Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The phage-related chromosomal islands of Gram-positive bacteria

This article has been updated

Key Points

  • Staphylococcus aureus pathogenicity islands (SaPIs) are highly mobile phage-related mobile genetic elements in staphylococci. Elements similar to SaPIs have been detected in related Gram-positive bacteria, prompting a name change to phage-related chromosomal islands (PRCIs).

  • PRCIs are normally quiescent until they are induced by a helper phage that inactivates the repressor Stl. The mechanism of induction seems to vary between Stl molecules and requires helper phages specific for the SaPI.

  • SaPIs are packaged by capsid proteins encoded by the helper phage, but helper phage DNA is excluded. Therefore, SaPIs can hijack the helper phage to mediate their own spread.

  • In some cases autonomous replication of the SaPIs takes place. There are several proposed models for replication mechanisms in these SaPIs.

  • Recently, high-frequency transfer of SaPIs to Listeria monocytogenes was demonstrated, suggesting that silent phage-mediated intergeneric transfer may be an important but, to date, unrecognized mode of horizontal gene transfer among bacteria.

Abstract

The phage-related chromosomal islands (PRCIs) were first identified in Staphylococcus aureus as highly mobile, superantigen-encoding genetic elements known as the S. aureus pathogenicity islands (SaPIs). These elements are characterized by a specific set of phage-related functions that enable them to use the phage reproduction cycle for their own transduction and inhibit phage reproduction in the process. SaPIs produce many phage-like infectious particles; their streptococcal counterparts have a role in gene regulation but may not be infectious. These elements therefore represent phage satellites or parasites, not defective phages. In this Review, we discuss the shared genetic content of PRCIs, their life cycle and their ability to be transferred across large phylogenetic distances.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of phage-related chromosomal island genomes.
Figure 2: Staphylococcal pathogenicity island replication scenarios.
Figure 3: Electron microscopy of phage and Staphylococcus aureus pathogenicity island particles.

Similar content being viewed by others

Change history

  • 16 July 2010

    In this article, the middle initial of one of the authors was omitted in the printed version. The author's full name is Gail E. Christie.

References

  1. Gogarten, J. P., Doolittle, W. F. & Lawrence, J. G. Prokaryotic evolution in light of gene transfer. Mol. Biol. Evol. 19, 2226–2238 (2002).

    Article  CAS  Google Scholar 

  2. Katayama, Y., Ito, T. & Hiramatsu, K. A new class of genetic element, staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 44, 1549–1555 (2000).

    CAS  Google Scholar 

  3. Gillet, Y. et al. Association between Staphylococcus aureus strains carrying gene for Panton-Valentine leukocidin and highly lethal necrotising pneumonia in young immunocompetent patients. Lancet 359, 753–759 (2002).

    Article  CAS  Google Scholar 

  4. Vojtov, N., Ross, H. F. & Novick, R. P. Global repression of exotoxin synthesis by staphylococcal superantigens. Proc. Natl Acad. Sci. USA 99, 10102–10107 (2002).

    Article  CAS  Google Scholar 

  5. Novick, R. P. Mobile genetic elements and bacterial toxinoses: the superantigen-encoding pathogenicity islands of Staphylococcus aureus. Plasmid 49, 93–105 (2003).

    Article  CAS  Google Scholar 

  6. Lindsay, J. A., Ruzin, A., Ross, H. F., Kurepina, N. & Novick, R. P. The gene for toxic shock toxin is carried by a family of mobile pathogenicity islands in Staphylococcus aureus. Mol. Microbiol. 29, 527–543 (1998).

    Article  CAS  Google Scholar 

  7. Subedi, A., Ubeda, C., Adhikari, R. P., Penades, J. R. & Novick, R. P. Sequence analysis reveals genetic exchanges and intraspecific spread of SaPI2, a pathogenicity island involved in menstrual toxic shock. Microbiology 153, 3235–3245 (2007).

    Article  CAS  Google Scholar 

  8. Takeuchi, F. et al. Whole-genome sequencing of Staphylococcus haemolyticus uncovers the extreme plasticity of its genome and the evolution of human-colonizing staphylococcal species. J. Bacteriol. 187, 7292–7308 (2005).

    Article  CAS  Google Scholar 

  9. Kuroda, M. et al. Whole genome sequence of Staphylococcus saprophyticus reveals the pathogenesis of uncomplicated urinary tract infection. Proc. Natl Acad. Sci. USA 102, 13272–13277 (2005).

    Article  CAS  Google Scholar 

  10. Scott, J., Thompson-Mayberry, P., Lahmamsi, S., King, C. J. & McShan, W. M. Phage-associated mutator phenotype in group A streptococcus. J. Bacteriol. 190, 6290–6301 (2008).

    Article  CAS  Google Scholar 

  11. Madhusoodanan, J. et al. in Abstracts of the 107th General Meeting of the American Society for Microbiology (ASM, Washington DC, 2007).

    Google Scholar 

  12. Baba, T. et al. Genome and virulence determinants of high virulence community-acquired MRSA. Lancet 359, 1819–1827 (2002).

    Article  CAS  Google Scholar 

  13. Ubeda, C., Barry, P., Novick, R. P. & Penades, J. R. Characterization of mutations defining SaPI functions and enabling autonomous replication in the absence of helper phage. Mol. Microbiol. 67, 493–503 (2008).

    Article  CAS  Google Scholar 

  14. Ziegelin, G., Linderoth, N. A., Calendar, R. & Lanka, E. Domain structure of phage P4 α protein deduced by mutational analysis. J. Bacteriol. 177, 4333–4341 (1995).

    Article  CAS  Google Scholar 

  15. Ubeda, C. et al. Specificity of staphylococcal phage and SaPI DNA packaging as revealed by integrase and terminase mutations. Mol. Microbiol. 72, 98–108 (2009).

    Article  CAS  Google Scholar 

  16. Ubeda, C. et al. SaPI operon I is required for SaPI packaging and is controlled by LexA. Mol. Microbiol 65, 41–50 (2007).

    Article  CAS  Google Scholar 

  17. Tormo, M. A. et al. Staphylococcus aureus pathogenicity island DNA is packaged in particles composed of phage proteins. J. Bacteriol. 190, 2434–2440 (2008).

    Article  CAS  Google Scholar 

  18. Barry, P. in Microbiology (New York Univ. Press, New York, 2006).

    Google Scholar 

  19. Campbell, A. M. in Modern Prespectives in Biology (eds Halvorson, H. O., Roman, H. L. & Bell, E.) (Harper & Row, New York, 1969).

    Google Scholar 

  20. Ruzin, A., Lindsay, J. & Novick, R. P. Molecular genetics of SaPI1 – a mobile pathogenicity island in Staphylococcus aureus. Mol. Microbiol. 41, 365–377 (2001).

    Article  CAS  Google Scholar 

  21. Novick, R. P. & Subedi, A. The SaPIs: mobile pathogenicity islands of Staphylococcus. Chem. Immunol. Allergy 93, 42–57 (2007).

    Article  CAS  Google Scholar 

  22. Chen, J. & Novick, R. P. Phage-mediated intergeneric transfer of toxin genes. Science 323, 139–141 (2009).

    Article  CAS  Google Scholar 

  23. Maiques, E. et al. Role of staphylococcal phage and SaPI integrase in intra- and interspecies SaPI transfer. J. Bacteriol. 189, 5608–5616 (2007).

    Article  CAS  Google Scholar 

  24. Tormo-Mas, M. A. et al. Moonlighting bacteriophage proteins derepress staphylococcal pathogenicity islands. Nature 465, 779–782 (2010).

    Article  CAS  Google Scholar 

  25. Chan, S. et al. Crystal structure of the Mycobacterium tuberculosis dUTPase: insights into the catalytic mechanism. J. Mol. Biol. 341, 503–517 (2004).

    Article  CAS  Google Scholar 

  26. Ubeda, C. et al. Sip, an integrase protein with excision, circularization and integration activities, defines a new family of mobile Staphylococcus aureus pathogenicity islands. Mol. Microbiol. 49, 193–210 (2003).

    Article  CAS  Google Scholar 

  27. Ubeda, C., Penades, J. R. & Novick, R. P. A pathogenicity island replicon in Staphylococcus aureus replicates as an unstable plasmid. Proc. Natl Acad. Sci. USA 104, 14182–14188 (2007).

    Article  CAS  Google Scholar 

  28. Tallent, S. M., Langston, T. B., Moran, R. G. & Christie, G. E. Transducing particles of Staphylococcus aureus pathogenicity island SaPI1 are comprised of helper phage-encoded proteins. J. Bacteriol. 189, 7520–7524 (2007).

    Article  CAS  Google Scholar 

  29. Poliakov, A. et al. Capsid size determination by Staphylococcus aureus pathogenicity island SaPI1 involves specific incorporation of SaPI1 proteins into procapsids. J. Mol. Biol. 380, 465–475 (2008).

    Article  CAS  Google Scholar 

  30. Gill, J. J. et al. Efficacy and pharmacokinetics of bacteriophage therapy in treatment of subclinical Staphylococcus aureus mastitis in lactating dairy cattle. Antimicrob. Agents Chemother. 50, 2912–2918 (2006).

    Article  CAS  Google Scholar 

  31. Arnold, H. P. et al. The genetic element pSSVx of the extremely thermophilic crenarchaeon Sulfolobus is a hybrid between a plasmid and a virus. Mol. Microbiol. 34, 217–226 (1999).

    Article  CAS  Google Scholar 

  32. Schlievert, P. M., Shands, K. N., Dan, B. B., Schmid, G. P. & Nishimura, R. D. Identification and characterization of an exotoxin from Staphylococcus aureus associated with toxic-shock syndrome. J. Infect. Dis. 143, 509–516 (1981).

    Article  CAS  Google Scholar 

  33. Altemeier, W. A. et al. Staphylococcus aureus associated with toxic shock syndrome. Ann. Int. Med. 96, 978–982 (1982).

    Article  CAS  Google Scholar 

  34. Kreiswirth, B. N., Projan, S. J., Schlievert, P. M. & Novick, R. P. Toxic shock syndrome toxin 1 is encoded by a variable genetic element. Rev. Infect. Dis. 11 (Suppl. 1), S83–S88 (1989).

    Article  CAS  Google Scholar 

  35. Chu, M. C. et al. Association of toxic shock toxin-1 determinant with a heterologous insertion at multiple loci in the Staphylococcus aureus chromosome. Infect. Immun. 56, 2702–2708 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kuroda, M. et al. Whole genome sequencing of methicillin-resistant Staphylococcus aureus. Lancet 357, 1225–1240 (2001).

    Article  CAS  Google Scholar 

  37. Lindsay, J. A. & Holden, M. T. Staphylococcus aureus: superbug, super genome? Trends Microbiol. 12, 378–385 (2004).

    Article  CAS  Google Scholar 

  38. O'Neill, A. J., Larsen, A. R., Skov, R., Henriksen, A. S. & Chopra, I. Characterization of the epidemic European fusidic acid-resistant impetigo clone of Staphylococcus aureus. J. Clin. Microbiol. 45, 1505–1510 (2007).

    Article  CAS  Google Scholar 

  39. Holden, M. T. et al. Complete genomes of two clinical Staphylococcus aureus strains: evidence for the rapid evolution of virulence and drug resistance. Proc. Natl Acad. Sci. USA 101, 9786–9791 (2004).

    Article  CAS  Google Scholar 

  40. Kwan, T., Liu, J., DuBow, M., Gros, P. & Pelletier, J. The complete genomes and proteomes of 27 Staphylococcus aureus bacteriophages. Proc. Natl Acad. Sci. USA 102, 5174–5179 (2005).

    Article  CAS  Google Scholar 

  41. Fitzgerald, J. R. et al. Characterization of a putative pathogenicity island from bovine Staphylococcus aureus encoding multiple superantigens. J. Bacteriol. 183, 63–70 (2001).

    Article  CAS  Google Scholar 

  42. Novick, R. P., Schlievert, P. & Ruzin, A. Pathogenicity and resistance islands of staphylococci. Microbes Infect. 3, 585–594 (2001).

    Article  CAS  Google Scholar 

  43. Diep, B. A. et al. The complete genome sequence of USA300, an epidemic community-acquired methicillin-resistant Staphylococcus aureus strain. Lancet 367, 731–739 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge, with gratitude, the scientific and intellectual contributions of the many members of our respective laboratories.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard P. Novick.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

DATABASES

Entrez Genome

phage 80α

phage 85

phage ϕ13

phage P4

phage PH15

Entrez Genome Project

Bacillus subtilis

Enterococcus faecalis

Escherichia coli

Lactococcus lactis

Listeria monocytogenes

Mycobacterium tuberculosis

Staphylococcus aureus

Staphylococcus chromogenes

Staphylococcus epidermidis

Staphylococcus xylosus

Streptococcus pyogenes

Sulfolobus islandicus

GenBank

NC_007622

FURTHER INFORMATION

Richard P. Novick's homepage

Glossary

Prophage

A quiescent form of a bacteriophage (usually inserted into the chromosome of its host), in which the lytic functions of the phage are repressed.

Iteron

One member of a set of short repeated DNA sequences that are located at a bacterial origin of replication and are required for the initiation of replication.

SOS response

A global stress response to DNA-damaging agents such as ultraviolet light or mitomycin C.

Campbell mechanism

A recombinational mechanism for the insertion of a genetic element, such as a phage genome or a plasmid, into the bacterial chromosome, involving circularization of the element followed by a single crossover with a chromosomal target site.

Lysogen

A bacterium containing an inducible prophage.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novick, R., Christie, G. & Penadés, J. The phage-related chromosomal islands of Gram-positive bacteria. Nat Rev Microbiol 8, 541–551 (2010). https://doi.org/10.1038/nrmicro2393

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2393

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing