycelial network behind the growing colony edge. They may play a part in the creation of the trans-hyphal pressure gradients that are responsible for cytoplasmic migration to the colony edge.

Abstract

The mechanisms underlying the growth of fungal hyphae are rooted in the physical property of cell pressure. Internal hydrostatic pressure (turgor) is one of the major forces driving the localized expansion at the hyphal tip which causes the characteristic filamentous shape of the hypha. Calcium gradients regulate tip growth, and secretory vesicles that contribute to this process are actively transported to the growing tip by molecular motors that move along cytoskeletal structures. Turgor is controlled by an osmotic mitogen-activated protein kinase cascade that causes de novo synthesis of osmolytes and uptake of ions from the external medium. However, as discussed in this Review, turgor and pressure have additional roles in hyphal growth, such as causing the mass flow of cytoplasm from the basal mycelial network towards the expanding hyphal tips at the colony edge.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Architecture of a fungal colony.
Figure 2: Pressure, volume, water flow and hyphal growth.
Figure 3: Pressure, volume and its regulation.
Figure 4: Turgor recovery mechanisms in Neurospora crassa.
Figure 5: Mass flow of the hyphal cytoplasm.
Figure 6: Model of the polar distribution of transport in a mycelial colony.

Similar content being viewed by others

References

  1. Trail, F. Fungal cannons: explosive spore discharge in the Ascomycota. FEMS Microbiol. Lett. 276, 12–18 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Yafetto, L. et al. The fastest flights in nature: high-speed spore discharge mechanisms among fungi. PLoS ONE 3, e3237 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Bastmeyer, T., Deising, H. B. & Bechinger, C. Force exertion in fungal infection. Annu. Rev. Biophys. Biomol. Struct. 31, 321–341 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Bartnicki-Garcia, S., Bracker, C. E., Gierz, G., Lopez-Franco, R. & Lu, H. Mapping the growth of fungal hyphae: orthogonal cell wall expansion during tip growth and the role of turgor. Biophys. J. 79, 2382–2390 (2000). A careful analysis of the nature of tip expansion in growing hyphae by microscopic observation of both external and internal markers. The results strongly support the idea that expansion is orthogonal. Biophysical considerations lead to the conclusion that turgor drives cell expansion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shaw, S. L., Dumais, J. & Long, S. R. Cell surface expansion in polarly growing root hairs of Medicago truncatula. Plant Physiol. 124, 959–970 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Reinhardt M, O. Das Wachsthum der pilzhyphen. Jahrbücher für Wissenschaftliche Botanik 23, 479–566 (1892).

    Google Scholar 

  7. Money, N. P. in The Mycota. I. Growth, Differentiation and Sexuality (eds Wessels, J. G. H. & Meinhardt, F.) 67–88 (Springer, 1994).

    Book  Google Scholar 

  8. Money, N. P. in The Mycota. VIII. Biology of the Fungal Cell 2nd edn (eds Howard, R. J. & Gow, N. A. R.) 237–249 (Springer, 2007).

    Book  Google Scholar 

  9. Lew, R. R. & Nasserifar, S. Transient responses during hyperosmotic shock in the filamentous fungus Neurospora crassa. Microbiology 155, 903–911 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Steudle, E., Zimmerman, U. & Lüttge, U. Effect of turgor pressure and cell size on the wall elasticity of plant cells. Plant Physiol. 59, 285–289 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Steudle, E. Zimmerman, U. & Zillikens, J. Effect of cell turgor on hydraulic conductivity and elastic modulus of Elodea leaf cells. Planta 154, 371–380 (1982).

    Article  CAS  PubMed  Google Scholar 

  12. Cosgrove, D. J. In defence of the cell volumetric elastic modulus. Plant Cell Environ. 11, 67–69 (1988).

    CAS  PubMed  Google Scholar 

  13. Franks, P. J., Buckley, T. N., Shope, J. C. & Mott, K. A. Guard cell volume and pressure measured concurrently by confocal microscopy and the cell pressure probe. Plant Physiol. 125, 1577–1584 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ortega, J. K. E., Keanini, R. G. & Manica, K. J. Pressure probe technique to study transpiration in Phycomyces sporangiophore. Plant Physiol. 87, 11–14 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Agre, P. Aquaporin water channels. Nobelprize.org [online], (2003).

    Google Scholar 

  16. Tyerman, S. D., Bohnert, H. J., Maurel, C., Steudle, E. & Smith, J. A. C. Plant aquaporins: their molecular biology, biophysics and significance for water relations. J. Exp. Bot. 50, 1055–1071 (1999).

    CAS  Google Scholar 

  17. Tanghe, A., Van Dijck, P. & Thevelein, J. M. Why do microorganisms have aquaporins? Trends Microbiol. 14, 78–85 (2005).

    Article  CAS  Google Scholar 

  18. Bartnicki-Garcia, S. Chitosomes: past, present and future. FEMS Yeast Res. 6, 957–965 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Money, N. P. & Harold, F. M. Extension growth of the water mold Achlya: interplay of turgor and wall strength. Proc. Natl Acad. Sci. USA 89, 4245–4249 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lockhart, J. A. An analysis of irreversible plant cell elongation. J. Theor. Biol. 8, 264–275 (1965).

    Article  CAS  PubMed  Google Scholar 

  21. Green, P. B. Growth physics in Nitella: a method for continuous in vivo analysis of extensibility based on a micro-manometer technique for turgor pressure. Plant Physiol. 43, 1169–1184 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhu, G. L. & Boyer, J. S. Enlargement in Chara studies by a turgor clamp. Growth rate is not determined by turgor. Plant Physiol. 100, 2071–2080 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Proseus, T. E. & Boyer, J. S. Calcium pectate chemistry controls growth rate of Chara corallina. J. Exp. Bot. 57, 3989–4002 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Proseus, T. E. & Boyer, J. S. Tension required for pectate chemistry to control growth in Chara corallina. J. Exp. Bot. 58, 4283–4292 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Proseus, T. E. & Boyer, J. S. Calcium pectate chemistry causes growth to be stored in Chara corallina: a test of the pectate cycle. Plant Cell Environ. 31, 1147–1155 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Money, N. P. & Hill, T. W. Correlation between endoglucanase secretion and cell wall strength in oomycete hyphae: implications for growth and morphogenesis. Mycologia 89, 777–785 (1997).

    Article  CAS  Google Scholar 

  27. Benkert, R., Obermeyer, G. & Bentrup, F.-W. The turgor pressure of growing lily pollen tubes. Protoplasma 198, 1–8 (1997).

    Article  Google Scholar 

  28. Winship, L. J., Obermeyer, G., Geitmann, A. & Hepler, P. K. Under pressure, cell walls set the pace. Trends Plant Sci. 15, 363–369 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zerzour, R., Kroeger, J. & Geitmann, A. Polar growth in pollen tubes is associated with spatially confined dynamic changes in cell mechanical properties. Dev. Biol. 334, 437–446 (2009). A detailed exploration of the relationship between the mechanical properties of the cell wall and tip growth. A micro-indentation technique is used to quantify wall stiffness, thereby integrating cytomechanics with cell expansion.

    Article  CAS  PubMed  Google Scholar 

  30. Levina N. N., Lew, R. R. & Heath, I. B. Cytoskeletal regulation of ion channel distribution in the tip-growing organism Saprolegnia ferax. J. Cell Sci. 107, 127–134 (1994).

    CAS  PubMed  Google Scholar 

  31. Dutta R. & Robinson, K. R. Identification and characterization of stretch-activated ion channels in pollen protoplasts. Plant Physiol. 135, 1398–1406 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lew, R. R. Comparative analysis of Ca2+ and H+ flux magnitude and location along growing hyphae of Saprolegnia ferax and Neurospora crassa. Eur. J. Cell Biol. 78, 892–902 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Lew, R. R. Mapping fungal ion channel distributions. Fungal Genet. Biol. 24, 69–76 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Levina, N. N., Lew, R. R., Hyde, G. J. & Heath, I. B. The roles of calcium ions and plasma membrane ion channels in hyphal tip growth of Neurospora crassa. J. Cell Sci. 108, 3405–3417 (1995).

    CAS  PubMed  Google Scholar 

  35. Silverman-Gavrila L. B & Lew, R. R. Calcium and tip growth in Neurospora crassa. Protoplasma 213, 203–217 (2000).

    Article  CAS  Google Scholar 

  36. Silverman-Gavrila L. B & Lew, R. R. Calcium gradient dependence of Neurospora crassa hyphal growth. Microbiology 149, 2475–2485 (2003). A description of the important role that intracellular Ca2+ gradients have in fungal tip growth.

    Article  CAS  PubMed  Google Scholar 

  37. Silverman-Gavrila L. B & Lew, R. R. Regulation of the tip-high [Ca2+] gradient in growing hyphae of the fungus Neurospora crassa. Eur. J. Cell Biol. 80, 379–390 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Silverman-Gavrila L. B & Lew, R. R. An IP3-activated Ca2+ channel regulates fungal tip growth. J. Cell Sci. 115, 5013–5025 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Levina N. N. & Lew, R. R. The role of tip-localized mitochondria in hyphal growth. Fungal Genet. Biol. 43, 65–74 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Bowman, B. J., Abreu, S., Margoles-Clark, E., Draskovic, M. & Bowman, E. J. Role of four calcium transport proteins, encoded by nca-1, nca-2, nca-3, and cax, in maintaining intracellular calcium levels in Neurospora crassa. Eukaryot. Cell 10, 654–661 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Verdín, J., Bartnicki-Garcia, S. & Riquelme, M. Functional stratification of the Spitzenkörper of Neurospora crassa. Mol. Microbiol. 74, 1044–1053 (2009).

    Article  PubMed  CAS  Google Scholar 

  42. Riquelme, M. et al. Spitzenkörper localization and intracellular traffic of green fluorescent protein-labeled CHS-3 and CHS-6 chitin synthases in living hyphae of Neurospora crassa. Eukaryot. Cell 6, 1853–1864 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hilfiker, S., Greengard, P. & Augustine, G. J. Coupling calcium to SNARE-mediated synaptic vesicle fusion. Nature Neurosci. 2, 104–106 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Gupta, G. D. & Heath, I. B. A tip-high gradient of a putative plasma membrane SNARE approximates the exocytotic gradient in hyphal apices of the fungus Neurospora crassa. Fungal Genet. Biol. 29, 187–199 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Gupta, G. D., Free, S. J., Levina, N. N., Keränen, S. & Heath, I. B. Two divergent plasma membrane syntaxin-like SNAREs, nsyn and nsyn2, contribute to hyphal tip growth and other developmental processes in Neurospora crassa. Fungal Genet. Biol. 40, 271–286 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Lew R. R., Levina, N. N., Walker, S. K. & Garrill A. Turgor regulation in hyphal organisms. Fungal Genet. Biol. 41, 1007–1015 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Lew R. R., Levina, N. N., Shabala, L., Anderca, M. I. & Shabala, S. N. Role of a mitogen-activated protein kinase cascade in ion flux-mediated turgor regulation in fungi. Eukaryot. Cell 5, 480–487 (2006). A suite of techniques are used to demonstrate the role of ion transport in turgor regulation, which is mediated by a MAPK cascade, in a fungus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lew R. R. & Nasserifar, S. Transient responses during hyperosmotic shock in the filamentous fungus Neurospora crassa. Microbiology 155, 903–911 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Lew, R. R. & Levina, N. N. Turgor regulation in the osmosensitive cut mutant of Neurospora crassa. Microbiology 153, 1530–1537 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Brewster, J. L., de Valoir, T., Dwyer, N. D., Winter, E. & Gustin, M. C. An osmosensing signal transduction pathway in yeast. Science 259, 1760–1763 (1993).

    Article  CAS  PubMed  Google Scholar 

  51. Kranz, M., Becit, E. & Hoffmann, S. Comparative genomics of the HOG-signaling system in fungi. Curr. Genet. 49, 137–151 (2006).

    Article  CAS  Google Scholar 

  52. Maeda, T., Takekawa, M. & Saito, H. Activation of yeast PBS2 MAPKK by MAPKKKs or by binding of an SH3-containing osmosensor. Science 269, 554–558 (1995).

    Article  CAS  PubMed  Google Scholar 

  53. Posas F. & Saito, H. Osmotic activation of the HOG MAPK pathway via Ste11p MAPKKK: scaffold role of Pbs2p MAPKK. Science 276, 1702–1705 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. Alex, L. A., Borkovich, K. A. & Simon, M. I. Hyphal development in Neurospora crassa: involvement of a two-component histidine kinase. Proc. Natl Acad. Sci. USA 93, 3416–3421 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Schumacher, M. M., Enderlin, C. S. & Selitrennikoff, C. P. The osmotic-1 locus of Neurospora crassa encodes a putative histidine kinase similar to osmosensors of bacteria and yeast. Curr. Microbiol. 34, 340–347 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Jones, C. A., Greer-Philips, S. E. & Borkovich, K. A. The response regulator RRG-1 functions upstream of a mitogen-activated protein kinase pathway impacting asexual development, female fertility, osmotic stress, and fungicide resistance in Neurospora crassa. Mol. Biol. Cell 18, 2123–2136 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ellis, S. W., Grindle, M. & Lewis, D. H. Effect of osmotic stress on yield and polyol content of dicoarboximide-sensitive and -resistant strains on Neurospora crassa. Mycol. Res. 95, 457–464 (1991).

    Article  CAS  Google Scholar 

  58. Youssar, L. & Avalos, J. Genetic basis of the ovc phenotype of Neurospora: identification and analysis of a 77kb deletion. Curr. Genet. 51, 19–30 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Ochiai, N. et al. Characterization of mutations in the two-component histidine kinase gene that confer fludioxonil resistance and osmotic sensitivity in the os-1 mutants of Neurospora crassa. Pest Manag. Sci. 57, 437–442 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Motoyama, T. et al. An Os-1 family histidine kinase from a filamentous fungus confers fungicide-sensitivity to yeast. Curr. Genet. 47, 298–306 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Fujimura, M. et al. Sensitivity to phenylpyrrole fungicides and abnormal glycerol accumulation in Os and Cut mutant strains of Neurospora crassa. J. Pesticide Sci. 25, 31–36 (2000).

    Article  CAS  Google Scholar 

  62. Lew, R. R. Turgor and net ion flux responses to activation of the osmotic MAP kinase cascade by fludioxonil in the filamentous fungus Neurospora crassa. Fungal Genet. Biol. 47, 721–726 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Colot, H. V. et al. A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proc. Natl Acad. Sci. USA. 103, 10352–10357 (2006).

    Article  CAS  Google Scholar 

  64. Lew R. R., Abbas, Z., Anderca, M. I. & Free, S. J. Phenotype of a mechanosensitive channel mutant, mid-1, in a filamentous fungus, Neurospora crassa. Eukaryot. Cell 7, 647–655 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lew R. R., Kapishon, V. Ptk2 contributes to osmoadaptation in the filamentous fungus Neurospora crassa. Fungal Genet. Biol. 46, 949–955 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Kaminskyj, S. G. W., Garrill, A. & Heath, I. B. The relation between turgor and tip growth in Saprolegnia ferax: turgor is necessary, but not sufficient to explain apical extension rates. Exp. Mycol. 16, 64–75 (1992).

    Article  Google Scholar 

  67. Harold, R. L., Money, N. P. & Harold, F. M. Growth and morphogenesis in Saprolegnia ferax: is turgor required? Protoplasma 191, 105–114 (1996).

    Article  Google Scholar 

  68. Walker, S. K., Chitcholtan, K., Yu, Y.-P., Christenhusz, G. M. & Garrill, A. Invasive hyphal growth: an F-actin depleted zone is associated with invasive hyphae of the oomycetes Achlya bisexualis and Phytophthora cinnamomi. Fungal Genet. Biol. 43, 357–365 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Emerson, S. Slime, a plasmodial variant of Neurospora crassa. Genetica 34, 162–182 (1963).

    Article  Google Scholar 

  70. Perkins, D. D., Radford, A., Newmeyer, D. & Björkman M. Chromosomal loci of Neurospora crassa. Microbiol. Rev. 46, 426–570 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Leal-Morales, C. A. & Ruiz-Herrera, J. Alterations in the biosynthesis of chitin and glucan in the slime mutant of Neurospora crassa. Exp. Mycol. 9, 28–38 (1985).

    Article  CAS  Google Scholar 

  72. Bartnicki-Garcia, S., Bracker, C. E., Lippman, E. & Ruiz-Herrera, J. Chitosomes from the wall-less “slime” mutant of Neurospora crassa. Arch. Microbiol. 139, 105–112 (1984).

    Article  CAS  PubMed  Google Scholar 

  73. Heath, I. B. & Steinberg G. Mechanisms of hyphal tip growth: tube dwelling amebae revisited. Fungal Genet. Biol. 28, 79–93 (1999). An alternative to a simple version of turgor-driven growth, emphasizing the role of the protoplast within the cell wall.

    Article  CAS  PubMed  Google Scholar 

  74. Lew, R. R. Mass flow and pressure-driven hyphal extension in Neurospora crassa. Microbiology 151, 2685–2692 (2005). The direct verification of mass flow in hyphal networks, and details of the magnitude of pressure gradients that are required to cause mass flow in a low-Reynolds-number environment.

    Article  CAS  PubMed  Google Scholar 

  75. Robertson, N. F. & Rizvi, S. R. H. Some observations on the water-relations of the hyphae of Neurospora crassa. Ann. Bot. 32, 279–291 (1968).

    Article  Google Scholar 

  76. Money, N. P. Measurement of hyphal turgor. Exp. Mycol. 14, 416–425 (1990). Measurement of turgor of the oomycete S. ferax using a variety of techniques. The methods would be the same for fungi. This article gives a good introduction to the thermodynamics of water potentials, experimental methodologies and experimental pitfalls.

    Article  Google Scholar 

  77. Ng, S. K., Liu, F., Lai, J., Low, W. & Jedd. G. A tether for Woronin body inheritance is associated with evolutionary variation in organelle positioning. PLoS Genet. 6, e1000521 (2009).

    Article  CAS  Google Scholar 

  78. Plamann, M. Cytoplasmic streaming in Neurospora: disperse the plug to increase the flow? PLoS Genet. 5, e1000526 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Heaton, K. L. M., López, E., Maini, P. K., Fricker, M. D. & Jones, N. S. Growth-induced mass flows in fungal networks. Proc. R. Soc. B 277, 3263–3274 (2010).

    Article  Google Scholar 

  80. Sugden, K. E. P., Evans, M. R., Poon, W. C. K. & Read, N. D. Model of hyphal tip growth involving microtubule-based transport. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75, 031909 (2007).

    Article  CAS  Google Scholar 

  81. Boudaoud, A. Growth of walled cells: from shells to vesicles. Phys. Rev. Lett. 91, 018104 (2003).

    Article  PubMed  CAS  Google Scholar 

  82. Freitag, M., Hickey, P. C., Raju, N. B., Selker, E. U. & Read, N. D. GFP as a tool to analyze the organization, dynamics and function of nuclei and microtubules in Neurospora crassa. Fungal Genet. Biol. 41, 897–910 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Nelson, G. et al. Calcium measurement in living filamentous fungi expressing codon-optimized aequorin. Mol. Microbiol. 52, 1437–1450 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Hickey, P. C., Swift, S. M., Roca, M. G. & Read, N. D. Live-cell imaging of filamentous fungi using vital fluorescent dyes. Methods Microbiol. 34, 63–87 (2005).

    Article  Google Scholar 

  85. Virag, A. & Griffiths, A. J. A mutation in the Neurospora crassa actin gene results in multiple defects in tip growth and branching. Fungal Genet. Biol. 41, 213–225 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Lee, I. H., Kumar, S. & Plamann, M. Null mutants of the Neurospora actin-related protein 1 pointed-end complex show distinct phenotypes. Mol. Biol. Cell 12, 2195–2206 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Riquelme, M., Roberson, R. W., McDaniel, D. P. & Bartnicki-Garcia S. The effects of ropy-1 mutation on cytoplasmic organization and intracellular motility in mature hyphae of Neurospora crassa. Fungal Genet. Biol. 37, 171–179 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Mourino-Perez, R. R., Roberson, R. W. & Bartnicki-Garcia, S. Microtubule dynamics and organization during hyphal growth and branching in Neurospora crassa. Fungal Genet. Biol. 43, 389–400 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Ramos-Garcia, S. L., Roberson, R. W., Freitag, M., Bartnicki-Garcia, S. & Mourino-Perez, R. R. Cytoplasmic bulk flow propels nuclei in mature hyphae of Neurospora crassa. Eukaryot. Cell 8, 1880–1890 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Roca, M. G., Kuo, H.-C., Lichius, A., Freitag, M. & Read, N. D. Nuclear dynamics, mitosis, and the cytoskeleton during the early stages of colony initiation in Neurospora crassa. Eukaryot. Cell 9, 1171–1183 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tucker, E. B. Cytoplasmic streaming does not drive intercellular passage in staminal hairs of Setcreasea purpurea. Protoplasma 137, 140–144 (1987).

    Article  Google Scholar 

  92. Suei, S. & Garrill, A. An F-actin-depleted zone is present at the hyphal tip of invasive hyphae of Neurospora crassa. Protoplasma 232, 165–172 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Delgado-Álvarez, D. L. et al. Visualization of F-actin localization and dynamics with live cell markers in Neurospora crassa. Fungal Genet. Biol. 47, 573–586 (2010).

    Article  PubMed  CAS  Google Scholar 

  94. Harris, S. D. et al. Polarisome meets Spitzenkörper: microscopy, genetics, and genomics converge. Eukaryot. Cell 4, 225–229 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Gow, N. A. R. Transhyphal electrical currents in fungi. J. Gen. Microbiol. 130, 3313–3318 (1984).

    CAS  PubMed  Google Scholar 

  96. McGillviray, A. M. & Gow, N. A. R. The transhyphal electrical current of Neurospora crassa is carried principally by protons. J. Gen. Microbiol. 133, 2875–2881 (1987).

    CAS  Google Scholar 

  97. Takeuchi, Y., Schmid, J., Caldwell, J. H. & Harold, F. M. Transcellular ion currents and extension of Neurospors crassa hyphae. J. Membr. Biol. 101, 33–41 (1988).

    Article  CAS  PubMed  Google Scholar 

  98. McGillviray, A. M. & Gow, N. A. R. Applied electrical fields polarize the growth of mycelial fungi. J. Gen. Microbiol. 132, 2515–2525 (1986).

    Google Scholar 

  99. Lever, M. C. et al. pH and Ca2+ dependent galvanotropism of filamentous fungi: implications and mechanisms. Mycol. Res. 98, 301–306 (1994).

    Article  Google Scholar 

  100. Burstaller, W. Transport of small ions and molecules through the plasma membrane of filamentous fungi. Curr. Rev. Microbiol. 23, 1–46 (1997).

    Google Scholar 

  101. Riquelme, M., Freitag, M., León-Hing, E. S. & Bowman, B. Live imaging of the secretory pathway in hyphae of Neurospora crassa. Fungal Genet. Newsl. 52 (Suppl.), 53 (2005).

    Google Scholar 

  102. Slayman, C. L. & Slaymen, C. W. Measurement of membrane potentials in Neurospora. Science 136, 876–877 (1962).

    Article  CAS  PubMed  Google Scholar 

  103. Potapova, T. V., Aslanidi, K. B., Belozerskaya, T. A. & Levina, N. N. Transcellular ionic currents studied by intracellular potential recordings in Neurospora crassa hyphae. Transfer of energy from proximal to apical cells. FEBS Lett. 241, 173–176 (1988).

    Article  CAS  PubMed  Google Scholar 

  104. Zalokar, M. Growth and differentiation of Neurospora crassa. Am. J. Bot. 46, 602–610 (1959).

    Article  CAS  Google Scholar 

  105. Brody, J. P., Yager, P., Goldstein, R. E. & Austin, R. H. Biotechnology at low Reynolds number. Biophys. J. 71, 3430–3441 (1996). Microfluidics at low Reynolds number is explored in detail from a physical veiwpoint, pertinent to the nature of mass flow in hyphae.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Berg, H. C. & Purcell, E. M. Physics of chemoreception. Biophys. J. 20, 193–219 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Short, M. B. et al. Flows driven by flagella of multicellular organisms enhance long-range molecular transport. Proc. Natl Acad. Sci. USA 103, 8315–8319 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Goldstein, R. E., Tuval, I. & van de Meent, J.-W. Microfluidics of cytoplasmic streaming and its implications for intracellular transport. Proc. Natl Acad. Sci. USA 105, 3663–3667 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Van de Meent, J.-W., Tuval, I. & Goldstein, R. E. Nature's microfluidic transporter: rotational cytoplasmic streaming at high Péclet numbers. Phys. Rev. Lett. 101, 178102 (2008).

    Article  PubMed  CAS  Google Scholar 

  110. Cosgrove, D. J. Analysis of the dynamic and steady-state responses of growth rate and turgor pressure to changes in cell parameters. Plant Physiol. 68, 1439–1446 (1981). A detailed analysis of the nature of the interplay between turgor and cell expansion during cell growth. This analysis is pertinent to any walled cells that rely on turgor for growth.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bok, J. W. et al. Structure and function analysis of the calcium-related gene spray in Neurospora crassa. Fungal Genet. Biol. 32, 145–158 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Sanders, D., Slayman, C. L. & Pall, M. L. Stoichiometry of H+/amino acid cotransport in Neurospora crassa revealed by current-voltage analysis. Biochim. Biophys. Acta 735, 67–76 (1983).

    Article  CAS  PubMed  Google Scholar 

  113. Schloemer, R. H. & Garrett, R. H. Nitrate transport system in Neuropora crassa. J. Bacteriol. 118, 259–269 (1974).

    CAS  PubMed Central  Google Scholar 

  114. Blatt, M. R., Maurousset, L. & Meharg, A. A. High-affinity NO3-H+ cotransport in the fungus Neurospora: induction and control by pH and membrane voltage. J. Membr. Biol. 160, 59–76 (1997).

    Article  CAS  PubMed  Google Scholar 

  115. Versaw, W. K. & Metzenberg, R. L. Repressible cation–phosphate symporter in Neurospora crassa. Proc. Natl Acad. Sci. USA 92, 3884–3887 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Slayman, C. L. & Slayman, C. W. Depolarization of the plasma membrane of Neurospora during active transport of glucose: evidence for a proton-dependent cotransport system. Proc. Natl Acad. Sci. USA 71, 1935–1939 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author thanks past and present members of the Lew laboratory, where research is funded by the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Roger R. Lew's homepage

Glossary

Aquaporins

Protein channels that transport water across cell membranes.

Oomycete

A hyphal microorganism that is morphologically similar to fungi but belongs to the phylogentically distinct stramenopiles group.

Characeae

A family of freshwater algae, within the kingdom Plantae. Members of this family form large macroscopic filaments.

Pectin

A carbohydrate polymer (a polysaccharide) that is part of the cell wall in walled cells of many organisms, such as algae and plants; pectin crosslinks can play a part in controlling wall strength and extensibility.

SNARE

(Soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein (SNAP) receptor). A family of receptors that are involved in membrane fusion in animal cells.

Woronin bodies

Proteinaceous granules that are located at septal pores and can seal the pores in response to cell damage.

Kinesin

A molecular motor that normally moves towards the plus end of microtubules, energized by ATP hydrolysis.

Heterokaryon

A hypha that contains multiple nuclei which are genetically distinct.

Spitzenkörper

An organized assembly of secretory vesicles located at the tip of the growing hypha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lew, R. How does a hypha grow? The biophysics of pressurized growth in fungi. Nat Rev Microbiol 9, 509–518 (2011). https://doi.org/10.1038/nrmicro2591

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2591

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology