Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

How sulphate-reducing microorganisms cope with stress: lessons from systems biology

Key Points

  • Sulphate-reducing microorganisms (SRMs) are a physiologically and phylogenetically diverse group of anaerobic bacterial and archaeal species that are important both ecologically and industrially. The application of systems biology tools has provided insights into the stress responses in SRMs at the cell, population, community and ecosystem levels.

  • Analyses using comparative and functional genomics support hydrogen cycling as a mode of energy metabolism that is characteristic of SRMs, and highlight the central role of this process in stress responses in Desulfovibrio vulgaris Hildenborough, the best known model SRM.

  • D. vulgaris activates distinct pathways in response to specific stresses. This is consistent with comparative genomic analyses that reveal this species has an unusually large number of diverse response regulators for signal transduction.

  • Despite the divergence in stress responses in D. vulgaris, the oxidative stress response seems to have a prevalent role in coping with many different stresses, as components of the defence pathways against reactive oxygen species are highly expressed even under non-oxidative stress conditions. This anticipatory expression may confer an adaptive advantage, as stress caused by reactive oxygen species is the most critical stress to anaerobes such as SRMs.

  • The ability of D. vulgaris to grow syntrophically with methanogens allows its distribution and evolution in environments that are depleted of sulphate, a condition that is an insurmountable stress for other SRMs. Integrated 'omics' analyses further indicate that D. vulgaris has genes (such as those involved in hydrogen cycling) that are dedicated to survival by syntrophy, and that the bacteria can evolve enhanced stability and productivity as a part of a community.

  • High-throughput sequencing and metagenomic technologies (such as GeoChip and PhyloChip) have been used to demonstrate that SRMs are widely distributed and well adapted to diverse environments. Metagenomic studies show that the distribution and activity of SRMs are constrained by the environmental boundaries defined by the cell's physiological limit to launch an effective stress response. Thus, a system-level understanding of stress responses provides critical knowledge for designing strategies for the application or elimination of SRMs in distinctive environments.

  • Next-generation genomics and other new technologies hold great promise for us to gain a more comprehensive understanding of SRMs (for example, by linking genotypes to phenotypes through experimental evolution, by high-resolution population genomics studies of SRMs, and by modelling SRM activity in a variety of environments). Analysis of SRM populations in communities with different levels of complexity is essential for predicting the ecological and evolutionary responses of microbial communities to environmental change. Novel mathematical frameworks and computational tools will greatly help us address these challenges.

Abstract

Sulphate-reducing microorganisms (SRMs) are a phylogenetically diverse group of anaerobes encompassing distinct physiologies with a broad ecological distribution. As SRMs have important roles in the biogeochemical cycling of carbon, nitrogen, sulphur and various metals, an understanding of how these organisms respond to environmental stresses is of fundamental and practical importance. In this Review, we highlight recent applications of systems biology tools in studying the stress responses of SRMs, particularly Desulfovibrio spp., at the cell, population, community and ecosystem levels. The syntrophic lifestyle of SRMs is also discussed, with a focus on system-level analyses of adaptive mechanisms. Such information is important for understanding the microbiology of the global sulphur cycle and for developing biotechnological applications of SRMs for environmental remediation, energy production, biocorrosion control, wastewater treatment and mineral recovery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sulphate-reducing microorganisms and the carbon and sulphur cycles.
Figure 2: Phylogenetic tree of sequenced genomes from sulphate-reducing microorganisms.
Figure 3: Stress response pathways in Desulfovibrio vulgaris.

Similar content being viewed by others

References

  1. Weber, H., Polen, T., Heuveling, J., Wendisch, V. F. & Hengge, R. Genome-wide analysis of the general stress response network in Escherichia coli: σS-dependent genes, promoters, and sigma factor selectivity. J. Bacteriol. 187, 1591–1603 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Storz, G. & Hengge-Aronis, R. Bacterial Stress Responses (ASM Press, Washington DC, 2000).

    Google Scholar 

  3. Hecker, M. & Völker, U. General stress response of Bacillus subtilis and other bacteria. Adv. Microb. Physiol. 44, 35–91 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Hecker, M., Pané-Farré, J. & Völker, U. SigB-dependent general stress response in Bacillus subtilis and related gram-positive bacteria. Annu. Rev. Microbiol. 61, 215–236 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Estruch, F. Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast. FEMS Microbiol. Rev. 24, 469–486 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Alm, E., Huang, K. & Arkin, A. The evolution of two-component systems in bacteria reveals different strategies for niche adaptation. PLoS Comput. Biol. 2, e143 (2006). This study shows that most of the recently acquired histidine kinases in D. vulgaris have arisen by lineage-specific expansion, and that these genes are more likely to be present as orphans, separate from their cognate partner.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Muyzer, G. & Stams, A. J. M. The ecology and biotechnology of sulphate-reducing bacteria. Nature Rev. Microbiol. 6, 441–454 (2008).

    Article  CAS  Google Scholar 

  8. Barton, L. L. & Fauque, G. D. Advances in Applied Microbiology Ch. 2 (eds Allen I. Laskin, S. S. & Geoffrey, M. G.) 68, 41–98 (Academic, New York, 2009).

    Google Scholar 

  9. Postgate, J. R. The Sulphate Reducing Bacteria (Cambridge Univ. Press, Cambridge, UK, 1984).

    Google Scholar 

  10. Voordouw, G. The genus Desulfovibrio: the Centennial. Appl. Environ. Microbiol. 61, 2813–2819 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Baumgartner, L. K. et al. Sulfate reducing bacteria in microbial mats: changing paradigms, new discoveries. Sediment. Geol. 185, 131–145 (2006).

    Article  CAS  Google Scholar 

  12. Goldstein E. J. C., Citron, D. M., Peraino, V. A. & Cross, S. A. Desulfovibrio desulfuricans bacteremia and review of human Desulfovibrio infections. J. Clin. Microbiol. 41, 2752–2754 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cardenas, E. et al. Significant association between sulfate-reducing bacteria and uranium-reducing microbial communities as revealed by a combined massively parallel sequencing-indicator species approach. Appl. Environ. Microbiol. 76, 6778–6786 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Coetser, S. E. & Cloete, T. E. Biofouling and biocorrosion in industrial water systems. Crit. Rev. Microbiol. 31, 213–232 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. He, Z. et al. GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. ISME J. 1, 67–77 (2007). A description of the first comprehensive functional gene array, GeoChip 2.0, and its application for tracking the dynamics of metal-reducing bacteria during in situ bioremediation of a uranium-contaminated site.

    Article  CAS  PubMed  Google Scholar 

  16. Dinh, H. T. et al. Iron corrosion by novel anaerobic microorganisms. Nature 427, 829–832 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Nemati, M., Jenneman, G. E. & Voordouw, G. Impact of nitrate-mediated microbial control of souring in oil reservoirs on the extent of corrosion. Biotechnol. Prog. 17, 852–859 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Hao, O. J., Chen, J. M., Huang, L. & Buglass, R. L. Sulfate-reducing bacteria. Crit. Rev. Environ. Sci. Tech. 26, 155–187 (1996).

    Article  CAS  Google Scholar 

  19. Satoh, H., Odagiri, M., Ito, T. & Okabe, S. Microbial community structures and in situ sulfate-reducing and sulfur-oxidizing activities in biofilms developed on mortar specimens in a corroded sewer system. Water Res. 43, 4729–4739 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Wall, J. D. & Krumholz, L. R. Uranium reduction. Annu. Rev. Microbiol. 60, 149–166 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Valls, M. & de Lorenzo, V. Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol. Rev. 26, 327–338 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Klonowska, A. et al. Hexavalent chromium reduction Desulfovibrio vulgaris Hildenborough causes transitory inhibition of sulfate reduction and cell growth. Appl. Microbiol. Biotechnol. 78, 1007–1016 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Rabus, R., Hansen, T. & Widdel, F. in The Prokaryotes. A Handbook on the Biology of Bacteria: Proteobacteria: Gamma subclass 3rd edn Vol. 2 Ch. 1.22 (eds Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H. & Stakebrandt, E.) 659–678 (Springer, New York, 2006).

    Google Scholar 

  24. Heidelberg, J. F. et al. The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nature Biotech. 22, 554–559 (2004). A keystone paper describing the first genome to be sequenced from a sulphate-reducing bacterium.

    Article  CAS  Google Scholar 

  25. Klenk, H. P. et al. The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390, 364–370 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Rabus, R. et al. The genome of Desulfotalea psychrophila, a sulfate-reducing bacterium from permanently cold Arctic sediments. Environ. Microbiol. 6, 887–902 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Nakazawa, H. et al. Whole genome sequence of Desulfovibrio magneticus strain RS-1 revealed common gene clusters in magnetotactic bacteria. Genome Res. 19, 1801–1808 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Strittmatter, A. W. et al. Genome sequence of Desulfobacterium autotrophicum HRM2, a marine sulfate reducer oxidizing organic carbon completely to carbon dioxide. Environ. Microbiol. 11, 1038–1055 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Junier, P. et al. The genome of the Gram-positive metal- and sulfate-reducing bacterium Desulfotomaculum reducens strain MI-1. Environ. Microbiol. 12, 2738–2754 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Spring, S. et al. Complete genome sequence of Desulfotomaculum acetoxidans type strain (5575T). Stand. Genomic. Sci. 1, 242–253 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chivian, D. et al. Environmental genomics reveals a single-species ecosystem deep within earth. Science 322, 275–278 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Thauer, R. K., Stackebrandt, E. & Hamilton, W. A. in Sulphate-Reducing Bacteria: Environmental and Engineered Systems Ch.1 (Cambridge Univ. Press, Cambridge, UK, 2007). An excellent summary of the energetics of sulphate reduction by bacteria.

    Google Scholar 

  33. Odom, J. M. & Peck, H. D. Jr. Hydrogen cycling as a general mechanism for energy coupling in the sulfate-reducing bacteria, Desulfovibrio sp. FEMS Microbiol. Lett. 12, 47–50 (1981). The first description of the hydrogen-cycling hypothesis.

    Article  CAS  Google Scholar 

  34. Voordouw, G. Carbon monoxide cycling by Desulfovibrio vulgaris Hildenborough. J. Bacteriol. 184, 5903–5911 (2002). This article provides a significant update to the hydrogen-cycling hypothesis based on genomic-sequence data and the identification of putative cytoplasmic hydrogenases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rossi, M. et al. The hmc operon of Desulfovibrio vulgaris subsp. vulgaris Hildenborough encodes a potential transmembrane redox protein complex. J. Bacteriol. 175, 4699–4711 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zane, G. M., Yen, H. C. & Wall, J. D. Effect of the deletion of qmoABC and the promoter distal gene encoding a hypothetical protein on sulfate-reduction in Desulfovibrio vulgaris Hildenborough. Appl. Environ. Microbiol. 76, 5500–5509. (2010).

    Google Scholar 

  37. Mukhopadhyay, A. et al. Salt stress in Desulfovibrio vulgaris Hildenborough: an integrated genomics approach. J. Bacteriol. 188, 4068–4078 (2006). A comprehensive use of data from various functional genomic studies beyond transcriptomics and proteomics to elucidate the cellular response to stress conditions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. He, Z. et al. Global transcriptional, physiological, and metabolite analyses of the responses of Desulfovibrio vulgaris Hildenborough to salt adaptation. Appl. Environ. Microbiol. 76, 1574–1586 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. He, Q. et al. Impact of elevated nitrate on sulfate-reducing bacteria: a comparative study of Desulfovibrio vulgaris. ISME J. 4, 1386–1397 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. He, Q. et al. Energetic consequences of nitrite stress in Desulfovibrio vulgaris Hildenborough, inferred from global transcriptional analysis. Appl. Environ. Microbiol. 72, 4370–4381 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pereira, P. et al. Energy metabolism in Desulfovibrio vulgaris Hildenborough: insights from transcriptome analysis. Antonie Van Leeuwenhoek 93, 347–362 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Galperin, M. Y. Diversity of structure and function of response regulator output domains. Curr. Opin. Microbiol. 13, 150–159 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Galperin, M. Y., Higdon, R. & Kolker, E. Interplay of heritage and habitat in the distribution of bacterial signal transduction systems. Mol. Biosyst. 6, 721–728 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ulrich, L. E., Koonin, E. V. & Zhulin, I. B. One-component systems dominate signal transduction in prokaryotes. Trends Microbiol. 13, 52–56 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mascher, T., Helmann, J. D. & Unden, G. Stimulus perception in bacterial signal-transducing histidine kinases. Microbiol. Mol. Biol. Rev. 70, 910–938 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rodionov, D., Dubchak, I., Arkin, A., Alm, E. & Gelfand, M. Reconstruction of regulatory and metabolic pathways in metal-reducing δ-proteobacteria. Genome Biol. 5, R90 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Rodionov, D. A., Dubchak, I. L., Arkin, A. P., Alm, E. J. & Gelfand, M. S. Dissimilatory metabolism of nitrogen oxides in bacteria: comparative reconstruction of transcriptional networks. PLoS Comput. Biol. 1, e55 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Mukhopadhyay, A. et al. Cell-wide responses to low-oxygen exposure in Desulfovibrio vulgaris Hildenborough. J. Bacteriol. 189, 5996–6010 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pereira, P. et al. Transcriptional response of Desulfovibrio vulgaris Hildenborough to oxidative stress mimicking environmental conditions. Arch. Microbiol. 189, 451–461 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Zhang, W., Culley, D. E., Hogan, M., Vitiritti, L. & Brockman, F. J. Oxidative stress and heat-shock responses in Desulfovibrio vulgaris by genome-wide transcriptomic analysis. Antonie Van Leeuwenhoek 90, 41–55 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Zhou, A. et al. Hydrogen peroxide-induced oxidative stress responses in Desulfovibrio vulgaris Hildenborough. Environ. Microbiol. 12, 2645–2657 (2010).

    CAS  PubMed  Google Scholar 

  52. Haveman, S. A., Greene, E. A., Stilwell, C. P., Voordouw, J. K. & Voordouw, G. Physiological and gene expression analysis of inhibition of Desulfovibrio vulgaris Hildenborough by nitrite. J. Bacteriol. 186, 7944–7950 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chhabra, S. R. et al. Global analysis of heat shock response in Desulfovibrio vulgaris Hildenborough. J. Bacteriol. 188, 1817–1828 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Clark, M. E. et al. Temporal transcriptomic analysis as Desulfovibrio vulgaris Hildenborough transitions into stationary phase during electron donor depletion. Appl. Environ. Microbiol. 72, 5578–5588 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Stolyar, S. et al. Response of Desulfovibrio vulgaris to alkaline stress. J. Bacteriol. 189, 8944–8952 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hazen, T. C. & Stahl, D. A. Using the stress response to monitor process control: pathways to more effective bioremediation. Curr. Opin. Biotechnol. 17, 285–290 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Durfee, T. et al. The complete genome sequence of Escherichia coli DH10B: insights into the biology of a laboratory workhorse. J. Bacteriol. 190, 2597–2606 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lobo, S. A., Melo, A. M., Carita, J. N., Teixeira, M. & Saraiva, L. M. The anaerobe Desulfovibrio desulfuricans ATCC 27774 grows at nearly atmospheric oxygen levels. FEBS Lett. 581, 433–436 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Cypionka, H. Oxygen respiration by Desulfovibrio species. Annu. Rev. Microbiol. 54, 827–848 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Coulter, E. D. & Kurtz, D. M. A role for rubredoxin in oxidative stress protection in Desulfovibrio vulgaris: catalytic electron transfer to rubrerythrin and two-iron superoxide reductase. Arch. Biochem. Biophys. 394, 76–86 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Lumppio, H. L., Shenvi, N. V., Summers, A. O., Voordouw, G. & Kurtz, D. M. Jr. Rubrerythrin and rubredoxin oxidoreductase in Desulfovibrio vulgaris: a novel oxidative stress protection system. J. Bacteriol. 183, 101–108 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fournier, M. et al. Function of oxygen resistance proteins in the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. J. Bacteriol. 185, 71–79 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Jenney, F. E. Jr. et al. Anaerobic microbes: oxygen detoxification without superoxide dismutase. Science 286, 306–309 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Arnér, E. S. J. & Holmgren, A. Physiological functions of thioredoxin and thioredoxin reductase. Eur. J. Biochem. 267, 6102–6109 (2000).

    Article  PubMed  Google Scholar 

  65. Storz, G. & Imlayt, J. A. Oxidative stress. Curr. Opin. Microbiol. 2, 188–194 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Lee, J. W. & Helmann, J. D. The PerR transcription factor senses H2O2 by metal-catalysed histidine oxidation. Nature 440, 363–367 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Lee, J. W. & Helmann, J. Functional specialization within the Fur family of metalloregulators. Biometals 20, 485–499 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Jozefczuk, S. et al. Metabolomic and transcriptomic stress response of Escherichia coli. Mol. Syst. Biol. 6, 364 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Mitchell, A. et al. Adaptive prediction of environmental changes by microorganisms. Nature 460, 220–224 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Kapfhammer, D. et al. Role for glycine betaine transport in Vibrio cholerae osmoadaptation and biofilm formation within microbial communities. Appl. Environ. Microbiol. 71, 3840–3847(2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ko, R., Smith, L. T. & Smith, G. M. Glycine betaine confers enhanced osmotolerance and cryotolerance on Listeria monocytogenes. J. Bacteriol. 176, 426–431 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bender, K. S. et al. Analysis of a ferric uptake regulator (Fur) mutant of Desulfovibrio vulgaris Hildenborough. Appl. Environ. Microbiol. 73, 5389–5400 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang, W., Culley, D., Nie, L. & Scholten, J. Comparative transcriptome analysis of Desulfovibrio vulgaris grown in planktonic culture and mature biofilm on a steel surface. Appl. Microbiol. Biotechnol. 76, 447–457 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Elias, D. A. et al. Expression profiling of hypothetical genes in Desulfovibrio vulgaris leads to improved functional annotation. Nucleic Acids Res. 37, 2926–2939 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Stams, A. J. M. & Plugge, C. M. Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nature Rev. Microbiol. 7, 568–577 (2009). A recent review describing the discovery, diversity and energetics of syntrophy.

    Article  CAS  Google Scholar 

  76. Bryant, M. P et al. Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. Appl. Environ. Microbiol. 33, 51162–51169 (1977).

    Google Scholar 

  77. Stolyar, S. et al. Metabolic modeling of a mutualistic microbial community. Mol. Syst. Biol. 3, 92 (2007). An early example of the extension of flux balance modelling to a microbial community.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Walker, C. B. et al. The electron transfer system of syntrophically grown Desulfovibrio vulgaris. J. Bacteriol. 191, 5793–5801 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Whitman, W. B., Shieh, J., Sohn, S., Caras, D. S. & Premachandran, U. Isolation and characterization of 22 mesophilic methanococci. Syst. Appl. Microbiol. 7, 235–240 (1986).

    Article  Google Scholar 

  80. Endler, J. A. Natural Selection in the Wild (Princeton Univ. Press, Princeton, 1986).

    Google Scholar 

  81. Lenski, R. E., Rose, M. R., Simpson, S. C. & Tadler, S. C. Long-term experimental evolution in Escherichia coli. I. Adaptation and divergence during 2,000 generations. Am. Nat. 138, 1315–1341 (1991).

    Google Scholar 

  82. Thompson, J. N. Rapid evolution as an ecological process. Trends Ecol. Evol. 13, 329–332 (1998).

    Article  CAS  PubMed  Google Scholar 

  83. May, R. M. Theoretical Ecology: Principles and Applications 49–71 (Saunders, Philadelphia, 1976). The presentation of the first ecological model to be developed for mutually beneficial interactions between species. This model predicts that mutualistic associations will be unstable because they are pushed to unsustainable levels of growth.

    Google Scholar 

  84. Sachs, J. L., Mueller, U. G., Wilcox, T. P. & Bull., J. J. The evolution of cooperation. Q. Rev. Biol. 79, 135–160 (2004).

    Article  PubMed  Google Scholar 

  85. Shou, W., Ram, S. & Vilar, J. M. G. Synthetic cooperation in engineered yeast populations. Proc. Natl Acad. Sci. USA 104, 1877–1882 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hillesland, K. L. & Stahl, D. A. Rapid evolution of stability and productivity at the origin of a microbial mutualism. Proc. Natl Acad. Sci. USA 107, 2124–2129 (2010). The first example of syntrophy evolution observed in real time. This paper is a good example of how research on a Desulfovibrio sp. model system can both affect microbiology and address broad questions in evolutionary biology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Miller, L. D. et al. Establishment and metabolic analysis of a model microbial community for understanding trophic and electron accepting interactions of subsurface anaerobic environments. BMC Microbiol. 10, 149 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Shaikh, A. S., Tang, Y. J., Mukhopadhyay, A. & Keasling, J. D. Isotopomer distributions in amino acids from a highly expressed protein as a proxy for those from total protein. Anal. Chem. 80, 886–890 (2008). This study develops a strategy that allows the use of isotopomer-based flux analysis to study mixed cultures, such as the D. vulgaris H.– M. maripaludis co-culture.

    Google Scholar 

  89. Breitbart, M. et al. Metagenomic and stable isotopic analyses of modern freshwater microbialites in Cuatro Ciénegas, Mexico. Environ. Microbiol. 11, 16–34 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Biddle, J. F., Fitz-Gibbon, S., Schuster, S. C., Brenchley, J. E. & House, C. H. Metagenomic signatures of the Peru Margin subseafloor biosphere show a genetically distinct environment Proc. Natl Acad. Sci. USA 105, 10583–10588 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hu, Y. et al. Construction and preliminary analysis of a deep-sea sediment metagenomic fosmid library from Qiongdongnan Basin, South China Sea. Mar. Biotechnol. 12, 719–727 (2010).

    Article  CAS  Google Scholar 

  92. Woyke, T. et al. Symbiosis insights through metagenomic analysis of a microbial consortium. Nature 443, 950–955 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Pernthaler, A. et al. Diverse syntrophic partnerships from deep-sea methane vents revealed by direct cell capture and metagenomics. Proc. Natl Acad. Sci. USA 105, 7052–7057 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gill, S. R. et al. Metagenomic analysis of the human distal gut microbiome. Science 312, 1355–1359 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Warnecke, F. et al. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450, 560–565 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Brulc, J. M. et al. Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proc. Natl Acad. Sci. USA 106, 1948–1953 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hemme, C. L. et al. Metagenomic insights into evolution of a heavy metal-contaminated groundwater microbial community. ISME J. 4, 660–672 (2010). The first community-level analysis to document the impact of anthropogenic change on microbial communities and to demonstrate the importance of lateral gene transfer in the adaptation of a microbial community to environmental change.

    Article  CAS  PubMed  Google Scholar 

  98. Meyer, B. & Kuever, J. Molecular analysis of the diversity of sulfate-reducing and sulfur-oxidizing prokaryotes in the environment using aprA as functional marker gene. Appl. Environ. Microbiol. 73, 7664–7679 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Karkhoff-Schweizer, R., Huber, D. & Voordouw, G. Conservation of the genes for dissimilatory sulfite reductase from Desulfovibrio vulgaris and Archaeoglobus fulgidus allows their detection by PCR. Appl. Environ. Microbiol. 61, 290–296 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Wagner, M., Roger, A. J., Flax, J. L., Brusseau, G. A. & Stahl, D. A. Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J. Bacteriol. 180, 2975–2982 (1998). This paper develops the general approach for using the dsrAB genes to characterize the diversity of natural populations of sulphate-reducing microorganisms. Many of the sequences on the GeoChip were derived from these environmental sequences.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Dar, S. A., Kuenen, J. G. & Muyzer, G. Nested PCR-denaturing gradient gel electrophoresis approach to determine the diversity of sulfate-reducing bacteria in complex microbial communities. Appl. Environ. Microbiol. 71, 2325–2330 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Moreau, J. W., Zierenberg, R. A. & Banfield, J. F. Diversity of dissimilatory sulfite reductase genes (dsrAB) in a salt marsh impacted by long-term acid mine drainage. Appl. Environ. Microbiol. 76, 4819–4828 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Joulian, C., Ramsing, N. B. & Ingvorsen, K. Congruent phylogenies of most common small-subunit rRNA and dissimilatory sulfite reductase gene sequences retrieved from estuarine sediments. Appl. Environ. Microbiol. 67, 3314–3318 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kjeldsen, K. U. et al. Diversity of sulfate-reducing bacteria from an extreme hypersaline sediment, Great Salt Lake (Utah). FEMS Microbiol. Ecol. 60, 287–298 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Leloup, J., Quillet, L., Berthe, T. & Petit, F. Diversity of the dsrAB (dissimilatory sulfite reductase) gene sequences retrieved from two contrasting mudflats of the Seine estuary, France. FEMS Microbiol. Ecol. 55, 230–238 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Liu, X., Bagwell, C. E., Wu, L., Devol, A. H. & Zhou, J. Molecular diversity of sulfate-reducing bacteria from two different continental margin habitats. Appl. Environ. Microbiol. 69, 6073–6081 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhou, J. Microarrays for bacterial detection and microbial community analysis. Curr. Opin. Microbiol. 6, 288–294 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Brodie, E. L. et al. Application of a high-density oligonucleotide microarray approach to study bacterial population dynamics during uranium reduction and reoxidation. Appl. Environ. Microbiol. 72, 6288–6298 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. He, Z. et al. GeoChip 3.0 as a high-throughput tool for analyzing microbial community composition, structure and functional activity. ISME J. 4, 1167–1179 (2010). This article marks the release of an updated GeoChip 3.0, with details for selected gene families, and describes its use to analyse the effects of plant diversity on the functional diversity and structure of soil microbial communities.

    Article  CAS  PubMed  Google Scholar 

  110. Loy, A., Kusel, K., Lehner, A., Drake, H. L. & Wagner, M. Microarray and functional gene analyses of sulfate-reducing prokaryotes in low-sulfate, acidic fens reveal cooccurrence of recognized genera and novel lineages. Appl. Environ. Microbiol. 70, 6998–7009 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Loy, A. et al. Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing prokaryotes in the environment. Appl. Environ. Microbiol. 68, 5064–5081 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hazen, T. C. et al. Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science 330, 204–208 (2010). This paper details the use of GeoChip 4.0 and other technologies to examine the potential of indigenous microbial communities to degrade contaminants from the oil spill in the Gulf of Mexico.

    Article  CAS  PubMed  Google Scholar 

  113. Van Nostrand, J. D. et al. GeoChip-based analysis of functional microbial communities during the reoxidation of a bioreduced uranium-contaminated aquifer. Environ. Microbiol. 11, 2611–2626 (2009).

    Article  CAS  PubMed  Google Scholar 

  114. Xu, M. et al. Responses of microbial community functional structures to pilot-scale uranium in situ bioremediation. ISME J. 4, 1060–1070 (2010).

    Article  PubMed  Google Scholar 

  115. Wang, F. et al. GeoChip-based analysis of metabolic diversity of microbial communities at the Juan de Fuca Ridge hydrothermal vent. Proc. Natl Acad. Sci. USA 106, 4840–4845 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Mason, O. U. et al. Prokaryotic diversity, distribution, and insights into their role in biogeochemical cycling in marine basalts. ISME J. 3, 231–242 (2009).

    Article  CAS  PubMed  Google Scholar 

  117. Aitken, C. M., Jones, D. M. & Larter, S. R. Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs. Nature 431, 291–294 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Head, I. M., Jones, D. M. & Larter, S. R. Biological activity in the deep subsurface and the origin of heavy oil. Nature 426, 344–352 (2003).

    Article  CAS  PubMed  Google Scholar 

  119. Jones, D. M. et al. Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature 451, 176–180 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Kniemeyer, O. et al. Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria. Nature 449, 898–901 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Zhou, J., Kang, S., Schadt, C. W. & Garten, C. T. Spatial scaling of functional gene diversity across various microbial taxa. Proc. Natl Acad. Sci. USA 105, 7768–7773 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Liang, Y. et al. Microarray-based analysis of microbial functional diversity along an oil contamination gradient in oil field. FEMS Microbiol. Ecol. 70, 324–333 (2009).

    Article  CAS  PubMed  Google Scholar 

  123. Liang, Y. et al. Functional gene diversity of soil microbial communities from five oil-contaminated fields in China. ISME J. 5, 403–413 (2011).

    Article  PubMed  Google Scholar 

  124. Xiong, J. et al. Microbial communities and functional genes associated with soil arsenic contamination and rhizosphere of thearsenic hyper-accumulating plant Pteris vittata L. Appl. Environ. Microbiol. 76, 7277–7284 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Miletto, M. et al. Biogeography of sulfate-reducing prokaryotes in river floodplains. FEMS Microbiol. Ecol. 64, 395–406 (2008).

    Article  CAS  PubMed  Google Scholar 

  126. Rastogi, G. et al. Microbial and mineralogical characterizations of soils collected from the deep biosphere of the former homestake gold mine, South Dakota. Microb. Ecol. 60, 539–550 (2010).

    Article  CAS  PubMed  Google Scholar 

  127. Beyenal, H. et al. Uranium immobilization by sulfate-reducing biofilms. Environ. Sci. Technol. 38, 2067–2074 (2004).

    Article  CAS  PubMed  Google Scholar 

  128. Gu, B. et al. Bioreduction of uranium in a contaminated soil column. Environ. Sci. Technol. 39, 4841–4847 (2005).

    Article  CAS  PubMed  Google Scholar 

  129. Bagwell, C. E., Liu, X., Wu, L. & Zhou, J. Effects of legacy nuclear waste on the compositional diversity and distributions of sulfate-reducing bacteria in a terrestrial subsurface aquifer. FEMS Microbiol. Ecol. 55, 424–431 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Hwang, C. et al. Changes in bacterial community structure correlate with initial operating conditions of a field-scale denitrifying fluidized bed reactor. Appl. Microbiol. Biotechnol. 71, 748–760 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Nyman, J. et al. Heterogeneous response to biostimulation for U(VI) reduction in replicated sediment microcosms. Biodegradation 17, 303–316 (2006).

    Article  CAS  PubMed  Google Scholar 

  132. Wu, W. M. et al. Pilot-scale in situ bioremedation of uranium in a highly contaminated aquifer. 2. Reduction of U(VI) and geochemical control of U(VI) bioavailability. Environ. Sci. Technol. 40, 3986–3995 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Michalsen, M. M. et al. Changes in microbial community composition and geochemistry during uranium and technetium bioimmobilization. Appl. Environ. Microbiol. 73, 5885–5896 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Nyman, J., Gentile, M. & Criddle, C. Sulfate requirement for the growth of U(VI)-reducing bacteria in an ethanol-fed enrichment. Bioremed. J. 11, 21–32 (2007).

    Article  CAS  Google Scholar 

  135. Nyman, J. L., Wu, H. I., Gentile, M. E., Kitanidis, P. K. & Criddle, C. S. Inhibition of a U(VI)- and sulfate-reducing consortia by U(VI). Environ. Sci. Technol. 41, 6528–6533 (2007).

    Article  CAS  PubMed  Google Scholar 

  136. Wu, W. M. et al. In situ bioreduction of uranium (VI) to submicromolar levels and reoxidation by dissolved oxygen. Environ. Sci. Technol. 41, 5716–5723 (2007).

    Article  CAS  PubMed  Google Scholar 

  137. Akob, D. M. et al. Functional diversity and electron donor dependence of microbial populations capable of U(VI) reduction in radionuclide-contaminated subsurface sediments. Appl. Environ. Microbiol. 74, 3159–3170 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Boonchayaanant, B., Kitanidis, P. K. & Criddle, C. S. Growth and cometabolic reduction kinetics of a uranium- and sulfate-reducing Desulfovibrio/Clostridia mixed culture: temperature effects. Biotechnol. Bioeng. 99, 1107–1119 (2008).

    Article  CAS  PubMed  Google Scholar 

  139. Hwang, C. et al. Bacterial community succession during in situ uranium bioremediation: spatial similarities along controlled flow paths. ISME J. 3, 47–64 (2009).

    Article  CAS  PubMed  Google Scholar 

  140. Waldron, P. J. et al. Functional gene array-based analysis of microbial community structure in groundwaters with a gradient of contaminant levels. Environ. Sci. Technol. 43, 3529–3534 (2009).

    Article  CAS  PubMed  Google Scholar 

  141. Boonchayaanant, B., Gu, B., Wang, W., Ortiz, M. & Criddle, C. Can microbially-generated hydrogen sulfide account for the rates of U(VI) reduction by a sulfate-reducing bacterium? Biodegradation 21, 81–95 (2010).

    Article  CAS  PubMed  Google Scholar 

  142. Marcy, Y. et al. Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proc. Natl Acad. Sci. USA 104, 11889–11894 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Podar, M. et al. Targeted access to the genomes of low-abundance organisms in complex microbial communities. Appl. Environ. Microbiol. 73, 3205–3214 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Zhou, J., Thompson, D. K., Xu, Y. & Tiedje, J. M. (eds) Microbial Functional Genomics (Wiley & Sons, 2004).

    Book  Google Scholar 

  145. Zhou, J. Predictive microbial ecology. Microb. Biotechnol. 2, 154–156 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kitano, H. Systems biology: a brief overview. Science 295, 1662–1664 (2002).

    Article  CAS  PubMed  Google Scholar 

  147. Gaucher, S. P., Redding, A. M., Mukhopadhyay, A., Keasling, J. D. & Singh, A. K. Post-translational modifications of Desulfovibrio vulgaris Hildenborough sulfate reduction pathway proteins. J. Proteome Res. 7, 2320–2331 (2008).

    Article  CAS  PubMed  Google Scholar 

  148. Han, B. G. et al. Survey of large protein complexes in D. vulgaris reveals great structural diversity. Proc. Natl Acad. Sci. USA 106, 16580–16585 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Tang, Y. et al. Pathway confirmation and flux analysis of central metabolic pathways in Desulfovibrio vulgaris Hildenborough using gas chromatography-mass spectrometry and fourier transform-ion cyclotron resonance mass spectrometry. J. Bacteriol. 189, 940–949 (2007).

    Article  CAS  PubMed  Google Scholar 

  150. Zhou, J. et al. Functional molecular ecological networks. mBio. 1, e00169–e00110 (2010).

    PubMed  PubMed Central  Google Scholar 

  151. Venceslau, S. S., Lino, R. R. et al. The Qrc membrane complex, related to the alternative complex III, is a menaquinone reductase involved in sulfate respiration. J. Biol. Chem. 285, 22774–22783(2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Rosenzweig, R. F., Sharp, R. R., Treves, D. S. & Adams, J. Microbial evolution in a simple unstructured environment: genetic differentiation in Escherichia coli. Genetics 137, 903–917 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Marx, C. J. Getting in touch with your friends. Science 324, 1150–1151 (2009).

    Article  CAS  PubMed  Google Scholar 

  154. Schink, B. Synergistic interactions in the microbial world. Antie van Leeuwenhoek 81, 257–261 (2002).

    Article  CAS  Google Scholar 

  155. Summers, Z. M. et al. Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science 330, 1413–1415 (2010).

    Article  CAS  PubMed  Google Scholar 

  156. Wu, M. & Eisen, J. A simple, fast, and accurate method of phylogenomic inference. Genome Biol. 9, R151 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Tamura, K., Dudley, J., Nei, M. & Kumar, S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596–1599 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. W. Fields, A. Deutschbauer, K. S. Bender, R. Chakraborty and L. Rajeev for providing comments on this Review. The efforts in preparing this Review were supported by the Genomics: GTL Foundational Science programme of the US Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 (as part of ENIGMA (Ecosystems and Networks Integrated with Genes and Molecular Assemblies), a Scientific Focus Area) to the Lawrence Berkeley National Laboratory, and in part through award 0854332 from the Environmental Engineering Program of the US National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jizhong Zhou.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (figure)

Comparison of the genome of Desulfovibrio vulgaris Hildenborough with those of other sulphate-reducing microorganisms (SRMs). (PDF 340 kb)

Related links

Related links

FURTHER INFORMATION

Institute for Environmental Genomics homepage

Lawrence Berkeley National Laboratory ENIGMA homepage

Entrez Genome

Glossary

Stress

A deviation from optimal growth conditions that leads to a reduced growth rate or cellular damage as a result of environmental or internal changes.

Adaptations

Genetically encoded traits that enhance the fitness of their bearers.

Functional genomics

Large-scale genomic studies that use functional measurements such as changes in the levels of mRNAs, proteins and metabolites, combined with statistical analyses, mathematical modelling and computational analysis of the results, to gain knowledge of cell physiology.

Syntrophic

Pertaining to a type of mutualism in which two or more species cooperate to complete a single energy-yielding reaction from which neither species alone can gain energy.

Metagenomic

Pertaining to the study of microbial community genomes directly from environmental samples using high-throughput sequencing and associated genomics technologies.

Signal transduction

A mechanism that converts a mechanical or chemical stimulus into a specific cellular response.

Acclimation

The phenotypic response of a population to a change in environmental conditions.

Transcriptomics

The systematic study of a transcriptome (a collection of all of the RNA molecules (mRNA, ribosomal RNA, tRNA and other non-coding RNAs) that are produced in a cell population) using microarrays or sequencing.

Proteomics

The large-scale study of proteins, particularly their structures and functions. Mass spectrometry is a popular method for conducting proteomic measurements in a high-throughput manner.

Metabolomics

The systematic study of a metabolome, which is the collection of all the metabolites in a biological cell, tissue, organ or organism.

One-component signal transduction systems

Signal-sensing and response systems in which the signal transducer is the direct fusion of an input domain to an output domain in a single protein molecule.

Cyclic di-GMP

A second messenger that is used in signal transduction in a wide variety of bacteria.

Transcription factor σ54

A protein in bacteria that enables binding of RNA polymerase to gene promoters specifically in response to nitrogen limitation.

Regulon

A set of genes or operons that are regulated by the same regulatory protein.

Flux balance analysis

Mathematical modelling of the flux of metabolites through metabolic networks, which can be as complex as the total metabolic capacity encoded by a genome.

Functional gene arrays

Microarrays that contain probes targeting sequences which are unique to genes within families of interest. For example, these may be genes encoding enzymes that are involved in antibiotic resistance, energy metabolism, stress responses, the degradation of organic contaminants or the biogeochemical cycles of carbon, nitrogen, phosphorus, sulphur and various metals, or they may be genes from phages or human pathogens.

Chemocline

The interface region with a sharp vertical chemical gradient in a body of water. In this case, it refers to an O2 gradient, which is caused by the production of O2 by the cyanobacteria in a mat.

Single-cell genomics

The characterization of the genome of an isolated single cell (or a group of these cells) by large-scale sequencing and other high-throughput technologies. Single cells are typically isolated by optical tweezers (which use highly focused laser beams to physically manipulate microscopic objects), flow sorting or serial dilution, and these cells are then subjected to genome amplification, sequencing and/or functional measurements.

Experimental evolution

An approach to studying evolution that involves the propagation of populations for many generations in controlled and reproducible environmental conditions, and the observation of the phenotypic and genetic changes in those populations.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, J., He, Q., Hemme, C. et al. How sulphate-reducing microorganisms cope with stress: lessons from systems biology. Nat Rev Microbiol 9, 452–466 (2011). https://doi.org/10.1038/nrmicro2575

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2575

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research