Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Structure-based discovery of antibacterial drugs

Key Points

  • Over the past 30 years, there has been a widespread emergence of resistance to antibiotics in pathogenic bacteria. This resistance is now a serious threat to global public health and could undermine the major advances that had been previously achieved in the treatment of infection.

  • The success rate has been extremely low for the identification of novel antibacterial agents by concerted genomic and high-throughput screening initiatives, meaning that a new strategy is now required to develop the next generation of antibiotics. Although structure-based drug discovery is still in its infancy for antibacterial-drug discovery, the growing number of molecular targets for which structural information is available makes this approach increasingly attractive.

  • The starting point for all structure-based design work, whether ligand or protein based, is the choice of a suitable target. Antimicrobial-drug targets should be essential, have a unique function in the pathogen and exhibit an activity that can be altered by a small molecule.

  • Three main methods are available to assist in the identification of new putative ligands on the basis of structural information: substrate-inspired inhibitor design, virtual high-throughput screening and de novo design of inhibitor scaffolds. Structure-based approaches to the identification of new inhibitors of both classical and novel bacterial targets will increase in future years. However, it should also be remembered that an improved understanding of the molecular basis by which existing antibacterial agents act may provide insights for new structure-based approaches to drug discovery.

  • Although still in its infancy, the technology described in this Review may provide the new classes of antibacterial drugs that will be required to fight infection in the twenty-first century and beyond.

Abstract

The modern era of antibacterial chemotherapy began in the 1930s, and the next four decades saw the discovery of almost all the major classes of antibacterial agents that are currently in use. However, bacterial resistance to many of these drugs is becoming an increasing problem. As such, the discovery of drugs with novel modes of action will be vital to meet the threats created by the emergence of resistance. Success in discovering inhibitors using high-throughput screening of chemical libraries is rare. In this Review we explore the exciting opportunities for antibacterial-drug discovery arising from structure-based drug design.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Protocols for high-throughput screening docking and de novo design.
Figure 2: Inhibitors designed using structure-based drug discovery.
Figure 3: The eHiTS docking strategy.
Figure 4: Inhibitors designed using eHiTS.
Figure 5: SPROUT-designed inhibitor modelled in D-alanine–D-alanine ligase.
Figure 6: Inhibitor of vancomycin resistance protein A, designed using SPROUT.

Similar content being viewed by others

References

  1. Chopra, I., Hesse, L. & O'Neill, A. J. Exploiting current understanding of antibiotic action for discovery of new drugs. J. Appl. Microbiol. 92, S4–S15 (2002).

    Article  Google Scholar 

  2. Knowles, D. J. C. New strategies for antibacterial drug design. Trends Microbiol. 5, 379–383 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Spellberg, B. et al. The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America. Clin. Infect. Dis. 46, 155–164 (2008).

    Article  PubMed  Google Scholar 

  4. Talbot, G. H. et al. Bad bugs need drugs: an update on the development pipeline from the Antimicrobial Availability Task Force of the Infectious Diseases Society of America. Clin. Infect. Dis. 42, 657–668 (2006).

    Article  PubMed  Google Scholar 

  5. Chopra, I. et al. Treatment of health-care-associated infections caused by Gram-negative bacteria: a consensus statement. Lancet Infect. Dis. 8, 133–139 (2008).

    Article  PubMed  Google Scholar 

  6. Overbye, K. M. & Barrett, J. F. Antibiotics: where did we go wrong? Drug Discov. Today 10, 45–52 (2005).

    Article  PubMed  Google Scholar 

  7. Newman, D. J., Cragg, G. M. & Snader, K. M. The influence of natural products upon drug discovery. Nat. Prod. Rep. 17, 215–234 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Shlaes, D. M. An update on tetracyclines. Curr. Opin. Investig. Drugs 7, 167–171 (2006).

    CAS  PubMed  Google Scholar 

  9. Payne, D. J., Gwynn, M. N., Holmes, D. J. & Pompliano, D. L. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nature Rev. Drug Discov. 6, 29–40 (2007). GlaxoSmithKline share their experience of evaluating more than 300 genes and 70 HTS campaigns over a period of 7 years; they analyse what they have learned and how this has influenced their antibacterials strategy.

    Article  CAS  Google Scholar 

  10. Fernandes, P. Antibacterial discovery and development — the failure of success? Nature Biotech. 24, 1497–1503 (2006).

    Article  CAS  Google Scholar 

  11. Golebiowski, A., Klopfenstein, S. R. & Portlock, D. E. Lead compounds discovered from libraries. Curr. Opin. Chem. Biol. 5, 273–284 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Chan, P. F., Holmes, D. J. & Payne, D. J. Finding the gems using genomic discovery: antibacterial drug discovery strategies – the successes and the challenges. Drug Discov. Today Ther. Strateg. 1, 519–527 (2004).

    Article  CAS  Google Scholar 

  13. Dorsey, B. D. et al. L-735,524: the rational design of a potent and orally bioavailable HIV protease inhibitor. J. Med. Chem. 37, 3443–3451 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Erickson, J. et al. Design, activity and 2.8Å crystal structure of a C2 symmetrical inhibitor complexed to HIV-1 protease. Science 249, 527–533 (1990).

    Article  CAS  PubMed  Google Scholar 

  15. Roberts, N. A. et al. Rational design of peptide-based HIV proteinase inhibitors. Science 248, 358–361 (1990).

    Article  CAS  PubMed  Google Scholar 

  16. Kaldor, S. W. et al. Viracept (nelfinavir mesylate, AG1343): a potent, orally bioavailable inhibitor of HIV-1 protease. J. Med. Chem. 40, 3979–3985 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Highleyman, L. New anti-HIV drugs in development. BETA 12, 7–8 (1999).

    CAS  PubMed  Google Scholar 

  18. McCauley, J. Relenza. Curr. Biol. 9, R796–R796 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Stratton, M. S. & Alberts, D. S. Current application of selective COX-2 inhibitors in cancer prevention and treatment. Oncology (Williston Park) 16, 37–51 (2002).

    Google Scholar 

  20. Mardini, I. A. & FitzGerald, G. A. Selective inhibitors of cyclooxygenase-2: a growing class of anti-inflammatory drugs. Mol. Interv. 1, 30–38 (2001).

    CAS  PubMed  Google Scholar 

  21. Schmid, M. B. Crystallizing new approaches for antimicrobial drug discovery. Biochem. Pharmacol. 71, 1048–1056 (2006). This article describes the use of structural genomics, in the form of SBDD, to overcome the bottlenecks in the antimicrobial pipeline, such as identifying good leads.

    Article  CAS  PubMed  Google Scholar 

  22. Halgren, T. A. Identifying and characterising binding sites and assessing druggability. J. Chem. Inf. Model. 49, 377–389 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Villoutreix, B. O. et al. Free resources to assist structure-based virtual ligand screening experiments. Curr. Protein Pept. Sci. 8, 381–411 (2007). This report provides links for in silico ADME/tox prediction tools, compound collections, some ligand-based methods, characterization and simulation of three-dimensional targets, and homology modelling tools, as well as links to software for druggable-pocket predictions, active-site comparisons, analysis of macromolecular interfaces, protein-docking tools to help identify binding pockets, and protein– ligand docking and scoring methods.

    Article  CAS  PubMed  Google Scholar 

  24. Cheng, A. C. et al. Structure-based maximal affinity model predicts small-molecule druggability. Nature Biotech. 25, 71–75 (2007).

    Article  CAS  Google Scholar 

  25. Carlson, H. A. & McCammon, J. A. Accommodating protein flexibility in computational drug design. Mol. Pharmacol. 57, 213–218 (2000). An explanation of the need to accommodate an ensemble of protein configurations in drug design and the computational methods available for generating and manipulating that dynamic information.

    Article  CAS  PubMed  Google Scholar 

  26. Jain, A. N. Surflex-Dock 2.1: robust performance from ligand energetic modeling, ring flexibility, and knowledge-based search. J. Comput. Aided Mol. Des. 21, 281–306 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Zhao, Y. & Sanner, M. F. FLIPDock: docking flexible ligands into flexible receptors. Proteins 68, 726–737 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Schnecke, V., Swanson, C. A., Getzoff, E. D., Tainer, J. A. & Kuhn, L. A. Screening a peptidyl database for potential ligands to proteins with side-chain flexibility. Proteins 33, 74–87 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Claussen, H., Buning, C., Rarey, M. & Lengauer, T. FlexE: efficient molecular docking considering protein structure variations. J. Mol. Biol. 308, 377–395 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Claussen, H., Buning, C., Rarey, M. & Lengauer, T. in Rational Approaches to Drug Design: Proceedings of the 13th European Symposium on Quantitative Structure-Activity Relationships (eds Höltje, H.-D. & Sippl, W.) 324–333 (Heinrich-Heine Universität, Düsseldorf, 2001).

    Google Scholar 

  31. Ota, N. & Agard, D. A. Binding mode prediction for a flexible ligand in a flexible pocket using multi-conformation simulated annealing pseudo crystallographic refinement. J. Mol. Biol. 314, 607–617 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Skarzynski, T. et al. Structure of UDP-N-acetylglucosamine enolpyruvyl transferase, an enzyme essential for the synthesis of bacterial peptidoglycan, complexed with substrate UDP-N-acetylglucosamine and the drug fosfomycin. Structure 4, 1465–1474 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Eschenburg, S., Kabsch, W., Healy, M. L. & Schonbrunn, E. A new view of the mechanisms of UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) and 5-enolpyruvylshikimate-3-phosphate synthase (AroA) derived from X-ray structures of their tetrahedral reaction intermediate states. J. Biol. Chem. 278, 49215–49222 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Eschenburg, S. et al. A novel inhibitor that suspends the induced fit mechanism of UDP-N-acetylglucosamine enolpyruvyl transferase (MurA). J. Biol. Chem. 280, 14070–14075 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. DeWeese-Scott, C. & Moult, J. Molecular modeling of protein function regions. Proteins 55, 942–961 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Yang, J. S., Chen, W. W., Skolnick, J. & Shakhnovich, E. I. All-atom ab initio folding of a diverse set of proteins. Structure 15, 53–63 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Arnold, K., Bordoli, L., Kopp, J. & Schwede, T. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22, 195–201 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Bordoli, L. et al. Protein structure homology modeling using SWISS-MODEL workspace. Nature. Protoc. 4, 1–13 (2009).

    Article  CAS  Google Scholar 

  39. Kopp, J. & Schwede, T. Automated protein structure homology modeling: a progress report. Pharmacogenomics 5, 405–416 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Schwede, T., Kopp, J., Guex, N. & Peitsch, M. C. SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res. 31, 3381–3385 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jones, T. A. & Kleywegt, G. J. CASP3 comparative modeling evaluation. Proteins 37 (Suppl. 3), 30–46 (1999).

    Article  Google Scholar 

  42. Tramontano, A., Leplae, R. & Morea, V. Analysis and assessment of comparative modeling predictions in CASP4. Proteins 45, 22–38 (2001).

    Article  CAS  Google Scholar 

  43. Chan, D. C. M., Laughton, C. A., Queener, S. F. & Stevens, M. F. G. Structural studies on bioactive compounds. 34. Design, synthesis, and biological evaluation of triazenyl-substituted pyrimethamine inhibitors of Pneumocystis carinii dihydrofolate reductase. J. Med. Chem. 44, 2555–2564 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Varney, M. D. et al. Crystal structure-based design and synthesis of benz[cd]indole-containing inhibitors of thymidylate synthase. J. Med. Chem. 35, 663–676 (1992).

    Article  CAS  PubMed  Google Scholar 

  45. Schmid, M. B. Seeing is believing: the impact of structural genomics on antimicrobial drug discovery. Nature Rev. Microbiol. 2, 739–746 (2004).

    Article  CAS  Google Scholar 

  46. Berge, J. M. et al. Inhibitors of bacterial tyrosyl tRNA synthetase: synthesis of four stereoisomeric analogues of the natural product SB-219383. Bioorg. Med. Chem. Lett. 10, 1811–1814 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Berge, J. M. et al. Synthesis and activity of analogues of SB-219383: novel potent inhibitors of bacterial tyrosyl tRNA synthetase. J. Antibiot. (Tokyo) 53, 1282–1292 (2000).

    Article  CAS  Google Scholar 

  48. Stefanska, A. L. et al. SB-219383, a novel tyrosyl tRNA synthetase inhibitor from a Micromonospora sp. I. Fermentation, isolation and properties. J. Antibiot. (Tokyo) 53, 345–350 (2000).

    Article  CAS  Google Scholar 

  49. Brown, P. et al. Synthetic analogues of SB-219383. Novel C-glycosyl peptides as inhibitors of tyrosyl tRNA synthetase. Bioorg. Med. Chem. Lett. 11, 711–714 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Prasad, J. C., Goldstone, J. V., Camacho, C. J., Vajda, S. & Stegeman, J. J. Ensemble modeling of substrate binding to cytochromes p450: analysis of catalytic differences between CYP1A orthologs. Biochemistry 46, 2640–2654 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Källblad, P., Mancera, R. L. & Todorov, N. P. Assessment of multiple binding modes in ligand-protein docking. J. Med. Chem. 47, 3334–3337 (2004). This study quantifies the effect of considering multiple docking solutions on the success rate of obtaining the crystallographic binding mode.

    Article  CAS  PubMed  Google Scholar 

  52. Limongelli, V. et al. Ensemble-docking approach on BACE-1: pharmacophore perception and guidelines for drug design. ChemMedChem 2, 667–678 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Kozakov, D., Clodfelter, K. H., Vajda, S. & Camacho, C. J. Optimal clustering for detecting near-native conformations in protein docking. Biophys. J. 89, 867–875 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kovac, A. et al. Discovery of new inhibitors of D-alanine:D-alanine ligase by structure-based virtual screening. J. Med. Chem. 51, 7442–7448 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Finn, J., Stidham, M., Hilgers, M. & Kedar, G. C. Identification of novel inhibitors of methionyl-tRNA synthetase (MetRS) by virtual screening. Bioorg. Med. Chem. Lett. 18, 3932–3937 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Venkatachalam, C. M., Jiang, X., Oldfield, T. & Waldman, M. LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites. J. Mol. Graph. Model. 21, 289–307 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Dove, A. Drug screening—beyond the bottleneck. Nature Biotech. 17, 859–863 (1999).

    Article  CAS  Google Scholar 

  58. Zsoldos, Z. eHiTS: exhaustive flexible ligand docking with customizable scoring function tailored to protein families. SimBioSys Inc. [online], (2004).

  59. Zsoldos, Z., Johnson, A. P., Simon, A., Szabo, I. & Szabo, Z. eHiTS: novel algorithm for fast, exhaustive flexible ligand docking and scoring. SimBioSys Inc. [online], (2002).

  60. Zsoldos, Z., Reid, D., Simon, A., Sadjad, B. S. & Johnson, A. P. eHITS: an innovative approach to the docking and scoring function problems. Curr. Protein Pept. Sci. 7, 421–435 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Segura-Cabrera, A. & Rodriguez-Perez, M. A. Structure-based prediction of Mycobacterium tuberculosis shikimate kinase inhibitors by high-throughput virtual screening. Bioorg. Med. Chem. Lett. 18, 3152–3157 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Eitner, K. et al. eHiTS-to-VMD interface application. The search for tyrosine-tRNA ligase inhibitors. J. Chem. Inf. Model. 47, 695–702 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Turk, S. et al. Discovery of new inhibitors of the bacterial peptidoglycan biosynthesis enzymes MurD and MurF by structure-based virtual screening. Biorg. Med. Chem. 17, 1884–1889 (2009).

    Article  CAS  Google Scholar 

  64. Agrawal, H., Kumar, A., Bal, N. C., Siddiqi, M. I. & Arora, A. Ligand based virtual screening and biological evaluation of inhibitors of chorismate mutase (Rv1885c) from Mycobacterium tuberculosis H37Rv. Bioorg. Med. Chem. Lett. 17, 3053–3058 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Lin, T. W. et al. Structure-based inhibitor design of AccD5, an essential acyl-CoA carboxylase carboxyltransferase domain of Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 103, 3072–3077 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Babaoglu, K. et al. Comprehensive mechanistic analysis of hits from high-throughput and docking screens against β-lactamase. J. Med. Chem. 51, 2502–2511 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Morandi, S., Morandi, F., Caselli, E., Shoichet, B. K. & Prati, F. Structure-based optimization of cephalothin-analogue boronic acids as β-lactamase inhibitors. Biorg. Med. Chem. 16, 1195–1205 (2008).

    Article  CAS  Google Scholar 

  68. Teotico, D. G. et al. Docking for fragment inhibitors of AmpC β-lactamase. Proc. Natl Acad. Sci. USA 106, 7455–7460 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fechner, U. & Schneider, G. Flux (1): a virtual synthesis scheme for fragment-based de novo design. J. Chem. Inf. Model. 46, 699–707 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Boehm, H. J. et al. Novel inhibitors of DNA gyrase: 3D structure based biased needle screening, hit validation by biophysical methods, and 3D guided optimization. A promising alternative to random screening. J. Med. Chem. 43, 2664–2674 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Boda, K. & Johnson, A. P. Molecular complexity analysis of de novo designed ligands. J. Med. Chem. 49, 5869–5879 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Gillet, V., Johnson, A. P., Mata, P., Sike, S. & Williams, P. SPROUT: A programme for structure generation. J. Comput. Aided Mol. Des. 7, 127–153 (1993).

    Article  CAS  PubMed  Google Scholar 

  73. Gillet, V. J., Myatt, G., Zsoldos, Z. & Johnson, A. P. SPROUT, HIPPO and CAESA: Tools for de novo structure generation and estimation of synthetic accessibility. Perspect. Drug Discov. Des. 3, 34–50 (1995).

    Article  CAS  Google Scholar 

  74. Gillet, V. J. et al. SPROUT: recent developments in the de novo design of molecules. J. Chem. Inf. Comput. Sci. 34, 207–217 (1994).

    Article  CAS  PubMed  Google Scholar 

  75. Law, J. M. S. et al. Validation of the SPROUT de novo design program. J. Mol. Struct. 666, 651–657 (2003).

    Article  CAS  Google Scholar 

  76. Mata, P. et al. SPROUT: 3D structure generation using templates. J. Chem. Inf. Comput. Sci. 35, 479–493 (1995).

    Article  CAS  Google Scholar 

  77. Zsoldos, Z., Szabo, I., Szabo, Z. & Johnson, A. P. Software tools for structure based rational drug design. J. Mol. Struct. 666, 659–665 (2003).

    Article  CAS  Google Scholar 

  78. Horton, J. et al. Macrocyclic inhibitors of bacterial cell wall biosynthesis enzyme MurD. Bioorg. Med. Chem. Lett. 13, 1557–1560 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Besong, G. E. et al. A de novo designed inhibitor of D-Ala-D-Ala ligase from E. coli. Angew. Chem. Int. Ed. Engl. 44, 6403–6406 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Sova, M. et al. Design and synthesis of new hydroxyethylamines as inhibitors of D-alanyl-D-lactate ligase (VanA) and D-alanyl-D-alanine ligase (DdlB). Bioorg. Med. Chem. Lett. 19, 1376–1379 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Agarwal, A. K., Johnson, A. P. & Fishwick, C. W. G. Synthesis of de novo designed small-molecule inhibitors of bacterial RNA polymerase. Tetrahedron 64, 10049–10054 (2008).

    Article  CAS  Google Scholar 

  82. Davies, M. et al. Structure-based design, synthesis and characterization of inhibitors of human and Plasmodium falciparum dihydroorotate dehydrogenases. J. Med. Chem. 52, 2683–2693 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Schlunzen, F. et al. Structural basis for the interpretation of antibiotics with the peptidyl transferase centre in eubacteria. Nature 413, 814–821 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Pioletti, M. et al. Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3. EMBO J. 20, 1829–1839 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Franceschi, F. & Duffy, E. M. Structure-based drug design meets the ribosome. Biochem. Pharmacol. 71, 1016–1025 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Mukhopadhyay, J. et al. The RNA polymerase “switch region” is a target for inhibitors. Cell 135, 295–307 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Belogurov, G. A. et al. Transcription inactivation through local refolding of the RNA polymerase structure. Nature 457, 332–338 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the authors' laboratories is supported by grants from the UK Medical Research Council (MRC), the UK Biotechnology and Biological Sciences Research Council (BBSRC), Heart Research UK and the European Community's Seventh Framework Programme FP7 (under grant agreement HEALTH-F4-2007-201924, EDICT Consortium).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin W. G. Fishwick.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Supplementary information

Supplementary information S1 (figure) | Additional inhibitors designed using SBDD. (PDF 341 kb)

41579_2010_BFnrmicro2349_MOESM428_ESM.pdf

Supplementary information S2 (table) | Source information for docking and vHTS programs and other resources (PDF 204 kb)

Glossary

Pharmacophore

A set of structural features in a molecule that are recognized at a receptor site and are responsible for the biological activity of the molecule.

Algorithm

A finite sequence of instructions; an explicit, step-by-step procedure for solving a problem, often used for calculation and data processing.

Scoring function

A fast, approximate mathematical method that is used to predict the strength of the non-covalent interaction (also referred to as the binding affinity) between two molecules following docking. Scoring functions are normally parameterized (or trained) against a data set consisting of experimentally determined binding affinities between molecular species that are similar to the species that the user wishes to predict. For predictions of protein–ligand affinities, the tertiary structure of the protein, the active conformation of the ligand and the binding mode must be known.

Force field

The functional form and parameter sets used to describe the potential energy of a system of particles.

Free energy

The calculated difference between the internal energy of a system and the product of its absolute temperature and entropy.

Linear-regression analysis

Any approach to modelling the relationship between one or more variables denoted Y and one or more variables denoted X, such that the model depends linearly on the unknown parameters to be estimated from the data.

Toxicity

The degree to which a substance is able to damage an exposed organism.

ADME

Absorption, distribution, metabolism and excretion. An acronym in pharmacokinetics and pharmacology describing the disposition of a pharmaceutical compound in an organism.

Log P

The partition coefficient (P), usually expressed as a log value, is a measure of the hydrophobic character of a substance, such that P = concentration of the substance in octanol / concentration of the substance in water.

On-the-fly optimization

A fast, dynamic procedure used to make a system or design as effective or functional as possible.

DNA gyrase

An enzyme that unwinds DNA so that the DNA can duplicate.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simmons, K., Chopra, I. & Fishwick, C. Structure-based discovery of antibacterial drugs. Nat Rev Microbiol 8, 501–510 (2010). https://doi.org/10.1038/nrmicro2349

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2349

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing