Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A hitchhiker's guide to the nervous system: the complex journey of viruses and toxins

This article has been updated

Key Points

  • The central nervous system is often referred to as immune privileged but is nonetheless the target of numerous neurotropic microbial agents.

  • Some viruses and toxins can enter nerve terminals by binding specific cellular receptors found on neuromuscular junctions and sensory-nerve endings.

  • Following internalization at synapses, pathogens can access the machinery regulating long-range axonal transport to reach the neuronal cell bodies and propagate.

  • The mode of axonal transport differs depending on the microbial agent; some can recruit molecular motors directly, whereas others use endosomal pathways.

  • In the neuronal cell body, viruses undergo different fates: they may become latent, or they may continue their journey into a new neuron.

  • Neurotropic viruses and toxins undergoing axonal transport in neurons can be used for neuronal tracing and gene therapy.

Abstract

To reach the central nervous system (CNS), pathogens have to circumvent the wall of tightly sealed endothelial cells that compose the blood–brain barrier. Neuronal projections that connect to peripheral cells and organs are the Achilles heels in CNS isolation. Some viruses and bacterial toxins interact with membrane receptors that are present at nerve terminals to enter the axoplasm. Pathogens can then be mistaken for cargo and recruit trafficking components, allowing them to undergo long-range axonal transport to neuronal cell bodies. In this Review, we highlight the strategies used by pathogens to exploit axonal transport during CNS invasion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Neuronal architecture and axonal transport.
Figure 2: Axonal transport of viruses and toxins.
Figure 3: Somatodendritic sorting of microbial agents.

Similar content being viewed by others

Change history

  • 13 August 2010

    The figure 3 citation has been deleted in the following sentence: "The binding fragment of TeNT (TeNT HC) 66 (BOX 3) is internalized along with CAV-2 and CAR45 in clathrin-coated vesicles and progresses from Rab5-positive to Rab7-positive endocytic compartments, which undergo axonal transport (see below)". Also, the author's surname in the links box has been corrected to Schiavo.

References

  1. Resnick, L. et al. Intra-blood-brain-barrier synthesis of HTLV-III-specific IgG in patients with neurologic symptoms associated with AIDS or AIDS-related complex. N. Engl. J. Med. 313, 1498–1504 (1985).

    Article  CAS  PubMed  Google Scholar 

  2. Caleo, M. & Schiavo, G. Central effects of tetanus and botulinum neurotoxins. Toxicon 54, 593–599 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Woldehiwet, Z. Rabies: recent developments. Res. Vet. Sci. 73, 17–25 (2002).

    Article  PubMed  Google Scholar 

  4. Brahic, M., Bureau, J. F. & Michiels, T. The genetics of the persistent infection and demyelinating disease caused by Theiler's virus. Annu. Rev. Microbiol. 59, 279–298 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Hans, A. et al. Persistent, noncytolytic infection of neurons by Borna disease virus interferes with ERK 1/2 signaling and abrogates BDNF-induced synaptogenesis. FASEB J. 18, 863–865 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Mattson, M. P. Infectious agents and age-related neurodegenerative disorders. Ageing Res. Rev. 3, 105–120 (2004).

    Article  PubMed  Google Scholar 

  7. Ravits, J. Sporadic amyotrophic lateral sclerosis: a hypothesis of persistent (non-lytic) enteroviral infection. Amyotroph. Lateral Scler. Other Motor Neuron Disord. 6, 77–87 (2005).

    Article  PubMed  Google Scholar 

  8. Jang, H., Boltz, D. A., Webster, R. G. & Smeyne, R. J. Viral parkinsonism. Biochim. Biophys. Acta 1792, 714–721 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Jang, H. et al. Highly pathogenic H5N1 influenza virus can enter the central nervous system and induce neuroinflammation and neurodegeneration. Proc. Natl Acad. Sci. USA 106, 14063–14068 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Berth, S. H., Leopold, P. L. & Morfini, G. N. Virus-induced neuronal dysfunction and degeneration. Front. Biosci. 14, 5239–5259 (2009).

    Article  CAS  Google Scholar 

  11. Barnes, A. P. & Polleux, F. Establishment of axon-dendrite polarity in developing neurons. Annu. Rev. Neurosci. 32, 347–381 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Horton, A. C. & Ehlers, M. D. Neuronal polarity and trafficking. Neuron 40, 277–295 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Conde, C. & Caceres, A. Microtubule assembly, organization and dynamics in axons and dendrites. Nature Rev. Neurosci. 10, 319–332 (2009).

    Article  CAS  Google Scholar 

  14. Salinas, S., Bilsland, L. G. & Schiavo, G. Molecular landmarks along the axonal route: axonal transport in health and disease. Curr. Opin. Cell Biol. 20, 445–453 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Muller, M. J., Klumpp, S. & Lipowsky, R. Tug-of-war as a cooperative mechanism for bidirectional cargo transport by molecular motors. Proc. Natl Acad. Sci. USA 105, 4609–4614 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Song, A. H. et al. A selective filter for cytoplasmic transport at the axon initial segment. Cell 136, 1148–1160 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Martin, K. C. et al. Synapse-specific, long-term facilitation of aplysia sensory to motor synapses: a function for local protein synthesis in memory storage. Cell 91, 927–938 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Hanz, S. et al. Axoplasmic importins enable retrograde injury signaling in lesioned nerve. Neuron 40, 1095–1104 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Lin, A. C. & Holt, C. E. Function and regulation of local axonal translation. Curr. Opin. Neurobiol. 18, 60–68 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cosker, K. E., Courchesne, S. L. & Segal, R. A. Action in the axon: generation and transport of signaling endosomes. Curr. Opin. Neurobiol. 18, 270–275 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ibanez, C. F. Message in a bottle: long-range retrograde signaling in the nervous system. Trends Cell Biol. 17, 519–528 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. De Vos, K. J., Grierson, A. J., Ackerley, S. & Miller, C. C. Role of axonal transport in neurodegenerative diseases. Annu. Rev. Neurosci. 31, 151–173 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Racaniello, V. R. One hundred years of poliovirus pathogenesis. Virology 344, 9–16 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Finke, S. & Conzelmann, K. K. Replication strategies of rabies virus. Virus Res. 111, 120–131 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Diefenbach, R. J., Miranda-Saksena, M., Douglas, M. W. & Cunningham, A. L. Transport and egress of herpes simplex virus in neurons. Rev. Med. Virol. 18, 35–51 (2008).

    Article  PubMed  Google Scholar 

  26. Lalli, G., Bohnert, S., Deinhardt, K., Verastegui, C. & Schiavo, G. The journey of tetanus and botulinum neurotoxins in neurons. Trends Microbiol. 11, 431–437 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Samuel, M. A., Wang, H., Siddharthan, V., Morrey, J. D. & Diamond, M. S. Axonal transport mediates West Nile virus entry into the central nervous system and induces acute flaccid paralysis. Proc. Natl Acad. Sci. USA 104, 17140–17145 (2007). This study uses a combination of in vivo and in vitro techniques to characterize axonal transport of WNV and the subsequent flaccid paralysis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang, H., Siddharthan, V., Hall, J. O. & Morrey, J. D. West Nile virus preferentially transports along motor neuron axons after sciatic nerve injection of hamsters. J. Neurovirol. 15, 293–299 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Roussarie, J. P., Ruffie, C. & Brahic, M. The role of myelin in Theiler's virus persistence in the central nervous system. PLoS Pathog 3, e23 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Young, V. A. & Rall, G. F. Making it to the synapse: measles virus spread in and among neurons. Curr. Top. Microbiol. Immunol. 330, 3–30 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. de la Torre, J. C. Bornavirus and the brain. J. Infect. Dis. 186, S241–S247 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Chen, C. S. et al. Retrograde axonal transport: a major transmission route of enterovirus 71 in mice. J. Virol. 81, 8996–9003 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Antonucci, F., Rossi, C., Gianfranceschi, L., Rossetto, O. & Caleo, M. Long-distance retrograde effects of botulinum neurotoxin A. J. Neurosci. 28, 3689–3696 (2008). This investigation shows that BoNT/A, which was thought to act only at nerve terminals, undergoes axonal retrograde transport. These results suggest that BoNT/A may enter multiple endocytic pathways in neurons and that synaptic-like vesicles may undergo axonal transport in motor neurons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rudd, P. A., Cattaneo, R. & von Messling, V. Canine distemper virus uses both the anterograde and the hematogenous pathway for neuroinvasion. J. Virol. 80, 9361–9370 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Soudais, C., Laplace-Builhe, C., Kissa, K. & Kremer, E. J. Preferential transduction of neurons by canine adenovirus vectors and their efficient retrograde transport in vivo. FASEB J. 15, 2283–2285 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Kremer, E. J. Gene transfer to the central nervous system: current state of the art of the viral vectors. Curr. Genomics 6, 13–39 (2005).

    Article  CAS  Google Scholar 

  37. Callaway, E. M. Transneuronal circuit tracing with neurotropic viruses. Curr. Opin. Neurobiol. 18, 617–623 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Bilsland, L. G. & Schiavo, G. in The New Encyclopedia of Neuroscience (ed. Squire, L. R.) 1209–1216 (Academic Press, Oxford, UK, 2008).

    Google Scholar 

  39. Cossart, P., Boquet, P., Normark, S. & Rappuoli, R. Cellular microbiology emerging. Science 271, 315–316 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Greber, U. F. & Way, M. A superhighway to virus infection. Cell 124, 741–754 (2006).

    CAS  PubMed  Google Scholar 

  41. Dietzschold, B., Schnell, M. & Koprowski, H. Pathogenesis of rabies. Curr. Top. Microbiol. Immunol. 292, 45–56 (2005).

    CAS  PubMed  Google Scholar 

  42. Carbone, K. M., Trapp, B. D., Griffin, J. W., Duchala, C. S. & Narayan, O. Astrocytes and Schwann cells are virus-host cells in the nervous system of rats with borna disease. J. Neuropathol. Exp. Neurol. 48, 631–644 (1989).

    Article  CAS  PubMed  Google Scholar 

  43. Ohka, S., Yang, W. X., Terada, E., Iwasaki, K. & Nomoto, A. Retrograde transport of intact poliovirus through the axon via the fast transport system. Virology 250, 67–75 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Lewis, P., Fu, Y. & Lentz, T. L. Rabies virus entry at the neuromuscular junction in nerve-muscle cocultures. Muscle Nerve 23, 720–730 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Salinas, S. et al. CAR-associated vesicular transport of an adenovirus in motor neuron axons. PLoS Pathog 5, e1000442 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Ugolini, G. Use of rabies virus as a transneuronal tracer of neuronal connections: implications for the understanding of rabies pathogenesis. Dev. Biol. (Basel) 131, 493–506 (2008).

    CAS  Google Scholar 

  47. Shupliakov, O. The synaptic vesicle cluster: a source of endocytic proteins during neurotransmitter release. Neuroscience 158, 204–210 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Desplanques, A. S., Nauwynck, H. J., Vercauteren, D., Geens, T. & Favoreel, H. W. Plasma membrane cholesterol is required for efficient pseudorabies virus entry. Virology 376, 339–345 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Herreros, J., Ng, T. & Schiavo, G. Lipid rafts act as specialized domains for tetanus toxin binding and internalization into neurons. Mol. Biol. Cell 12, 2947–2960 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Spear, P. G. & Longnecker, R. Herpesvirus entry: an update. J. Virol. 77, 10179–10185 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Spear, P. G., Eisenberg, R. J. & Cohen, G. H. Three classes of cell surface receptors for alphaherpesvirus entry. Virology 275, 1–8 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Richart, S. M. et al. Entry of herpes simplex virus type 1 into primary sensory neurons in vitro is mediated by nectin-1/HveC. J. Virol. 77, 3307–3311 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mata, M., Zhang, M., Hu, X. & Fink, D. J. HveC (nectin-1) is expressed at high levels in sensory neurons, but not in motor neurons, of the rat peripheral nervous system. J. Neurovirol. 7, 476–480 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Ohka, S. et al. Receptor (CD155)-dependent endocytosis of poliovirus and retrograde axonal transport of the endosome. J. Virol. 78, 7186–7198 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lafon, M. Rabies virus receptors. J. Neurovirol. 11, 82–87 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Langevin, C., Jaaro, H., Bressanelli, S., Fainzilber, M. & Tuffereau, C. Rabies virus glycoprotein (RVG) is a trimeric ligand for the N-terminal cysteine-rich domain of the mammalian p75 neurotrophin receptor. J. Biol. Chem. 277, 37655–37662 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Wisco, D. et al. Uncovering multiple axonal targeting pathways in hippocampal neurons. J. Cell Biol. 162, 1317–1328 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ascano, M., Richmond, A., Borden, P. & Kuruvilla, R. Axonal targeting of Trk receptors via transcytosis regulates sensitivity to neurotrophin responses. J. Neurosci. 29, 11674–11685 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dubberke, E. R. et al. Acute meningoencephalitis caused by adenovirus serotype 26. J. Neurovirol. 12, 235–240 (2006).

    Article  PubMed  Google Scholar 

  60. Berger, J. R., Chumley, W., Pittman, T., Given, C. & Nuovo, G. Persistent Coxsackie B encephalitis: Report of a case and review of the literature. J. Neurovirol. 12, 511–516 (2006).

    Article  PubMed  Google Scholar 

  61. Gruenberg, J. & van der Goot, F. G. Mechanisms of pathogen entry through the endosomal compartments. Nature Rev. Mol. Cell Biol. 7, 495–504 (2006).

    Article  CAS  Google Scholar 

  62. Doherty, G. J. & McMahon, H. T. Mechanisms of endocytosis. Annu. Rev. Biochem. 78, 857–902 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Wilson, J. M. et al. EEA1, a tethering protein of the early sorting endosome, shows a polarized distribution in hippocampal neurons, epithelial cells, and fibroblasts. Mol. Biol. Cell 11, 2657–2671 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Smith, S. M., Renden, R. & von Gersdorff, H. Synaptic vesicle endocytosis: fast and slow modes of membrane retrieval. Trends Neurosci. 31, 559–568 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Darcy, K. J., Staras, K., Collinson, L. M. & Goda, Y. Constitutive sharing of recycling synaptic vesicles between presynaptic boutons. Nature Neurosci. 9, 315–321 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Deinhardt, K. et al. Rab5 and Rab7 control endocytic sorting along the axonal retrograde transport pathway. Neuron 52, 293–305 (2006). This work shows that TeNT enters a vesicular pathway that is used by neurotrophins and their receptors to undergo retrograde transport in motor and sensory neurons.

    Article  CAS  PubMed  Google Scholar 

  67. Ohka, S. et al. Receptor-dependent and -independent axonal retrograde transport of poliovirus in motor neurons. J. Virol. 83, 4995–5004 (2009). This article and reference 45 describe studies demonstrating that poliovirus and adenoviruses use a similar pathway to TeNT for long-range axonal traffic.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Deinhardt, K., Reversi, A., Berninghausen, O., Hopkins, C. R. & Schiavo, G. Neurotrophins redirect p75NTR from a clathrin-independent to a clathrin-dependent endocytic pathway coupled to axonal transport. Traffic 8, 1736–49 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Nicola, A. V., Hou, J., Major, E. O. & Straus, S. E. Herpes simplex virus type 1 enters human epidermal keratinocytes, but not neurons, via a pH-dependent endocytic pathway. J. Virol. 79, 7609–7616 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Roche, S. & Gaudin, Y. Evidence that rabies virus forms different kinds of fusion machines with different pH thresholds for fusion. J. Virol. 78, 8746–8752 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Klingen, Y., Conzelmann, K. K. & Finke, S. Double-labeled rabies virus: live tracking of enveloped virus transport. J. Virol. 82, 237–245 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Leopold, P. L. & Crystal, R. G. Intracellular trafficking of adenovirus: many means to many ends. Adv. Drug Deliv. Rev. 59, 810–821 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Meier, O. & Greber, U. F. Adenovirus endocytosis. J. Gene Med. 5, 451–462 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Bremner, K. H. et al. Adenovirus transport via direct interaction of cytoplasmic dynein with the viral capsid hexon subunit. Cell Host Microbe 6, 523–535 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sodeik, B. Mechanisms of viral transport in the cytoplasm. Trends Microbiol. 8, 465–472 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Sodeik, B., Ebersold, M. & Helenius, A. Microtubule-mediated transport of incoming herpes simplex virus 1 capsids to the nucleus. J. Cell Biol. 136, 1007–1021 (1997). This is one of the first mechanistic investigations of the molecular mechanism used by HSV-1 to reach the nucleus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bearer, E. L. et al. Squid axoplasm supports the retrograde axonal transport of herpes simplex virus. Biol. Bull. 197, 257–258 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bearer, E. L., Breakefield, X. O., Schuback, D., Reese, T. S. & LaVail, J. H. Retrograde axonal transport of herpes simplex virus: evidence for a single mechanism and a role for tegument. Proc. Natl Acad. Sci. USA 97, 8146–8150 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Dohner, K. et al. Function of dynein and dynactin in herpes simplex virus capsid transport. Mol. Biol. Cell 13, 2795–2809 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ye, G. J., Vaughan, K. T., Vallee, R. B. & Roizman, B. The herpes simplex virus 1 UL34 protein interacts with a cytoplasmic dynein intermediate chain and targets nuclear membrane. J. Virol. 74, 1355–1363 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Martinez-Moreno, M. et al. Recognition of novel viral sequences that associate with the dynein light chain LC8 identified through a pepscan technique. FEBS Lett. 544, 262–267 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Douglas, M. W. et al. Herpes simplex virus type 1 capsid protein VP26 interacts with dynein light chains RP3 and Tctex1 and plays a role in retrograde cellular transport. J. Biol. Chem. 279, 28522–28530 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Antinone, S. E. et al. The herpesvirus capsid surface protein, VP26, and the majority of the tegument proteins are dispensable for capsid transport toward the nucleus. J. Virol. 80, 5494–5498 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Dohner, K., Radtke, K., Schmidt, S. & Sodeik, B. Eclipse phase of herpes simplex virus type 1 infection: efficient dynein-mediated capsid transport without the small capsid protein VP26. J. Virol. 80, 8211–8224 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Antinone, S. E. & Smith, G. A. Retrograde axon transport of herpes simplex virus and pseudorabies virus: a live-cell comparative analysis. J. Virol. 84, 1504–1512 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Diefenbach, R. J. et al. Herpes simplex virus tegument protein US11 interacts with conventional kinesin heavy chain. J. Virol. 76, 3282–3291 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Smith, G. A., Gross, S. P. & Enquist, L. W. Herpesviruses use bidirectional fast-axonal transport to spread in sensory neurons. Proc. Natl Acad. Sci. USA 98, 3466–3470 (2001). This article reports a detailed analysis of the bidirectional transport dynamics of herpesviruses. This paper and reference 78 are two of the first studies to image live transport of herpesviruses and to identify the potential viral proteins involved in this process.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Smith, G. A., Pomeranz, L., Gross, S. P. & Enquist, L. W. Local modulation of plus-end transport targets herpesvirus entry and egress in sensory axons. Proc. Natl Acad. Sci. USA 101, 16034–16039 (2004). This study shows the different velocities of entering versus egressing herpesviruses. Axonal transport of the viruses is shown to occur outside endosomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Luxton, G. W. et al. Targeting of herpesvirus capsid transport in axons is coupled to association with specific sets of tegument proteins. Proc. Natl Acad. Sci. USA 102, 5832–5837 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Raux, H., Flamand, A. & Blondel, D. Interaction of the rabies virus P protein with the LC8 dynein light chain. J. Virol. 74, 10212–10216 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mebatsion, T. Extensive attenuation of rabies virus by simultaneously modifying the dynein light chain binding site in the P protein and replacing Arg333 in the G protein. J. Virol. 75, 11496–11502 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Tan, G. S., Preuss, M. A., Williams, J. C. & Schnell, M. J. The dynein light chain 8 binding motif of rabies virus phosphoprotein promotes efficient viral transcription. Proc. Natl Acad. Sci. USA 104, 7229–7234 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Mazarakis, N. D. et al. Rabies virus glycoprotein pseudotyping of lentiviral vectors enables retrograde axonal transport and access to the nervous system after peripheral delivery. Hum. Mol. Genet. 10, 2109–2121 (2001). This work illustrates the potential use of pseudotyped lentivirus vectors for gene therapy of the CNS. The G protein of RABV confers axonal transport of equine infectious anaemia virus after intramuscular injection.

    Article  CAS  PubMed  Google Scholar 

  94. Mueller, S., Cao, X., Welker, R. & Wimmer, E. Interaction of the poliovirus receptor CD155 with the dynein light chain Tctex-1 and its implication for poliovirus pathogenesis. J. Biol. Chem. 277, 7897–7904 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Lalli, G. & Schiavo, G. Analysis of retrograde transport in motor neurons reveals common endocytic carriers for tetanus toxin and neurotrophin receptor p75NTR. J. Cell Biol. 156, 233–239 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bohnert, S. & Schiavo, G. Tetanus toxin is transported in a novel neuronal compartment characterized by a specialized pH regulation. J. Biol. Chem. 280, 42336–42344 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Greber, U. F., Willetts, M., Webster, P. & Helenius, A. Stepwise dismantling of adenovirus 2 during entry into cells. Cell 75, 477–486 (1993).

    Article  CAS  PubMed  Google Scholar 

  98. Haik, S., Faucheux, B. A. & Hauw, J. J. Brain targeting through the autonomous nervous system: lessons from prion diseases. Trends Mol. Med. 10, 107–112 (2004).

    Article  PubMed  CAS  Google Scholar 

  99. Bartz, J. C., Kincaid, A. E. & Bessen, R. A. Rapid prion neuroinvasion following tongue infection. J. Virol. 77, 583–591 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ermolayev, V. et al. Impaired axonal transport in motor neurons correlates with clinical prion disease. PLoS Pathog 5, e1000558 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Haughey, N. J. & Mattson, M. P. Calcium dysregulation and neuronal apoptosis by the HIV-1 proteins Tat and gp120. J. Acquir. Immune Defic. Syndr. 31, S55–S61 (2002).

    Article  CAS  PubMed  Google Scholar 

  102. Ahmed, F., MacArthur, L., De Bernardi, M. A. & Mocchetti, I. Retrograde and anterograde transport of HIV protein gp120 in the nervous system. Brain Behav. Immun. 23, 355–364 (2009). One of the first studies of the mechanisms underlying the neurotoxicity of HIV. Axonal transport of gp120 was shown to be responsible for the widespread neuronal loss seen in some patients with AIDS.

    Article  CAS  PubMed  Google Scholar 

  103. Bachis, A., Aden, S. A., Nosheny, R. L., Andrews, P. M. & Mocchetti, I. Axonal transport of human immunodeficiency virus type 1 envelope protein glycoprotein 120 is found in association with neuronal apoptosis. J. Neurosci. 26, 6771–6780 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Chauhan, A. et al. Intracellular human immunodeficiency virus Tat expression in astrocytes promotes astrocyte survival but induces potent neurotoxicity at distant sites via axonal transport. J. Biol. Chem. 278, 13512–13519 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Hendricks, A. G. et al. Motor coordination via a tug-of-war mechanism drives bidirectional vesicle transport. Curr. Biol. 20, 697–702 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Knipe, D. M. & Cliffe, A. Chromatin control of herpes simplex virus lytic and latent infection. Nature Rev. Microbiol. 6, 211–221 (2008).

    Article  CAS  Google Scholar 

  107. del Rio, T., Ch'ng, T. H., Flood, E. A., Gross, S. P. & Enquist, L. W. Heterogeneity of a fluorescent tegument component in single pseudorabies virus virions and enveloped axonal assemblies. J. Virol. 79, 3903–3919 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Antinone, S. E. & Smith, G. A. Two modes of herpesvirus trafficking in neurons: membrane acquisition directs motion. J. Virol. 80, 11235–11240 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Maresch, C. et al. Ultrastructural analysis of virion formation and anterograde intraaxonal transport of the alphaherpesvirus pseudorabies virus in primary neurons. J. Virol. 84, 5528–5539 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Enquist, L. W., Tomishima, M. J., Gross, S. & Smith, G. A. Directional spread of an alpha-herpesvirus in the nervous system. Vet. Microbiol. 86, 5–16 (2002).

    Article  CAS  PubMed  Google Scholar 

  111. Holland, D. J., Miranda-Saksena, M., Boadle, R. A., Armati, P. & Cunningham, A. L. Anterograde transport of herpes simplex virus proteins in axons of peripheral human fetal neurons: an immunoelectron microscopy study. J. Virol. 73, 8503–8511 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. McGraw, H. M. & Friedman, H. M. Herpes simplex virus type 1 glycoprotein E mediates retrograde spread from epithelial cells to neurites. J. Virol. 83, 4791–4799 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. McGraw, H. M., Awasthi, S., Wojcechowskyj, J. A. & Friedman, H. M. Anterograde spread of herpes simplex virus type 1 requires glycoprotein E and glycoprotein I but not Us9. J. Virol. 83, 8315–8326 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Menager, P. et al. Toll-like receptor 3 (TLR3) plays a major role in the formation of rabies virus Negri Bodies. PLoS Pathog 5, e1000315 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Ch'ng, T. H. & Enquist, L. W. Neuron-to-cell spread of pseudorabies virus in a compartmented neuronal culture system. J. Virol. 79, 10875–10889 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Horton, A. C. et al. Polarized secretory trafficking directs cargo for asymmetric dendrite growth and morphogenesis. Neuron 48, 757–771 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Merianda, T. T. et al. A functional equivalent of endoplasmic reticulum and Golgi in axons for secretion of locally synthesized proteins. Mol. Cell Neurosci. 40, 128–142 (2009).

    Article  CAS  PubMed  Google Scholar 

  118. Miranda-Saksena, M., Armati, P., Boadle, R. A., Holland, D. J. & Cunningham, A. L. Anterograde transport of herpes simplex virus type 1 in cultured, dissociated human and rat dorsal root ganglion neurons. J. Virol. 74, 1827–1839 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Strunze, S., Trotman, L. C., Boucke, K. & Greber, U. F. Nuclear targeting of adenovirus type 2 requires CRM1-mediated nuclear export. Mol. Biol. Cell 16, 2999–3009 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Gazzola, M. et al. A stochastic model for microtubule motors describes the in vivo cytoplasmic transport of human adenovirus. PLoS Comput. Biol. 5, e1000623 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Kam, N., Pilpel, Y. & Fainzilber, M. Can molecular motors drive distance measurements in injured neurons? PLoS Comput. Biol. 5, e1000477 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank the members of the G.S. and E.J.K. laboratories and J. Schwarz for constructive comments. Work in the G.S. laboratory is supported by Cancer Research UK, the Motor Neurone Disease Association, the Jean Coubrough Charitable Trust and funding from the European Community's 7th Framework Programme (FP7/2007–2013; grant 222992 — BrainCAV). The E.J.K. laboratory is supported by BrainCAV, the French Agence National de la Recherche, the Region Languedoc Roussillon, the Fondation de France and the Association Française contre les Myopathies. E.J.K. and S.S. are Institut National de la Santé et de la Recherche Médicale (INSERM) fellows.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Genome

BDV

canine distemper virus

CAdV-2

RABV

Entrez Genome Project

HIV-1

WNV

FURTHER INFORMATION

Eric J. Kremer's homepage

Giampietro Schiavo's homepage

Glossary

Tetanus

A spastic paralysis resulting from the inhibition of neurotransmitter release at the level of inhibitory interneurons. This inhibition is caused by intoxication with TeNT (a protein toxin produced by Clostridium tetani), which is taken up at neuromuscular junctions.

Botulism

A flacid paralysis resulting from the inhibition of acetylcholine release at neuromuscular junctions, mediated by BoNTs. These toxins act by cleaving the synaptic components that mediate fusion of synaptic vesicles to the plasma membrane.

Synaptogenesis

Formation of synapses in the central and peripheral nervous systems. This process initiates early in development and continues throughout adulthood.

Axonal retrograde transport

Traffic of molecules and organelles from nerve terminals to cell bodies. This mechanism is mainly microtubule-dependent and involves the molecular motor cytoplasmic dynein.

Axonal anterograde transport

Traffic of molecules and organelles from cell bodies to nerve terminals. This mechanism is mainly microtubule-dependent and involves molecular motors of the kinesin family.

Neurotrophin

One of a family of growth factors involved in neuronal growth, differentiation and survival. A classical example is NGF, which is involved in the survival of specific neurons during development.

Neuromuscular junction

Specialized synapse that connects motor neurons to muscle fibres. Axon terminals contact muscle fibres through motor end plates, which are specialized regions that are responsible for the transmission of electrical signals.

Lipid raft

Microdomain of the plasma membrane that is enriched in cholesterol and sphingolipids. Certain classes of GPI-anchored and transmembrane proteins acting as virus and toxin receptors seem to be concentrated in these structures.

Microtubule-organizing centre

Site of microtubule nucleation in eukaryotic cells; it organizes flagella, ciliae and spindle poles, and it is closely associated with the Golgi apparatus.

Microfusion event

Local membrane fusion triggered by the interaction between certain viral proteins and surface receptors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salinas, S., Schiavo, G. & Kremer, E. A hitchhiker's guide to the nervous system: the complex journey of viruses and toxins. Nat Rev Microbiol 8, 645–655 (2010). https://doi.org/10.1038/nrmicro2395

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2395

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology