Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Evolution of multisubunit RNA polymerases in the three domains of life

Key Points

  • Multisubunit RNA polymerases (RNAPs) from the three domains of life are evolutionarily related, and this is reflected in the sequence and structure of their subunits, their interactions with transcription factors and their molecular mechanisms of action.

  • RNAP subunits contribute in distinct ways to enzyme function and facilitate assembly, catalysis, interaction with DNA and RNA, and regulation of RNAP activity.

  • The Rpo4–Rpo7 subunits of archaeal RNAP and the RPB4–RPB7 subunits of eukaryotic RNAPs constitute the stalk, which modulates the elongation and termination properties of these RNAPs but is not conserved in bacteria.

  • RNAP function is dependent on and regulated by exogenous transcription factors, some of which are universally conserved in evolution.

  • Transcription factors that enable transcription initiation in bacteria (σ-factors) and archaea and eukaryotes (TATA box-binding protein (TBP) and TFIIB) are not homologous.

  • Transcript cleavage factors in bacteria (GreB) and archaea and eukaryotes (TFIIS) are not homologous.

  • Non-homologous transcription factors can adapt a similar structure and can therefore interact with and regulate their cognate RNAPs using closely related molecular mechanisms.

  • NusG is the only RNAP-associated transcription factor that is universally conserved in evolution (NusG in bacteria, Spt5 in archaea and SPT5 in eukaryotes), indicating that regulation of transcription during elongation predated regulation of transcription initiation.

Abstract

RNA polymerases (RNAPs) carry out transcription in all living organisms. All multisubunit RNAPs are derived from a common ancestor, a fact that becomes apparent from their amino acid sequence, subunit composition, structure, function and molecular mechanisms. Despite the similarity of these complexes, the organisms that depend on them are extremely diverse, ranging from microorganisms to humans. Recent findings about the molecular and functional architecture of RNAPs has given us intriguing insights into their evolution and how their activities are harnessed by homologous and analogous basal factors during the transcription cycle. We provide an overview of the evolutionary conservation of and differences between the multisubunit polymerases in the three domains of life, and introduce the 'elongation first' hypothesis for the evolution of transcriptional regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The transcription cycle of the archaeal RNA polymerase.
Figure 2: Overall architecture of RNA polymerase.
Figure 3: Important structural and functional features of multisubunit RNA polymerases.
Figure 4: Transcription initiation — holo-RNA polymerase structures from bacteria and eukaryotes.
Figure 5: The architecture of the transcription elongation complex.
Figure 6: The transcript cleavage complex.
Figure 7: Universal evolutionary conservation of the elongation factor Spt4–Spt5 and NusG.
Figure 8: Emergence of transcription initiation factors in the three domains of life.

Similar content being viewed by others

References

  1. Werner, F. Structural evolution of multisubunit RNA polymerases. Trends Microbiol. 16, 247–250, (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Werner, F. Structure and function of archaeal RNA polymerases. Mol. Microbiol. 65, 1395–1404 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Cramer, P. et al. Structure of eukaryotic RNA polymerases. Annu. Rev. Biophys. 37, 337–352 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Cheetham, G. M. & Steitz, T. A. Insights into transcription: structure and function of single-subunit DNA-dependent RNA polymerases. Curr. Opin. Struct. Biol. 10, 117–123 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Steitz, T. A. The structural changes of T7 RNA polymerase from transcription initiation to elongation. Curr. Opin. Struct. Biol. 19, 683–690 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cramer, P., Bushnell, D. A. & Kornberg, R. D. Structural basis of transcription: RNA polymerase II at 2.8 Ångstrom resolution. Science 292, 1863–1876 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Gnatt, A. L., Cramer, P., Fu, J., Bushnell, D. A. & Kornberg, R. D. Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 Å resolution. Science 292, 1876–1882 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Hirata, A., Klein, B. J. & Murakami, K. S. The X-ray crystal structure of RNA polymerase from Archaea. Nature 451, 851–854 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Korkhin, Y. et al. Evolution of complex RNA polymerases: the complete archaeal RNA polymerase structure. PLoS Biol. 7, e102 (2009).

    Article  CAS  Google Scholar 

  10. Zhang, G. et al. Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 Å resolution. Cell 98, 811–824 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Hirtreiter, A., Grohmann, D. & Werner, F. Molecular mechanisms of RNA polymerase — the F/E (RPB4/7) complex is required for high processivity in vitro. Nucleic Acids Res. 38, 585–596 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Batada, N. N., Westover, K. D., Bushnell, D. A., Levitt, M. & Kornberg, R. D. Diffusion of nucleoside triphosphates and role of the entry site to the RNA polymerase II active center. Proc. Natl Acad. Sci. USA 101, 17361–17364 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Iyer, L. M., Koonin, E. V. & Aravind, L. Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNA-dependent RNA polymerases and the origin of RNA polymerases. BMC Struct. Biol. 3, 1 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Grohmann, D., Werner, F. Cycling through transcription with the RNA polymerase F/E (RPB4/7) complex: structure, function and evolution of archaeal RNA polymerase. Res. Microbiol. 21 Sep 2010 (doi: 10.1016/j.resmic.2010.09.002).

    Article  CAS  PubMed  Google Scholar 

  15. Wassarman, K. M. & Saecker, R. M. Synthesis-mediated release of a small RNA inhibitor of RNA polymerase. Science 314, 1601–1603 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Lehmann, E., Brueckner, F. & Cramer, P. Molecular basis of RNA-dependent RNA polymerase II activity. Nature 450, 445–449 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Severinov, K. et al. Structural modules of the large subunits of RNA polymerase. Introducing archaebacterial and chloroplast split sites in the β and β′ subunits of Escherichia coli RNA polymerase. J. Biol. Chem. 271, 27969–27974 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Zakharova, N. et al. Fused and overlapping rpoB and rpoC genes in helicobacters, campylobacters, and related bacteria. J. Bacteriol. 181, 3857–3859 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Severinov, K., Mooney, R., Darst, S. A. & Landick, R. Tethering of the large subunits of Escherichia coli RNA polymerase. J. Biol. Chem. 272, 24137–24140 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Sweetser, D., Nonet, M. & Young, R. A. Prokaryotic and eukaryotic RNA polymerases have homologous core subunits. Proc. Natl Acad. Sci. USA 84, 1192–1196 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lane, W. J. & Darst, S. A. Molecular evolution of multisubunit RNA polymerases: sequence analysis. J. Mol. Biol. 395, 671–685 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Lane, W. J. & Darst, S. A. Molecular evolution of multisubunit RNA polymerases: structural analysis. J. Mol. Biol. 395, 686–704 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Ruprich-Robert, G. & Thuriaux, P. Non-canonical DNA transcription enzymes and the conservation of two-barrel RNA polymerases. Nucleic Acids Res. 38, 4559–4569 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Makeyev, E. V. & Bamford, D. H. Cellular RNA-dependent RNA polymerase involved in posttranscriptional gene silencing has two distinct activity modes. Mol. Cell 10, 1417–1427 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Salgado, P. S. et al. The structure of an RNAi polymerase links RNA silencing and transcription. PLoS Biol. 4, e434 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Orlicky, S. M., Tran, P. T., Sayre, M. H. & Edwards, A. M. Dissociable Rpb4-Rpb7 subassembly of RNA polymerase II binds to single-strand nucleic acid and mediates a post-recruitment step in transcription initiation. J. Biol. Chem. 276, 10097–10102 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Grohmann, D., Hirtreiter, A. & Werner, F. RNAP subunits F/E (RPB4/7) are stably associated with archaeal RNA polymerase: using fluorescence anisotropy to monitor RNAP assembly in vitro. Biochem. J. 421, 339–343 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Grohmann, D., Werner, F. Hold on! RNAP interactions with the nascent RNA modulate transcription elongation and termination. RNA Biol. 7, 310–315 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Naji, S., Grunberg, S. & Thomm, M. The RPB7 orthologue E′ is required for transcriptional activity of a reconstituted archaeal core enzyme at low temperatures and stimulates open complex formation. J. Biol. Chem. 282, 11047–11057 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Ouhammouch, M., Werner, F., Weinzierl, R. O. & Geiduschek, E. P. A fully recombinant system for activator-dependent archaeal transcription. J. Biol. Chem. 279, 51719–51721 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Werner, F. & Weinzierl, R. O. Direct modulation of RNA polymerase core functions by basal transcription factors. Mol. Cell Biol. 25, 8344–8355 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Werner, F. & Weinzierl, R. O. A recombinant RNA polymerase II-like enzyme capable of promoter-specific transcription. Mol. Cell 10, 635–646 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Werner, F., Eloranta, J. J. & Weinzierl, R. O. Archaeal RNA polymerase subunits F and P are bona fide homologs of eukaryotic RPB4 and RPB12. Nucleic Acids Res. 28, 4299–4305 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kostrewa, D. et al. RNA polymerase II–TFIIB structure and mechanism of transcription initiation. Nature 462, 323–330 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Reich, C. et al. The archaeal RNA polymerase subunit P and the eukaryotic polymerase subunit Rpb12 are interchangeable in vivo and in vitro. Mol. Microbiol. 71, 989–1002 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Grunberg, S., Reich, C., Zeller, M. E., Bartlett, M. S. & Thomm, M. Rearrangement of the RNA polymerase subunit H and the lower jaw in archaeal elongation complexes. Nucleic Acids Res. 38, 1950–1963 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Bartlett, M. S., Thomm, M. & Geiduschek, E. P. Topography of the euryarchaeal transcription initiation complex. J. Biol. Chem. 279, 5894–5903 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Kang, X. et al. Structural, biochemical, and dynamic characterizations of the hRPB8 subunit of human RNA polymerases. J. Biol. Chem. 281, 18216–18226 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Komissarova, N. & Kashlev, M. Functional topography of nascent RNA in elongation intermediates of RNA polymerase. Proc. Natl Acad. Sci. USA 95, 14699–14704 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Briand, J. F. et al. Partners of Rpb8p, a small subunit shared by yeast RNA polymerases I, II and III. Mol. Cell Biol. 21, 6056–6065 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cox, C. J., Foster, P. G., Hirt, R. P., Harris, S. R. & Embley, T. M. The archaebacterial origin of eukaryotes. Proc. Natl Acad. Sci. USA 105, 20356–20361 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Walmacq, C. et al. Rpb9 subunit controls transcription fidelity by delaying NTP sequestration in RNA polymerase II. J. Biol. Chem. 284, 19601–19612 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ziegler, L. M., Khaperskyy, D. A., Ammerman, M. L. & Ponticelli, A. S. Yeast RNA polymerase II lacking the Rpb9 subunit is impaired for interaction with transcription factor IIF. J. Biol. Chem. 278, 48950–48956 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Campbell, E. A., Westblade, L. F. & Darst, S. A. Regulation of bacterial RNA polymerase σ factor activity: a structural perspective. Curr. Opin. Microbiol. 11, 121–127 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Murakami, K. S. & Darst, S. A. Bacterial RNA polymerases: the wholo story. Curr. Opin. Struct. Biol. 13, 31–39 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Gruber, T. M. & Gross, C. A. Multiple sigma subunits and the partitioning of bacterial transcription space. Annu. Rev. Microbiol. 57, 441–466 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. MacLellan, S. R., Guariglia-Oropeza, V., Gaballa, A. & Helmann, J. D. A two-subunit bacterial σ-factor activates transcription in Bacillus subtilis. Proc. Natl Acad. Sci. USA 106, 21323–21328 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. MacLellan, S. R., Wecke, T. & Helmann, J. D. A previously unidentified σ factor and two accessory proteins regulate oxalate decarboxylase expression in Bacillus subtilis. Mol. Microbiol. 69, 954–967 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wigneshweraraj, S. et al. Modus operandi of the bacterial RNA polymerase containing the σ54 promoter-specificity factor. Mol. Microbiol. 68, 538–546 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Kim, T. K., Ebright, R. H. & Reinberg, D. Mechanism of ATP-dependent promoter melting by transcription factor IIH. Science 288, 1418–1422 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Schwartz, E. C. et al. A full-length group 1 bacterial sigma factor adopts a compact structure incompatible with DNA binding. Chem. Biol. 15, 1091–1103 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Patikoglou, G. A. et al. TATA element recognition by the TATA box-binding protein has been conserved throughout evolution. Genes Dev. 13, 3217–3230 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Campbell, E. A. et al. Structure of the bacterial RNA polymerase promoter specificity σ subunit. Mol. Cell 9, 527–539 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Chen, H. T. & Hahn, S. Binding of TFIIB to RNA polymerase II: mapping the binding site for the TFIIB zinc ribbon domain within the preinitiation complex. Mol. Cell 12, 437–447 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Chen, H. T. & Hahn, S. Mapping the location of TFIIB within the RNA polymerase II transcription preinitiation complex: a model for the structure of the PIC. Cell 119, 169–180 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Sevostyanova, A., Svetlov, V., Vassylyev, D. G. & Artsimovitch, I. The elongation factor RfaH and the initiation factor σ bind to the same site on the transcription elongation complex. Proc. Natl Acad. Sci. USA 105, 865–870 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Renfrow, M. B. et al. Transcription factor B contacts promoter DNA near the transcription start site of the archaeal transcription initiation complex. J. Biol. Chem. 279, 2825–2831 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Bushnell, D. A., Westover, K. D., Davis, R. E. & Kornberg, R. D. Structural basis of transcription: an RNA polymerase II-TFIIB cocrystal at 4.5 Angstroms. Science 303, 983–988 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Liu, X., Bushnell, D. A., Wang, D., Calero, G. & Kornberg, R. D. Structure of an RNA polymerase II-TFIIB complex and the transcription initiation mechanism. Science 327, 206–209 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Kulbachinskiy, A. & Mustaev, A. Region 3.2 of the σ subunit contributes to the binding of the 3′-initiating nucleotide in the RNA polymerase active center and facilitates promoter clearance during initiation. J. Biol. Chem. 281, 18273–18276 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Kapanidis, A. N. et al. Initial transcription by RNA polymerase proceeds through a DNA-scrunching mechanism. Science 314, 1144–1147 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Goldman, S. R., Ebright, R. H. & Nickels, B. E. Direct detection of abortive RNA transcripts in vivo. Science 324, 927–928 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Murakami, K. S., Masuda, S., Campbell, E. A., Muzzin, O. & Darst, S. A. Structural basis of transcription initiation: an RNA polymerase holoenzyme-DNA complex. Science 296, 1285–1290 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Holstege, F. C., van der Vliet, P. C. & Timmers, H. T. Opening of an RNA polymerase II promoter occurs in two distinct steps and requires the basal transcription factors IIE and IIH. EMBO J. 15, 1666–1677 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ohkuma, Y. et al. Structural motifs and potential σ homologies in the large subunit of human general transcription factor TFIIE. Nature 354, 398–401 (1991).

    Article  CAS  PubMed  Google Scholar 

  66. Sumimoto, H. et al. Conserved sequence motifs in the small subunit of human general transcription factor TFIIE. Nature 354, 401–404 (1991).

    Article  CAS  PubMed  Google Scholar 

  67. Garrett, K. P. et al. The carboxyl terminus of RAP30 is similar in sequence to region 4 of bacterial sigma factors and is required for function. J. Biol. Chem. 267, 23942–23949 (1992).

    CAS  PubMed  Google Scholar 

  68. Flores, O. et al. The small subunit of transcription factor IIF recruits RNA polymerase II into the preinitiation complex. Proc. Natl Acad. Sci. USA 88, 9999–10003 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yan, Q., Moreland, R. J., Conaway, J. W. & Conaway, R. C. Dual roles for transcription factor IIF in promoter escape by RNA polymerase II. J. Biol. Chem. 274, 35668–35675 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Eichner, J., Chen, H. T., Warfield, L. & Hahn, S. Position of the general transcription factor TFIIF within the RNA polymerase II transcription preinitiation complex. EMBO J. 29, 706–716 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Geiger, S. R. et al. RNA polymerase I contains a TFIIF-related DNA-binding subcomplex. Mol. Cell 39, 583–594 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Selth, L. A., Sigurdsson, S. & Svejstrup, J. Q. Transcript elongation by RNA polymerase II. Annu. Rev. Biochem. 79, 271–293 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Vassylyev, D. G. Elongation by RNA polymerase: a race through roadblocks. Curr. Opin. Struct. Biol. 19, 691–700 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Landick, R. The regulatory roles and mechanism of transcriptional pausing. Biochem. Soc. Trans. 34, 1062–1066 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Brueckner, F., Ortiz, J. & Cramer, P. A movie of the RNA polymerase nucleotide addition cycle. Curr. Opin. Struct. Biol. 19, 294–299 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Brueckner, F. et al. Structure–function studies of the RNA polymerase II elongation complex. Acta Crystallogr. D Biol. Crystallogr. 65, 112–120 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ha, K. S., Toulokhonov, I., Vassylyev, D. G. & Landick, R. The NusA N-terminal domain is necessary and sufficient for enhancement of transcriptional pausing via interaction with the RNA exit channel of RNA polymerase. J. Mol. Biol. 401, 708–725 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shibata, R. et al. Crystal structure and RNA-binding analysis of the archaeal transcription factor NusA. Biochem. Biophys. Res. Commun. 355, 122–128 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Beuth, B., Pennell, S., Arnvig, K. B., Martin, S. R. & Taylor, I. A. Structure of a Mycobacterium tuberculosis NusA–RNA complex. EMBO J. 24, 3576–3587 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Runner, V. M., Podolny, V. & Buratowski, S. The Rpb4 subunit of RNA polymerase II contributes to cotranscriptional recruitment of 3 processing factors. Mol. Cell Biol. 28, 1883–1891 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Armache, K. J., Mitterweger, S., Meinhart, A. & Cramer, P. Structures of complete RNA polymerase II and its subcomplex, Rpb4/7. J. Biol. Chem. 280, 7131–7134 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Deighan, P. & Hochschild, A. Conformational toggle triggers a modulator of RNA polymerase activity. Trends Biochem. Sci. 31, 424–426 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Sigurdsson, S., Dirac-Svejstrup, A. B. & Svejstrup, J. Q. Evidence that transcript cleavage is essential for RNA polymerase II transcription and cell viability. Mol. Cell 38, 202–210 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hausner, W., Lange, U. & Musfeldt, M. Transcription factor S, a cleavage induction factor of the archaeal RNA polymerase. J. Biol. Chem. 275, 12393–12399 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Laptenko, O., Lee, J., Lomakin, I. & Borukhov, S. Transcript cleavage factors GreA and GreB act as transient catalytic components of RNA polymerase. EMBO J. 22, 6322–6334 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kettenberger, H., Armache, K. J. & Cramer, P. Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS. Mol. Cell 16, 955–965 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Jeon, C., Yoon, H. & Agarwal, K. The transcription factor TFIIS zinc ribbon dipeptide Asp-Glu is critical for stimulation of elongation and RNA cleavage by RNA polymerase II. Proc. Natl Acad. Sci. USA 91, 9106–9110 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Borukhov, S., Lee, J. & Laptenko, O. Bacterial transcription elongation factors: new insights into molecular mechanism of action. Mol. Microbiol. 55, 1315–1324 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Opalka, N. et al. Structure and function of the transcription elongation factor GreB bound to bacterial RNA polymerase. Cell 114, 335–345 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Condon, C., Squires, C. & Squires, C. L. Control of rRNA transcription in Escherichia coli. Microbiol. Rev. 59, 623–645 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Arnvig, K. B. et al. Evolutionary comparison of ribosomal operon antitermination function. J. Bacteriol. 190, 7251–7257 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Greenblatt, J., Nodwell, J. R. & Mason, S. W. Transcriptional antitermination. Nature 364, 401–406 (1993).

    Article  CAS  PubMed  Google Scholar 

  93. Dodd, I. B., Shearwin, K. E. & Egan, J. B. Revisited gene regulation in bacteriophage l. Curr. Opin. Genet. Dev. 15, 145–152 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Hirtreiter, A. et al. Spt4/5 stimulates transcription elongation through the RNA polymerase clamp coiled coil motif. Nucleic Acids Res. 38, 4040–4051 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mooney, R. A., Schweimer, K., Roesch, P., Gottesman, M. & Landick, R. Two structurally independent domains of E. coli NusG create regulatory plasticity via distinct interactions with RNA polymerase and regulators. J. Mol. Biol. 2, 341–358 (2009).

    Article  CAS  Google Scholar 

  96. Zhou, K., Kuo, W. H., Fillingham, J. & Greenblatt, J. F. Control of transcriptional elongation and cotranscriptional histone modification by the yeast BUR kinase substrate Spt5. Proc. Natl Acad. Sci. USA 106, 6956–6951 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Nickels, B. E., Mukhopadhyay, J., Garrity, S. J., Ebright, R. H. & Hochschild, A. The s70 subunit of RNA polymerase mediates a promoter-proximal pause at the lac promoter. Nature Struct. Mol. Biol. 11, 544–550 (2004).

    Article  CAS  Google Scholar 

  98. Artsimovitch, I. Post-initiation control by the initiation factor sigma. Mol. Microbiol. 68, 1–3 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Missra, A. & Gilmour, D. S. Interactions between DSIF (DRB sensitivity inducing factor), NELF (negative elongation factor), and the Drosophila RNA polymerase II transcription elongation complex. Proc. Natl Acad. Sci. USA 107, 11301–11306 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Cheng, B. & Price, D. H. Analysis of factor interactions with RNA polymerase II elongation complexes using a new electrophoretic mobility shift assay. Nucleic Acids Res. 36, e135 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Svetlov, V., Belogurov, G. A., Shabrova, E., Vassylyev, D. G. & Artsimovitch, I. Allosteric control of the RNA polymerase by the elongation factor RfaH. Nucleic Acids Res. 35, 5694–5705 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Belogurov, G. A. et al. Structural basis for converting a general transcription factor into an operon-specific virulence regulator. Mol. Cell 26, 117–129 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Tan, L., Wiesler, S., Trzaska, D., Carney, H. C. & Weinzierl, R. O. Bridge helix and trigger loop perturbations generate superactive RNA polymerases. J. Biol. 7, 40 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Peters, J. P. 3rd & Maher, L. J. DNA curvature and flexibility in vitro and in vivo. Q. Rev. Biophys. 43, 23–63 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Herbert, K. M. et al. E. coli NusG inhibits backtracking and accelerates pause-free transcription by promoting forward translocation of RNA polymerase. J. Mol. Biol. 399, 17–30 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Proshkin, S., Rahmouni, A. R., Mironov, A. & Nudler, E. Cooperation between translating ribosomes and RNA polymerase in transcription elongation. Science 328, 504–508 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Burmann, B. M. et al. A NusE:NusG complex links transcription and translation. Science 328, 501–504 (2010).

    Article  CAS  PubMed  Google Scholar 

  108. Vassylyev, D. G., Vassylyeva, M. N., Perederina, A., Tahirov, T. H. & Artsimovitch, I. Structural basis for transcription elongation by bacterial RNA polymerase. Nature 448, 157–162 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Andrecka, J. et al. Nano positioning system reveals the course of upstream and nontemplate DNA within the RNA polymerase II elongation complex. Nucleic Acids Res. 37, 5803–5809 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Greive, S. J. & von Hippel, P. H. Thinking quantitatively about transcriptional regulation. Nature Rev. Mol. Cell Biol. 6, 221–232 (2005).

    Article  CAS  Google Scholar 

  111. Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nature Rev. Genet. 10, 57–63 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Mooney, R. A. et al. Regulator trafficking on bacterial transcription units in vivo. Mol. Cell 33, 97–108 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Sutherland, H. & Bickmore, W. A. Transcription factories: gene expression in unions? Nature Rev. Genet. 10, 457–466 (2009).

    Article  CAS  PubMed  Google Scholar 

  114. Epshtein, V., Toulme, F., Rahmouni, A. R., Borukhov, S. & Nudler, E. Transcription through the roadblocks: the role of RNA polymerase cooperation. EMBO J. 22, 4719–4727 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Saeki, H. & Svejstrup, J. Q. Stability, flexibility, and dynamic interactions of colliding RNA polymerase II elongation complexes. Mol. Cell 35, 191–205 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Werner, M., Thuriaux, P. & Soutourina, J. Structure–function analysis of RNA polymerases I and III. Curr. Opin. Struct. Biol. 19, 740–745 (2009).

    Article  CAS  PubMed  Google Scholar 

  117. Spitalny, P. & Thomm, M. A polymerase III-like reinitiation mechanism is operating in regulation of histone expression in archaea. Mol. Microbiol. 67, 958–970 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Landick, R. Functional divergence in the growing family of RNA polymerases. Structure 17, 323–325 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Vanhamme, L. Trypanosome RNA polymerases and transcription factors: sensible trypanocidal drug targets? Curr. Drug Targets. 9, 979–996 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Grunberg, S., Bartlett, M. S., Naji, S. & Thomm, M. Transcription factor E is a part of transcription elongation complexes. J. Biol. Chem. 282, 35482–35490 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Gribaldo from the Institute Pasteur, Paris, France, for stimulating discussions on evolution and the inspiration for figure 8. We also thank K. S. Murakami for sharing unpublished results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Finn Werner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Finn Werner's homepage

Glossary

Last universal common ancestor

The last common ancestor of all three contemporary domains of life.

Transcription factor

A protein that transiently interacts with RNA polymerase, modulates its protein-, DNA- and RNA-binding or catalytic properties, and thereby regulates transcription.

Convergent evolution

The acquisition of the same trait in unrelated lineages.

Homologous

Pertaining to genes: derived from the same ancestor.

RNAP clamp

A flexible RNA polymerase (RNAP) domain that is predicted to move over the DNA-binding channel during open-complex formation.

Bridge and trigger helices

Flexible RNA polymerase motifs that unfold and refold repeatedly during nucleotide addition and translocation.

Double-psi β-barrel motif

A structural module in the two largest RNA polymerase subunits that reveals the common origin of these subunits and constitutes the active site.

Ribozyme

An enzyme made exclusively of RNA.

RNAi RNAP

An RNA polymerase (RNAP) involved in RNA interference (RNAi); it produces double-stranded RNA from aberrant single-stranded RNA templates to trigger RNAi.

Open-complex formation

The structural transition of RNA polymerase concomitant with the melting of DNA strands during initiation.

TATA box-binding protein

One of the two minimal transcription factors required for initiation by archaeal RNA polymerase (RNAP) and eukaryotic RNAPII. It binds to a sequence recognition motif in promoters that is called the TATA element or TATA box.

TFIIB

The second of the two minimal transcription factors required for initiation by archaeal RNA polymerase (RNAP) and eukaryotic RNAPII.

σ-factor

A bacterial transcription initiation factor that binds specific sequences in the promoter. Each σ-factor regulates the transcription of a specific set of genes.

−10 and −35 elements

Key sequence motifs of bacterial promoters that are recognized by the transcription factor σ70. Promoter strength is in part regulated by the strength of the interaction between σ70 and these elements.

Zn-ribbon domain

A domain found in many transcription factors, including TFIIB, TFIIS and TFIIE in eukaryotes (and TFB, TFS and TFE, respectively, in archaea). The aminoterminal Zn-ribbon domain of TFIIB and TFB interacts with the RNA polymerase (RNAP) dock domain and is important for efficient RNAP recruitment.

Paralogous

Pertaining to genes: separated by a gene duplication event.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Werner, F., Grohmann, D. Evolution of multisubunit RNA polymerases in the three domains of life. Nat Rev Microbiol 9, 85–98 (2011). https://doi.org/10.1038/nrmicro2507

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2507

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology