Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pathogenomics of Xanthomonas: understanding bacterium–plant interactions

Key Points

  • Xanthomonas is a large genus of Gram-negative, yellow-pigmented bacteria that cause disease in nearly 400 plant hosts, including economically important crops such as rice, citrus, banana, cabbage, tomato, pepper and bean.

  • Currently, the complete genome sequences of 11 Xanthomonas spp. strains have been determined and draft genomes of a further seven strains are available, in total comprising seven species and nine pathovars that are distinguished by their host range.

  • Large-scale comparative analysis has revealed extraordinary genome plasticity within the genus Xanthomonas. Additional genetic variation comes from the presence of plasmids and large sets of insertion sequence (IS) elements in some strains.

  • The determination of genome sequences has greatly accelerated functional analyses that aim to understand the molecular basis of virulence of Xanthomonas spp.

  • Comparative genomics in Xanthomonas spp. has led to a better understanding of genome evolution and has identified candidate genes that may determine host and tissue specificity.

Abstract

Xanthomonas is a large genus of Gram-negative bacteria that cause disease in hundreds of plant hosts, including many economically important crops. Pathogenic species and pathovars within species show a high degree of host plant specificity and many exhibit tissue specificity, invading either the vascular system or the mesophyll tissue of the host. In this Review, we discuss the insights that functional and comparative genomic studies are providing into the adaptation of this group of bacteria to exploit the extraordinary diversity of plant hosts and different host tissues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phylogenetic analysis of bacteria within the genus Xanthomonas and the related genera Xylella and Stenotrophomonas.
Figure 2: Xanthomonas species and pathovars show host and tissue specificity.

Similar content being viewed by others

References

  1. Jun, S.-R., Sims, G. E., Wu, G. A. & Kim, S.-H. Whole-proteome phylogeny of prokaryotes by feature frequency profiles: an alignment-free method with optimal feature resolution. Proc. Natl Acad. Sci. USA 107, 133–138 (2010). An interesting whole-proteome phylogeny study of prokaryotes that shows the Xanthomonadaceae family profiles clustered with the Betaproteobacteria.

    Article  CAS  PubMed  Google Scholar 

  2. Parkinson, N. et al. Phylogenetic analysis of Xanthomonas species by comparison of partial gyrase B gene sequences. Int. J. Syst. Evol. Microbiol. 57, 2881–2887 (2007). Highlights the complexity of the Xanthomonas spp. and details useful genetic tools for species discrimination.

    Article  CAS  PubMed  Google Scholar 

  3. Dar, G. H., Anand, R. C. & Sharma, P. K. Genetically engineered microorganisms to rescue plants from frost injury. Adv. Biochem. Eng. Biotechnol. 50, 1–19 (1993).

    CAS  PubMed  Google Scholar 

  4. Ryan, R. P. et al. Passing GO (gene ontology) in plant pathogen biology: a report from the Xanthomonas Genomics Conference. Cell. Microbiol. 11, 1689–1696 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Comas, I., Moya, A., Azad, R. K., Lawrence, J. G. & Gonzalez-Candelas, F. The evolutionary origin of Xanthomonadales genomes and the nature of the horizontal gene transfer process. Mol. Biol. Evol. 23, 2049–2057 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Lima, W. C., Paquola, A. C. M., Varani, A. M., Van Sluys, M. A. & Menck, C. F. M. Laterally transferred genomic islands in Xanthomonadales related to pathogenicity and primary metabolism. FEMS Microbiol. Lett. 281, 87–97 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Pieretti, I. et al. The complete genome sequence of Xanthomonas albilineans provides new insights into the reductive genome evolution of the xylem-limited Xanthomonadaceae. BMC Genomics 10, 1471–1475 (2009).

    Article  CAS  Google Scholar 

  8. Darrasse, A. et al. Transmission of plant-pathogenic bacteria by nonhost seeds without induction of an associated defense reaction at emergence. Appl. Environ. Microbiol. 76, 6787–6796 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cazalet, C. et al. Analysis of the Legionella longbeachae genome and transcriptome uncovers unique strategies to cause legionnaires' disease. PLoS Genet. 6, e1000851 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Lima, W. C., Van Sluys, M. A. & Menck, C. F. M. Non-gamma-proteobacteria gene islands contribute to the Xanthomonas genome. OMICS 9, 160–172 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Lu, H. et al. Acquisition and evolution of plant pathogenesis-associated gene clusters and candidate determinants of tissue-specificity in Xanthomonas. PLoS ONE 3, e3828 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Laia, M. L. et al. New genes of Xanthomonas citri subsp. citri involved in pathogenesis and adaptation revealed by a transposon-based mutant library. BMC Microbiol. 9, 12 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Qian, W. et al. Comparative and functional genomic analyses of the pathogenicity of phytopathogen Xanthomonas campestris pv. campestris. Genome Res. 15, 757–767 (2005). An excellent study demonstrating the power of comparative and functional genomics to provide valuable information about Xanthomonas spp. pathogenicity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang, L. F., Rong, W. & He, C. Z. Two Xanthomonas extracellular polygalacturonases, PghAxc and PghBxc, are regulated by type III secretion regulators HrpX and HrpG and are required for virulence. Mol. Plant Microbe Interact. 21, 555–563 (2008).

    Article  PubMed  CAS  Google Scholar 

  15. Blanvillain, S. et al. Plant carbohydrate scavenging through TonB-dependent receptors: a feature shared by phytopathogenic and aquatic bacteria. PLoS ONE 2, e224 (2007). A systematic mutagenesis study of Xanthomonas spp. TonB-dependent receptors identifying a new type of CUT locus that is required for pathogenicity.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Boulanger, A. et al. Identification and regulation of the N-acetylglucosamine utilization pathway of the plant pathogenic bacterium Xanthomonas campestris pv. campestris. J. Bacteriol. 192, 1487–1497 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hengge, R. Principles of c-di-GMP signalling in bacteria. Nature Rev. Microbiol. 7, 263–273 (2009).

    Article  CAS  Google Scholar 

  18. Romling, U. & Simm, R. Bacterial sensing and signaling. Prevailing concepts of c-di-GMP signaling. Contrib. Microbiol. 5, 161–181 (2009).

    Article  Google Scholar 

  19. Schirmer, T. & Jenal, U. Structural and mechanistic determinants of c-di-GMP signalling. Nature Rev. Microbiol. 7, 724–735 (2009).

    Article  CAS  Google Scholar 

  20. Ryan, R. P. et al. Cyclic di-GMP signalling in the virulence and environmental adaptation of Xanthomonas campestris. Mol. Microbiol. 63, 429–442 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Pilot, G. et al. Overexpression of glutamine dumper 1 leads to hypersecretion of glutamine from hydathodes of Arabidopsis leaves. Plant Cell 16, 1827–1840 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Qian, W., Han, Z. J., Tao, J. & He, C. Z. Genome-scale mutagenesis and phenotypic characterization of two-component signal transduction systems in Xanthomonas campestris pv. campestris ATCC 33913. Mol. Plant Microbe Interact. 21, 1128–1138 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. He, Y. W., Boon, C., Zhou, L. & Zhang, L. H. Co-regulation of Xanthomonas campestris virulence by quorum sensing and a novel two-component regulatory system RavS/RavR. Mol. Microbiol. 71, 1464–1476 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Grant, S. R., Fisher, E. J., Chang, J. H., Mole, B. M. & Dangl, J. L. Subterfuge and manipulation: type III effector proteins of phytopathogenic bacteria. Ann. Rev. Microbiol. 60, 425–449 (2006).

    Article  CAS  Google Scholar 

  25. Nomura, K., Melotto, M. & He, S. Y. Suppression of host defense in compatible plant–Pseudomonas syringae interactions. Curr. Opin. Plant Biol. 8, 361–368 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Rohmer, L., Guttman, D. S. & Dangl, J. L. Diverse evolutionary mechanisms shape the type III effector virulence factor repertoire in the plant pathogen Pseudomonas syringae. Genetics 167, 1341–1360 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. White, F. F., Potnis, N., Jones, J. B. & Koebnik, R. The type III effectors of Xanthomonas. Mol. Plant Pathol. 10, 749–766 (2009). A thorough review of type III effectors that are associated with Xanthomonas strains.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Song, C. F. & Yang, B. Mutagenesis of 18 type III effectors reveals virulence function of XopZ(PXO99) in Xanthomonas oryzae pv. oryzae. Mol. Plant Microbe Interact. 23, 893–902 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Seo, Y. S. et al. A two-genome microarray for the rice pathogens Xanthomonas oryzae pv. oryzae and X. oryzae pv. oryzicola and its use in the discovery of a difference in their regulation of hrp genes. BMC Microbiol. 8, 99 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. He, Y. W. et al. Xanthomonas campestris cell–cell communication involves a putative nucleotide receptor protein Clp and a hierarchical signalling network. Mol. Microbiol. 64, 281–292 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. He, Y. W. et al. Genome scale analysis of diffusible signal factor regulon in Xanthomonas campestris pv. campestris: identification of novel cell–cell communication-dependent genes and functions. Mol. Microbiol. 59, 610–622 (2006). An insightful study using the first oligomicroarray developed for Xanthomonas spp. to assess the effect of the DSF on gene expression in X. campestris.

    Article  CAS  PubMed  Google Scholar 

  32. Soto-Suarez, M. et al. In planta gene expression analysis of Xanthomonas oryzae pathovar oryzae, African strain MAI1. BMC Microbiol. 10, 170 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. He, Y. Q. et al. Comparative and functional genomics reveals genetic diversity and determinants of host specificity among reference strains and a large collection of Chinese isolates of the phytopathogen Xanthomonas campestris pv. campestris. Genome Biol. 8, R218 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Sidhu, V. K., Vorholter, F. J., Niehaus, K. & Watt, S. A. Analysis of outer membrane vesicle associated proteins isolated from the plant pathogenic bacterium Xanthomonas campestris pv. campestris. BMC Microbiol. 8, 87 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Dow, J. M. et al. Biofilm dispersal in Xanthomonas campestris is controlled by cell–cell signaling and is required for full virulence to plants. Proc. Natl Acad. Sci. USA 100, 10995–11000 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dow, J. M., Scofield, G., Trafford, K., Turner, P. C. & Daniels, M. J. A gene cluster in Xanthomonas campestris pv. campestris required for pathogenicity controls the excretion of polygalacturonate lyase the the other enzymes. Physiol. Mol. Plant Pathol. 31, 261–271 (1987).

    Article  CAS  Google Scholar 

  37. Jha, G., Rajeshwari, R. & Sonti, R. V. Bacterial type two secretion system secreted proteins: double-edged swords for plant pathogens. Mol. Plant Microbe Interact. 18, 891–898 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Szczesny, R. et al. Functional characterization of the Xcs and Xps type II secretion systems from the plant pathogenic bacterium Xanthomonas campestris pv vesicatoria. New Phytol. 187, 983–1002 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Zheng, Q. F., Guo, M. & Alfano, J. R. Pseudomonas syringae HrpJ is a type III secreted protein that is required for plant pathogenesis, injection of effectors, and secretion of the HrpZ1 harpin. J. Bacteriol. 188, 6060–6069 (2006).

    Article  CAS  Google Scholar 

  40. Hajri, A. et al. A “repertoire for repertoire” hypothesis: repertoires of type three effectors are candidate determinants of host specificity Xanthomonas. PLoS ONE 4, e6632 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Al-Saadi, A. et al. All five host-range variants of Xanthomonas citri carry one pthA homolog with 17.5 repeats on citrus, but that determines none determine host-range pathogenicity variation. Mol. Plant Microbe Interact. 20, 934–943 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Duan, Y. P., Castaneda, A., Zhao, G., Erdos, G. & Gabriel, D. W. Expression of a single, host-specific, bacterial pathogenicity gene in plant cells elicits division, enlargement, and cell death. Mol. Plant Microbe Interact. 12, 556–560 (1999).

    Article  CAS  Google Scholar 

  43. Gassmann, W. et al. Molecular evolution of virulence in natural field strains of Xanthomonas campestris pv. vesicatoria. J. Bacteriol. 182, 7053–7059 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kearney, B. & Staskawicz, B. J. Widespread distribution and fitness contribution of Xanthomonas campestris avirulence AVRBS2. Nature 346, 385–386 (1990).

    Article  CAS  PubMed  Google Scholar 

  45. Kim, J. G. et al. Xanthomonas T3S effector XopN suppresses PAMP-triggered immunity and interacts with a tomato atypical receptor-like kinase and TFT1. Plant Cell 21, 1305–1323 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Metz, M. et al. The conserved Xanthomonas campestris pv. vesicatoria effector protein XopX is a virulence factor and suppresses host defense in Nicotiana benthamiana. Plant J. 41, 801–814 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Roden, J. A. et al. A genetic screen to isolate type III effectors translocated into pepper cells during Xanthomonas infection. Proc. Natl Acad. Sci. USA 101, 16624–16629 (2004). A description of an elegant functional screen for large-scale identification of type III effectors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Moreira, L. M. et al. Novel insights into the genomic basis of citrus canker based on the genome sequences of two strains of Xanthomonas fuscans subsp. aurantifolii. BMC Genomics 11, 238 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Bogdanove, A. J., Schornack, S. & Lahaye, T. TAL effectors: finding plant genes for disease and defense. Curr. Opin. Plant Biol. 13, 394–401 (2010). This review examines the most important research into TAL effectors that have a role in plant disease.

    Article  CAS  PubMed  Google Scholar 

  50. Rybak, M., Minsavage, G. V., Stall, R. E. & Jones, J. B. Identification of Xanthomonas citri ssp. citri host specificity genes in a heterologous expression host. Mol. Plant Pathol. 10, 249–262 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Astua-Monge, G. et al. Resistance of tomato and pepper to T3 strains of Xanthomonas campestris pv. vesicatoria is specified by a plant-inducible. Mol. Plant Microbe Interact. 13, 911–921 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Das, A., Rangaraj, N. & Sonti, R. V. Multiple adhesin-like functions of Xanthomonas oryzae pv. oryzae are involved in promoting leaf attachment, entry, and virulence on rice. Mol. Plant Microbe Interact. 22, 73–85 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Gottig, N., Garavaglia, B. S., Garofalo, C. G., Orellano, E. G. & Ottado, J. A filamentous hemagglutinin-like protein of Xanthomonas axonopodis pv. citri, the phytopathogen responsible for citrus canker, is involved in bacterial virulence. PLoS ONE 4, e4358 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Ray, S. K., Rajeshwari, R., Sharma, Y. & Sonti, R. V. A high-molecular-weight outer membrane protein of Xanthomonas oryzae pv. oryzae exhibits similarity to non-fimbrial adhesins of animal pathogenic bacteria and is required for optimum virulence. Mol. Microbiol. 46, 637–647 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Guidot, A. et al. Genomic structure and phylogeny of the plant pathogen Ralstonia solanacearum inferred from gene distribution analysis. J. Bacteriol. 189, 377–387 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Chou, F. L. et al. The Xanthomonas campestris gumD gene required for synthesis of xanthan gum is involved in normal pigmentation and virulence in causing black rot. Biochem. Biophys. Res. Com. 233, 265–269 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Kingsley, M. T., Gabriel, D. W., Marlow, G. C. & Roberts, P. D. The opsX locus of Xanthomonas campestris affects host range and biosynthesis of lipoplysaccharide and excellular polysaccharide. J. Bacteriol. 175, 5839–5850 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rajeshwari, R. & Sonti, R. V. Stationary-phase variation due to transposition of novel insertion elements in Xanthomonas oryzae pv. oryzae. J. Bacteriol. 182, 4797–4802 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Patil, P. B., Bogdanove, A. J. & Sonti, R. V. The role of horizontal transfer in the evolution of a highly variable lipopolysaccharide biosynthesis locus in xanthomonads that infect rice, citrus and crucifers. BMC Evol. Biol. 7, 243 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Van Sluys, M. A. et al. Comparative genomic analysis of plant-associated bacteria. Ann. Rev. Phytopathol. 40, 169–189 (2002).

    Article  CAS  Google Scholar 

  61. Salzberg, S. L. et al. Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae pv. oryzae PXO99A. BMC Genomics 9, 204 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Schornack, S., Minsavage, G. V., Stall, R. E., Jones, J. B. & Lahaye, T. Characterization of AvrHah1, a novel AvrBs3-like effector from Xanthomonas gardneri with virulence and avirulence activity. New Phytol. 179, 546–556 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Minsavage, G. V. et al. Gene for gene relationships specifying disease resistance in Xanthomonas campestris pv. vesicatoria pepper interactions. Mol. Plant Microbe Interact. 3, 41–47 (1990).

    Article  CAS  Google Scholar 

  64. Meyer, F. et al. GenDB — an open source genome annotation system for prokaryote genomes. Nucleic Acids Res. 31, 2187–2195 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Blom, J. et al. EDGAR: A software framework for the comparative analysis of prokaryotic genomes. BMC Bioinformatics 10, 154 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Dondrup, M. et al. EMMA 2-A MAGE-compliant system for the collaborative analysis and integration of microarray data. BMC Bioinformatics 10, 50 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Albaum, S. P. et al. Qupe-a rich internet application to take a step forward in the analysis of mass spectrometry-based quantitative proteomics experiments. Bioinformatics 25, 3128–3134 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Neuweger, H. et al. MeltDB: a software platform for the analysis and integration of metabolomics experiment data. Bioinformatics 24, 2726–2732 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Neuweger, H. et al. Visualizing post genomics data-sets on customized pathway maps by ProMeTra-aeration-dependent gene expression and metabolism of Corynebacterium glutamicum as an example. BMC Syst. Biol. 3, 82 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Schneider, J. et al. CARMEN - Comparative analysis and in silico reconstruction of organism-specific metabolic networks. Genet. Mol. Res. 9, 1660–1672 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Goesmann, A. et al. Building a BRIDGE for the integration of heterogeneous data from functional genomics into a platform for systems biology. J. Biotechnol. 106, 157–167 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. da Silva, A. C. R. et al. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 417, 459–463 (2002). The first published genome sequences of two pathogenic Xanthomonas spp. that cause disease in very distinct hosts.

    Article  PubMed  Google Scholar 

  73. Vorhoelter, F. J. et al. The genome of Xanthomonas campestris pv. campestris B 100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis. J. Biotechnol. 134, 33–45 (2008).

    Article  CAS  Google Scholar 

  74. Studholme, D. J. et al. Genome-wide sequencing data reveals virulence factors implicated in banana Xanthomonas wilt. FEMS Microbiol. Lett. 310, 182–192 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Thieme, F. et al. Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria revealed by the complete genome sequence. J. Bacteriol. 187, 7254–7266 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lee, B. M. et al. The genome sequence of Xanthomonas oryzae pathovar oryzae KACC10331, the bacterial blight pathogen of rice. Nucleic Acids Res. 33, 577–586 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ochiai, H., Inoue, Y., Hasebe, A. & Kaku, H. Construction and characterization of a Xanthomonas oryzae pv. oryzae bacterial artificial chromosome library. FEMS Microbiol. Lett. 200, 59–65 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Fargier, E. & Manceau, C. Pathogenicity assays restrict the species Xanthomonas campestris into three pathovars and reveal nine races within X. campestris pv. campestris. Plant Pathol. 56, 805–818 (2007).

    Article  Google Scholar 

  79. Wang, L., Makino, S., Subedee, A. & Bogdanove, A. J. Novel candidate virulence factors in rice pathogen Xanthomonas oryzae pv. oryzicola as revealed by mutational amalysis. Appl. Environ. Microbiol. 73, 8023–8027 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Jiang, W. et al. Identification of six type III effector genes with the PIP box in Xanthomonas campestris pv. campestris and five of them contribute individually to full pathogenicity. Mol. Plant Microbe Interact. 22, 1401–1411 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Qian, W., Han, Z. J. & He, C. Z. Two-component signal transduction systems of Xanthomonas spp.: a lesson from genomics. Mol. Plant Microbe Interact. 21, 151–161 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. McCarthy, Y. et al. The role of PilZ domain proteins in the virulence of Xanthomonas campestris pv. campestris. Mol. Plant Pathol. 9, 819–824 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Astua-Monge, G. et al. Expression profiling of virulence and pathogenicity genes of Xanthomonas axonopodis pv. citri. J. Bacteriol. 187, 1201–1205 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chung, W. J. et al. Qualitative and comparative proteomic analysis of Xanthomonas campestris pv. campestris 17. Proteomics 7, 2047–2058 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Villeth, G. R. et al. Comparative proteome analysis of Xanthomonas campestris pv. campestris in the interaction with the susceptible and the resistant cultivars of Brassica oleracea. FEMS Microbiol. Lett. 298, 260–266 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Furutani, A. et al. Identification of novel type III secretion effectors in Xanthomonas oryzae pv. oryzae. Mol. Plant Microbe Interact. 22, 96–106 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Swords, K. M. M., Dahlbeck, D., Kearney, B., Roy, M. & Staskawicz, B. J. Spontaneous and induced mutations in a single open reading frame alter both virulence and avirulence in Xanthomonas campestris pv. vesicatoria avrBs2. J. Bacteriol. 178, 4661–4669 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wichmann, G. & Bergelson, J. Effector genes of Xanthamonas axonopodis pv. vesicatoria promote transmission and enhance other fitness traits in the field. Genetics 166, 693–706 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Jiang, B. L. et al. The type III secretion effector XopXccN of Xanthomonas campestris pv. campestris is required for full virulence. Res. Microbiol. 159, 216–220 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Kim, N. H., Choi, H. W. & Hwang, B. K. Xanthomonas campestris pv. vesicatoria effector AvrBsT induces cell death in pepper, but suppresses defense responses in tomato. Mol. Plant Microbe Interact. 23, 1069–1082 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Kim, J. G. et al. Characterization of the Xanthomonas axonopodis pv. glycines Hrp pathogenicity island. J. Bacteriol. 185, 3155–3166 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Yang, B. & White, F. F. Diverse members of the AvrBs3/PthA family of type III effectors are major virulence determinants in bacterial blight disease of rice. Mol. Plant Microbe Interact. 17, 1192–1200 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Sugio, A., Yang, B., Zhu, T. & White, F. F. Two type III effector genes of Xanthomonas oryzae pv. oryzae control the induction of the host genes OsTFIIA γ 1 and OsTFX1 during bacterial blight of rice. Proc. Natl Acad. Sci. USA 104, 10720–10725 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yang, B., Sugio, A. & White, F. F. Avoidance of host recognition by alterations in the repetitive and C-terminal regions of AvrXa7, a type III effector of Xanthomonas oryzae pv. oryzae. Mol. Plant Microbe Interact. 18, 142–149 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Chosed, R. et al. Structural analysis of Xanthomonas XopD provides insights into substrate specificity of ubiquitin-like protein proteases. J. Biol. Chem. 282, 6773–6782 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Hotson, A., Chosed, R., Shu, H. J., Orth, K. & Mudgett, M. B. Xanthomonas type III effector XopD targets SUMO-conjugated proteins in planta. Mol. Microbiol. 50, 377–389 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Kim, J. G. et al. XopD SUMO protease affects host transcription, promotes pathogen growth, and delays symptom development in Xanthomonas-infected tomato leaves. Plant Cell 20, 1915–1929 (2008). This is the first description of the effector protein XopD, a cysteine protease with DNA-binding activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Noel, L., Thieme, F., Nennstiel, D. & Bonas, U. Two novel type III-secreted proteins of Xanthomonas campestris pv. vesicatoria are encoded within the hrp pathogenicity island. J. Bacteriol. 184, 1340–1348 (2002).

    Article  CAS  Google Scholar 

  99. Chen, L.-Q. et al. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468, 527–532 (2010). This is the first report demonstrating that TAL effectors are also involved in sugar efflux transporter modulation and not just suppression of plant defence responses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work of the authors has been supported in part by grants awarded by the Science Foundation of Ireland (SFI 07/IN.1/B955 to J.M.D. and SFI 09/SIRG/B1654 to R.P.R.) and a European Society of Clinical Microbiology and Infectious Diseases (ESCMID) research grant (to R.R.P). The authors thank Y. McCarthy for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Maxwell Dow.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

J. Maxwell Dow's homepage

J. Craig Venter Institute

National Center for Biotechnology Information

Glossary

Pathovars

Pathogenic variants within a species that are defined by a characteristic host range and/or tissue specificity.

Parenchyma

Plant tissue in the leaf mesophyll that has a diverse range of functions, including photosynthesis, storage, secretion and short-distance transport.

Hydathodes

Secretory organs in leaves, usually of angiosperms, that are located at the leaf margin and that secrete guttation fluid, which may contain a variety of organic and inorganic solutes.

Xanthomonads

Members of the family Xanthomonadaceae, which is a family of Gram-negative bacteria that includes species from the genera Xanthomonas and Xylella (which cause plant diseases) and species from the genus Stenotrophomonas (one of which, Stenotrophomonas maltophilia, is an opportunistic human pathogen).

Type II secretion system

A two-step secretion system that secretes proteins which are first translocated across the inner membrane by the general secretion pathway.

Type III secretion system

A multisubunit protein apparatus that is used to secrete or inject effector proteins which contribute to interactions with eukaryotic cells.

Type III effectors

Bacterial proteins that are delivered into a host cell through a type III secretion system, which is required for pathogenesis. Contributions of individual effectors to disease vary, and some trigger host defence.

Type IV secretion systems

Secretion systems typically comprising a macromolecular complex that spans the bacterial inner and outer membranes and can also span the membrane of eukaryotic host cells. These secretion systems contribute to various biological functions, including the exchange of genetic material with other bacteria and the translocation of oncogenic DNA and effector proteins into eukaryotic host cells.

Two-component regulators

Part of a mechanism that allows bacteria to sense and respond to changes in many different environmental cues. These systems typically consist of a membrane-bound histidine kinase that senses a specific environmental stimulus, and the corresponding response regulator that mediates the cellular response.

TonB-dependent transporters

A family of proteins in the outer membrane of Gram-negative bacteria that sense environmental signals or substrates and thus trigger changes in gene transcription or uptake of the substrate across the outer membrane. These functions are dependent on the energy-transducing protein TonB.

Cyclic di-GMP

A bacterial second messenger that is involved in the regulation of a wide variety of cellular processes.

Non-host resistance

A host–pathogen interaction in which all members of a plant species exhibit resistance to all strains of a pathogen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryan, R., Vorhölter, FJ., Potnis, N. et al. Pathogenomics of Xanthomonas: understanding bacterium–plant interactions. Nat Rev Microbiol 9, 344–355 (2011). https://doi.org/10.1038/nrmicro2558

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2558

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research