Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The origin of eukaryotes and their relationship with the Archaea: are we at a phylogenomic impasse?

Abstract

The origin of eukaryotes and their evolutionary relationship with the Archaea is a major biological question and the subject of intense debate. In the context of the classical view of the universal tree of life, the Archaea and the Eukarya have a common ancestor, the nature of which remains undetermined. Alternative views propose instead that the Eukarya evolved directly from a bona fide archaeal lineage. Several recent large-scale phylogenomic studies using an array of approaches are divided in supporting either one or the other scenario, despite analysing largely overlapping data sets of universal genes. We examine the reasons for such a lack of consensus and consider how alternative approaches may enable progress in answering this fascinating and as-yet-unresolved question.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Relationship between the Eukarya and the Archaea, as inferred from 'three primary domains' and 'two primary domains' scenarios.
Figure 2: Comparison of the data sets used in five of the phylogenomic analyses.
Figure 3: A two-step phylogenomic approach to investigating the relationship between the Archaea and the Eukarya.

Similar content being viewed by others

References

  1. Woese, C. R., Kandler, O. & Wheelis, M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl Acad. Sci. USA 87, 4576–4579 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Iwabe, N., Kuma, K., Hasegawa, M., Osawa, S. & Miyata, T. Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc. Natl Acad. Sci. USA 86, 9355–9359 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gogarten, J. P. et al. Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes. Proc. Natl Acad. Sci. USA 86, 6661–6665 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Embley, T. M. & Martin, W. Eukaryotic evolution, changes and challenges. Nature 440, 623–630 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Lopez-Garcia, P. & Moreira, D. Metabolic symbiosis at the origin of eukaryotes. Trends Biochem. Sci. 24, 88–93 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Martin, W., Hoffmeister, M., Rotte, C. & Henze, K. An overview of endosymbiotic models for the origins of eukaryotes, their ATP-producing organelles (mitochondria and hydrogenosomes), and their heterotrophic lifestyle. Biol. Chem. 382, 1521–1539 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Schleper, C., Jurgens, G. & Jonuscheit, M. Genomic studies of uncultivated archaea. Nature Rev. Microbiol. 3, 479–488 (2005).

    Article  CAS  Google Scholar 

  8. Woese, C. R. Bacterial evolution. Microbiol. Rev. 51, 221–271 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Lake, J. A., Henderson, E., Oakes, M. & Clark, M. W. Eocytes: a new ribosome structure indicates a kingdom with a close relationship to eukaryotes. Proc. Natl Acad. Sci. USA 81, 3786–3790 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rivera, M. C. & Lake, J. A. Evidence that eukaryotes and eocyte prokaryotes are immediate relatives. Science 257, 74–76 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. Margulis, L. Origin of Eukaryotic Cells (Yale Univ. Press, New Haven, 1970).

    Google Scholar 

  12. Margulis, L. Archaeal-eubacterial mergers in the origin of Eukarya: phylogenetic classification of life. Proc. Natl Acad. Sci. USA 93, 1071–1076 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Searcy, D. G., Stein, D. B. & Green, G. R. Phylogenetic affinities between eukaryotic cells and a thermophilic mycoplasma. Biosystems 10, 19–28 (1978).

    Article  CAS  PubMed  Google Scholar 

  14. Searcy, D. G. Metabolic integration during the evolutionary origin of mitochondria. Cell Res. 13, 229–238 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Martin, W. & Müller, M. The hydrogen hypothesis for the first eukaryote. Nature 392, 37–41 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Moreira, D. & López-García, P. Symbiosis between methanogenic archaea and δ-Proteobacteria as the origin of eukaryotes: the syntrophic hypothesis. J. Mol. Evol. 47, 517–530 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Dagan, T. & Martin, W. Testing hypotheses without considering predictions. Bioessays 29, 500–503 (2007).

    Article  PubMed  Google Scholar 

  18. Davidov, Y. & Jurkevitch, E. Comments of Poole and Penny's essay “Evaluating hypotheses for the origin of eukaryotes”, BioEssays 29: 74–84. Bioessays 29, 615–616 (2007).

    Article  PubMed  Google Scholar 

  19. Poole, A. & Penny, D. Eukaryote evolution: engulfed by speculation. Nature 447, 913 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Poole, A. M. & Penny, D. Evaluating hypotheses for the origin of eukaryotes. Bioessays 29, 74–84 (2007).

    Article  PubMed  Google Scholar 

  21. Poole, A. M. & Penny, D. Response to Dagan and Martin. Bioessays 29, 611–614 (2007).

    Article  PubMed  Google Scholar 

  22. Gribaldo, S. & Philippe, H. Ancient phylogenetic relationships. Theor. Popul. Biol. 61, 391–408 (2002).

    Article  PubMed  Google Scholar 

  23. Cox, C. J., Foster, P. G., Hirt, R. P., Harris, S. R. & Embley, T. M. The archaebacterial origin of eukaryotes. Proc. Natl Acad. Sci. USA 105, 20356–20361 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Foster, P. G., Cox, C. J. & Embley, T. M. The primary divisions of life: a phylogenomic approach employing composition-heterogeneous methods. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 2197–2207 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Rivera, M. C. & Lake, J. A. The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature 431, 152–155 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Lake, J. A. Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences. Nature 331, 184–186 (1988).

    Article  CAS  PubMed  Google Scholar 

  27. Tourasse, N. J. & Gouy, M. Accounting for evolutionary rate variation among sequence sites consistently changes universal phylogenies deduced from rRNA and protein-coding genes. Mol. Phylogenet. Evol. 13, 159–168 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Yutin, N., Makarova, K. S., Mekhedov, S. L., Wolf, Y. I. & Koonin, E. V. The deep archaeal roots of eukaryotes. Mol. Biol. Evol. 25, 1619–1630 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pisani, D., Cotton, J. A. & McInerney, J. O. Supertrees disentangle the chimerical origin of eukaryotic genomes. Mol. Biol. Evol. 24, 1752–1760 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Ciccarelli, F. D. et al. Toward automatic reconstruction of a highly resolved tree of life. Science 311, 1283–1287 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Harris, J. K., Kelley, S. T., Spiegelman, G. B. & Pace, N. R. The genetic core of the universal ancestor. Genome Res. 13, 407–412 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wu, D. et al. A phylogeny-driven genomic encyclopaedia of bacteria and archaea. Nature 462, 1056–1060 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tatusov, R. L. et al. The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res. 29, 22–28 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Delsuc, F., Brinkmann, H. & Philippe, H. Phylogenomics and the reconstruction of the tree of life. Nature Rev. Genet. 6, 361–375 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Snel, B., Huynen, M. A. & Dutilh, B. E. Genome trees and the nature of genome evolution. Annu. Rev. Microbiol. 59, 191–209 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Tatusov, R. L., Koonin, E. V. & Lipman, D. J. A genomic perspective on protein families. Science 278, 631–637 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Tatusov, R. L. et al. The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4, 41 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Makarova, K. S., Wolf, Y. I., Sorokin, A. V. & Koonin, E. V. Clusters of orthologous genes for 41 archaeal genomes and implications for evolutionary genomics of archaea. Biol. Direct, 2, 33 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Snel, B., Bork, P. & Huynen, M. A. Genome phylogeny based on gene content. Nature Genet. 21, 108–110 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Fitz-Gibbon, S. T. & House, C. H. Whole genome-based phylogenetic analysis of free-living microorganisms. Nucleic Acids Res. 27, 4218–4222 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lake, J. A. & Rivera, M. C. Deriving the genomic tree of life in the presence of horizontal gene transfer: conditioned reconstruction. Mol. Biol. Evol. 21, 681–690 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Deppenmeier, U. et al. The genome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea. J. Mol. Microbiol. Biotechnol. 4, 453–461 (2002).

    CAS  PubMed  Google Scholar 

  43. Ng, W. V. et al. Genome sequence of Halobacterium species NRC-1. Proc. Natl Acad. Sci. USA 97, 12176–12181 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Daubin, V. & Gouy, M. Bacterial molecular phylogeny using supertree approach. Genome Inform. 12, 155–164 (2001).

    CAS  PubMed  Google Scholar 

  45. Dagan, T. & Martin, W. The tree of one percent. Genome Biol. 7, 118 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gribaldo, S. & Brochier-Armanet, C. The origin and evolution of Archaea: a state of the art. Philos. Trans. R. Soc. Lond. B Biol. Sci. 361, 1007–1022 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Boone, D. R. & Castenholz, R. W. Bergey's Manual of Systematic Bacteriology (Springer, New York, 2001).

    Book  Google Scholar 

  48. Fuhrman, J. A., McCallum, K. & Davis, A. A. Novel major archaebacterial group from marine plankton. Nature 356, 148–149 (1992).

    Article  CAS  PubMed  Google Scholar 

  49. Brochier-Armanet, C., Boussau, B., Gribaldo, S. & Forterre, P. Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nature Rev. Microbiol. 6, 245–252 (2008).

    Article  CAS  Google Scholar 

  50. DeLong, E. F. Archaea in coastal marine environments. Proc. Natl Acad. Sci. USA 89, 5685–5689 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hallam, S. J. et al. Genomic analysis of the uncultivated marine crenarchaeote Cenarchaeum symbiosum. Proc. Natl Acad. Sci. USA 103, 18296–18301 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zimmer, C. Origins. On the origin of eukaryotes. Science 325, 666–668 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Robertson, C. E., Harris, J. K., Spear, J. R. & Pace, N. R. Phylogenetic diversity and ecology of environmental archaea. Curr. Opin. Microbiol. 8, 638–642 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Matte-Tailliez, O., Brochier, C., Forterre, P. & Philippe, H. Archaeal phylogeny based on ribosomal proteins. Mol. Biol. Evol. 19, 631–639 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Brochier, C., Forterre, P. & Gribaldo, S. An emerging phylogenetic core of Archaea: phylogenies of transcription and translation machineries converge following addition of new genome sequences. BMC Evol. Biol. 5, 36 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Barns, S. M., Delwiche, C. F., Palmer, J. D. & Pace, N. R. Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. Proc. Natl Acad. Sci. USA 93, 9188–9193 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Elkins, J. G. et al. A korarchaeal genome reveals insights into the evolution of the archaea. Proc. Natl Acad. Sci. USA 105, 8102–8107 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cavalier-Smith, T. The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification. Int. J. Syst. Evol. Microbiol. 52, 7–76 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Martin, W. Archaebacteria (Archaea) and the origin of the eukaryotic nucleus. Curr. Opin. Microbiol. 8, 630–637 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Lopez-Garcia, P. & Moreira, D. Selective forces for the origin of the eukaryotic nucleus. Bioessays 28, 525–533 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Lopez-Garcia, P. & Moreira, D. On hydrogen transfer and a chimeric origin of eukaryotes. Trends Biochem. Sci. 24, 424 (1999).

    Article  CAS  Google Scholar 

  62. Bapteste, E., Charlebois, R. L., MacLeod, D. & Brochier, C. The two tempos of nuclear pore complex evolution: highly adapting proteins in an ancient frozen structure. Genome Biol. 6, R85 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mans, B. J., Anantharaman, V., Aravind, L. & Koonin, E. V. Comparative genomics, evolution and origins of the nuclear envelope and nuclear pore complex. Cell Cycle 3, 1612–1637 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Field, M. C. & Dacks, J. B. First and last ancestors: reconstructing evolution of the endomembrane system with ESCRTs, vesicle coat proteins, and nuclear pore complexes. Curr. Opin. Cell Biol. 21, 4–13 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Embley, T. M. Multiple secondary origins of the anaerobic lifestyle in eukaryotes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 361, 1055–1067 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. van der Giezen, M. & Tovar, J. Degenerate mitochondria. EMBO Rep. 6, 525–530 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Collins, L. & Penny, D. Complex spliceosomal organization ancestral to extant eukaryotes. Mol. Biol. Evol. 22, 1053–1066 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Roy, S. W. & Gilbert, W. The evolution of spliceosomal introns: patterns, puzzles and progress. Nature Rev. Genet. 7, 211–221 (2006).

    PubMed  Google Scholar 

  69. Nakamura, T. M. & Cech, T. R. Reversing time: origin of telomerase. Cell 92, 587–590 (1998).

    Article  CAS  PubMed  Google Scholar 

  70. Ramesh, M. A., Malik, S. B. & Logsdon, J. M. Jr. A phylogenomic inventory of meiotic genes; evidence for sex in Giardia and an early eukaryotic origin of meiosis. Curr. Biol. 15, 185–191 (2005).

    CAS  PubMed  Google Scholar 

  71. Desmond, E. & Gribaldo, S. Phylogenomics of sterol synthesis: insights into the origin, evolution, and diversity of a key eukaryotic feature. Genome Biol. Evol. 2009, 364–381 (2009).

    Article  CAS  Google Scholar 

  72. Eme, L., Moreira, D., Talla, E. & Brochier-Armanet, C. A complex cell division machinery was present in the last common ancestor of eukaryotes. PLoS ONE 4, e5021 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cavalier-Smith, T. The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int. J. Syst. Evol. Microbiol. 52, 297–354 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Jekely, G. Small GTPases and the evolution of the eukaryotic cell. Bioessays 25, 1129–1138 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Brown, J. R. & Doolittle, W. F. Archaea and the prokaryote-to-eukaryote transition. Microbiol. Mol. Biol. Rev. 61, 456–502 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Lecompte, O., Ripp, R., Thierry, J. C., Moras, D. & Poch, O. Comparative analysis of ribosomal proteins in complete genomes: an example of reductive evolution at the domain scale. Nucleic Acids Res. 30, 5382–5390 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Londei, P. Evolution of translational initiation: new insights from the archaea. FEMS Microbiol. Rev. 29, 185–200 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Werner, F. Structural evolution of multisubunit RNA polymerases. Trends Microbiol. 16, 247–250 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Bell, S. D. & Jackson, S. P. Mechanism and regulation of transcription in archaea. Curr. Opin. Microbiol. 4, 208–213 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Edgell, D. R. & Doolittle, W. F. Archaea and the origin(s) of DNA replication proteins. Cell 89, 995–998 (1997).

    Article  CAS  PubMed  Google Scholar 

  81. Leipe, D. D., Aravind, L. & Koonin, E. V. Did DNA replication evolve twice independently? Nucleic Acids Res. 27, 3389–3401 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Dennis, P. P. & Omer, A. Small non-coding RNAs in Archaea. Curr. Opin. Microbiol. 8, 685–694 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Gaspin, C., Cavaille, J., Erauso, G. & Bachellerie, J. P. Archaeal homologs of eukaryotic methylation guide small nucleolar RNAs: lessons from the Pyrococcus genomes. J. Mol. Biol. 297, 895–906 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Omer, A. D. et al. Homologs of small nucleolar RNAs in archaea. Science 288, 517–522 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Hartung, S. & Hopfner, K. P. Lessons from structural and biochemical studies on the archaeal exosome. Biochem. Soc. Trans. 37, 83–87 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Cubonova, L., Sandman, K., Hallam, S. J., Delong, E. F. & Reeve, J. N. Histones in crenarchaea. J. Bacteriol. 187, 5482–5485 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Reeve, J. N., Sandman, K. & Daniels, C. J. Archaeal histones, nucleosomes, and transcription initiation. Cell 89, 999–1002 (1997).

    Article  CAS  PubMed  Google Scholar 

  88. Gribaldo, S. & Cammarano, P. The root of the universal tree of life inferred from anciently duplicated genes encoding components of the protein-targeting machinery. J. Mol. Evol. 47, 508–516 (1998).

    Article  CAS  PubMed  Google Scholar 

  89. Samson, R. Y., Obita, T., Freund, S. M., Williams, R. L. & Bell, S. D. A role for the ESCRT system in cell division in archaea. Science 322, 1710–1713 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lindas, A. C., Karlsson, E. A., Lindgren, M. T., Ettema, T. J. & Bernander, R. A unique cell division machinery in the archaea. Proc. Natl Acad. Sci. USA 105, 18942–18946 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Armengaud, J. et al. Identification, purification, and characterization of an eukaryotic-like phosphopantetheine adenylyltransferase (coenzyme A biosynthetic pathway) in the hyperthermophilic archaeon Pyrococcus abyssi. J. Biol. Chem. 278, 31078–31087 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Lawson, F. S., Charlebois, R. L. & Dillon, J. A. Phylogenetic analysis of carbamoylphosphate synthetase genes: complex evolutionary history includes an internal duplication within a gene which can root the tree of life. Mol. Biol. Evol. 13, 970–977 (1996).

    Article  CAS  PubMed  Google Scholar 

  93. Pereto, J., Lopez-Garcia, P. & Moreira, D. Ancestral lipid biosynthesis and early membrane evolution. Trends Biochem. Sci. 29, 469–477 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Bapteste, E., Brochier, C. & Boucher, Y. Higher-level classification of the Archaea: evolution of methanogenesis and methanogens. Archaea 1, 353–363 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Forterre, P., Gribaldo, S., Gadelle, D. & Serre, M. C. Origin and evolution of DNA topoisomerases. Biochimie 89, 427–446 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Ishino, Y., Komori, K., Cann, I. K. & Koga, Y. A novel DNA polymerase family found in Archaea. J. Bacteriol. 180, 2232–2236 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Desmond, E., Brochier-Armanet, C. & Gribaldo, S. Phylogenomics of the archaeal flagellum: rare horizontal gene transfer in a unique motility structure. BMC Evol. Biol. 7, 106 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ng, S. Y., Zolghadr, B., Driessen, A. J., Albers, S. V. & Jarrell, K. F. Cell surface structures of archaea. J. Bacteriol. 190, 6039–6047 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Volff, J. N. & Altenbuchner, J. A new beginning with new ends: linearisation of circular chromosomes during bacterial evolution. FEMS Microbiol. Lett. 186, 143–150 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. French, S. L., Santangelo, T. J., Beyer, A. L. & Reeve, J. N. Transcription and translation are coupled in Archaea. Mol. Biol. Evol. 24, 893–895 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. von Dohlen, C. D., Kohler, S., Alsop, S. T. & McManus, W. R. Mealybug β-proteobacterial endosymbionts contain γ-proteobacterial symbionts. Nature 412, 433–436 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Brinkmann, H. & Philippe, H. Archaea sister group of bacteria? Indications from tree reconstruction artifacts in ancient phylogenies. Mol. Biol. Evol. 16, 817–825 (1999).

    Article  CAS  PubMed  Google Scholar 

  103. Forterre, P. & Philippe, H. Where is the root of the universal tree of life? Bioessays 21, 871–879 (1999).

    Article  CAS  PubMed  Google Scholar 

  104. Lopez, P., Forterre, P. & Philippe, H. The root of the tree of life in the light of the covarion model. J. Mol. Evol. 49, 496–508 (1999).

    Article  CAS  PubMed  Google Scholar 

  105. Skophammer, R. G., Servin, J. A., Herbold, C. W. & Lake, J. A. Evidence for a Gram-positive, eubacterial root of the tree of life. Mol. Biol. Evol. 24, 1761–1768 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. de Crecy-Lagard, V. et al. Biosynthesis of wyosine derivatives in tRNA: an ancient and highly diverse pathway in archaea. Mol. Biol. Evol. 27, 2062–2077 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Csuros, M. & Miklos, I. Streamlining and large ancestral genomes in Archaea inferred with a phylogenetic birth-and-death model. Mol. Biol. Evol. 26, 2087–2095 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the Fondation des Treilles for support, along with the four anonymous referees for their valuable comments. A.M.P. is a Royal Swedish Academy of Sciences Research Fellow supported by a grant from the Knut and Alice Wallenberg Foundation. V.D. is supported by the grants 'Phylariane', 'Ecogenome' and 'Living Deep' from the French ANR (National Agency for Research). C.B.A. is supported by an Action Thématique et Incitative sur Programme (ATIP) of the French Centre National de la Recherche Scientifique (CNRS).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Simonetta Gribaldo and Patrick Forterre's homepage

Anthony M. Poole's homepages

Anthony M. Poole's homepages

Vincent Daubin's homepage

Céline Brochier-Armanet's homepage

Glossary

COG

Family of homologous proteins constructed by comparing predicted proteins from complete genome sequences.

Distance method

Parametric phylogenetic method that aims to find the tree that minimizes the distance among sequences in a model of sequence evolution.

Domain

One of the three main divisions of life: the Archaea, the Bacteria and the Eukarya.

Horizontal gene transfer

The integration of an exogenous gene into the genome of an organism.

LECA

The most recent ancestor of all present-day eukaryotic lineages.

LUCA

The most recent ancestor of all present-day organisms.

Maximum-likelihood method

Parametric phylogenetic method that aims to maximize thelikelihood of a tree; that is, the probability of observing the studied alignment according to the tree topology and to a model of sequence evolution.

Maximum-parsimony method

A non-parametric phylogenetic method that aims to find the set of trees which minimizes the number of evolutionary changes.

Monophyletic group

A group of organisms consisting of an ancestor and its descendants.

Orthologous

Derived from a speciation event.

Paralogous

Derived from a gene duplication event.

Single-gene phylogenetic analysis

Reconstruction of a phylogenetic tree based on the comparison of homologous sequences representing a single gene.

Taxonomic sampling

Sampling of homologous sequences chosen for a phylogenetic analysis from all available sequences.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gribaldo, S., Poole, A., Daubin, V. et al. The origin of eukaryotes and their relationship with the Archaea: are we at a phylogenomic impasse?. Nat Rev Microbiol 8, 743–752 (2010). https://doi.org/10.1038/nrmicro2426

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2426

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology