Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Adapting the machine: adaptor proteins for Hsp100/Clp and AAA+ proteases

Key Points

  • Proteolysis in bacteria is important not only for protein homeostasis and quality control (general proteolysis), but also for the control of regulatory processes such as adaptation and cell development (regulatory proteolysis).

  • In bacteria, self-compartmentalized ATP-dependent proteases of the AAA+ protein family, such as different Hsp100/Clp protease complexes and AAA+ proteases, are responsible for general and regulatory proteolysis.

  • Substrate recognition by these proteases seems to be an interplay between endogenously encoded degrons, additional processes that generate new degrons and adaptor proteins recognizing the substrates.

  • Adaptor proteins interact simultaneously with substrates and subdomains of the AAA+ protein domain, thereby targeting the substrates for degradation by the cognate proteases. Adaptor proteins can also be required for the modulation of the activity of certain AAA+ proteins.

  • These adaptor proteins may also themselves be regulated (for example, by small anti-adaptor proteins and/or phosphorylation) and have important roles in a range of regulatory processes, such as competence development, heat shock adaptation and sporulation in Bacillus subtilis and the general stress response in Escherichia coli.

Abstract

Members of the AAA+ protein superfamily contribute to many diverse aspects of protein homeostasis in prokaryotic cells. As a fundamental component of numerous proteolytic machines in bacteria, AAA+ proteins play a crucial part not only in general protein quality control but also in the regulation of developmental programmes, through the controlled turnover of key proteins such as transcription factors. To manage these many, varied tasks, Hsp100/Clp and AAA+ proteases use specific adaptor proteins to enhance or expand the substrate recognition abilities of their cognate protease. Here, we review our current knowledge of the modulation of bacterial AAA+ proteases by these cellular arbitrators.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanism of the AAA+ chaperone protease complex.
Figure 2: Composition and structure of Hsp100/Clp and AAA+ proteases.
Figure 3: Controlled proteolysis mediated by regulated adaptor proteins.
Figure 4: Mechanisms of adaptor function.

Similar content being viewed by others

References

  1. Wickner, S., Maurizi, M. R. & Gottesman, S. Posttranslational quality control: folding, refolding, and degrading proteins. Science 286, 1888–1893 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Hartl, F. U. & Hayer-Hartl, M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295, 1852–1858 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Bukau, B., Weissman, J. & Horwich, A. L. Molecular chaperones and protein quality control. Cell 125, 443–451 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Erzberger, J. P. & Berger, J. M. Evolutionary relationships and structural mechanisms of AAA+ proteins. Annu. Rev. Biophys. Biomol. Struct. 35, 93–114 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Sauer, R. T. et al. Sculpting the proteome with AAA+ proteases and disassembly machines. Cell 119, 9–18 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gottesman, S. Proteolysis in bacterial regulatory circuits. Annu. Rev. Cell Dev. Biol. 19, 565–587 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Jenal, U. & Hengge-Aronis, R. Regulation by proteolysis in bacterial cells. Curr. Opin. Microbiol. 6, 163–172 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Frees, D., Savijoki, K., Varmanen, P. & Ingmer, H. Clp ATPases and ClpP proteolytic complexes regulate vital biological processes in low GC, Gram-positive bacteria. Mol. Microbiol. 63, 1285–1295 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Dougan, D., Mogk, A., Zeth, K., Turgay, K. & Bukau, B. AAA+ proteins and substrate recognition, it all depends on their partner in crime. FEBS Lett. 529, 6–10 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Lupas, A., Flanagan, J. M., Tamura, T. & Baumeister, W. Self-compartmentalizing proteases. Trends Biochem. Sci. 22, 399–404 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Martin, A., Baker, T. A. & Sauer, R. T. Rebuilt AAA+ motors reveal operating principles for ATP-fuelled machines. Nature 437, 1115–1120 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Reid, B. G., Fenton, W. A., Horwich, A. L. & Weber-Ban, E. U. ClpA mediates directional translocation of substrate proteins into the ClpP protease. Proc. Natl Acad. Sci. USA 98, 3768–3772 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Weber-Ban, E. U., Reid, B. G., Miranker, A. D. & Horwich, A. L. Global unfolding of a substrate protein by the Hsp100 chaperone ClpA. Nature 401, 90–93 (1999). This was the first demonstration that Hsp100/Clp proteins can unfold stable, native proteins.

    Article  CAS  PubMed  Google Scholar 

  14. Pickart, C. M. & Cohen, R. E. Proteasomes and their kin: proteases in the machine age. Nature Rev. Mol. Cell Biol. 5, 177–187 (2004).

    Article  CAS  Google Scholar 

  15. Ciechanover, A. The ubiquitin–proteasome pathway: on protein death and cell life. EMBO J. 17, 7151–7160 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ravid, T. & Hochstrasser, M. Diversity of degradation signals in the ubiquitin–proteasome system. Nature Rev. Mol. Cell Biol. 9, 679–690 (2008).

    Article  CAS  Google Scholar 

  17. Kim, Y. I. et al. Molecular determinants of complex formation between Clp/Hsp100 ATPases and the ClpP peptidase. Nature Struct. Biol. 8, 230–233 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Singh, S. K. et al. Functional domains of the ClpA and ClpX molecular chaperones identified by limited proteolysis and deletion analysis. J. Biol. Chem. 276, 29420–29429 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Lee, S. et al. The structure of ClpB: a molecular chaperone that rescues proteins from an aggregated state. Cell 115, 229–240 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Song, H. K. et al. Mutational studies on HslU and its docking mode with HslV. Proc. Natl Acad. Sci. USA 97, 14103–14108 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sousa, M. C. et al. Crystal and solution structures of an HslUV protease–chaperone complex. Cell 103, 633–643 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Glover, J. R. & Lindquist, S. Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94, 73–82 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Weibezahn, J. et al. Thermotolerance requires refolding of aggregated proteins by substrate translocation through the central pore of ClpB. Cell 119, 653–665 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Krüger, E., Zühlke, D., Witt, E., Ludwig, H. & Hecker, M. Clp-mediated proteolysis in Gram-positive bacteria is autoregulated by the stability of a repressor. EMBO J. 20, 852–863 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Pan, Q., Garsin, D. A. & Losick, R. Self-reinforcing activation of a cell-specific transcription factor by proteolysis of an anti-sigma factor in B. subtilis. Mol. Cell 8, 873–883 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Turgay, K., Hahn, J., Burghoorn, J. & Dubnau, D. Competence in Bacillus subtilis is controlled by regulated proteolysis of a transcription factor. EMBO J. 17, 6730–6738 (1998). This is the first description of the regulated adaptor protein MecA, which, together with the anti-adaptor ComS, controls a developmental process through a proteolytic switch.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zuber, P. Spx–RNA polymerase interaction and global transcriptional control during oxidative stress. J. Bacteriol. 186, 1911–1918 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tomoyasu, T., Mogk, A., Langen, H., Goloubinoff, P. & Bukau, B. Genetic dissection of the roles of chaperones and proteases in protein folding and degradation in the Escherichia coli cytosol. Mol. Microbiol. 40, 397–413 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Tsilibaris, V., Maenhaut-Michel, G. & Van Melderen, L. Biological roles of the Lon ATP-dependent protease. Res. Microbiol. 157, 701–713 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Riethdorf, S. et al. Cloning, nucleotide sequence, and expression of the Bacillus subtilis lon gene. J. Bacteriol. 176, 6518–6527 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schmidt, R., Decatur, A. L., Rather, P. N., Moran, C. P. Jr & Losick, R. Bacillus subtilis Lon protease prevents inappropriate transcription of genes under the control of the sporulation transcription factor σG. J. Bacteriol. 176, 6528–6537 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu, J., Cosby, W. M. & Zuber, P. Role of lon and ClpX in the post-translational regulation of a sigma subunit of RNA polymerase required for cellular differentiation in Bacillus subtilis. Mol. Microbiol. 33, 415–428 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Serrano, M., Hovel, S., Moran, C. P. Jr, Henriques, A. O. & Volker, U. Forespore-specific transcription of the lonB gene during sporulation in Bacillus subtilis. J. Bacteriol. 183, 2995–3003 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yura, T., Kanemori, M. & Morita, M. T. in Bacterial Stress Responses (eds Storz, G. & Hengge-Aronis, R.) 3–18 (American Society for Microbiology, Washington DC, 2000).

    Google Scholar 

  35. Deuerling, E., Mogk, A., Richter, C., Purucker, M. & Schumann, W. The ftsH gene of Bacillus subtilis is involved in major cellular processes such as sporulation, stress adaptation and secretion. Mol. Microbiol. 23, 921–933 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Lysenko, E., Ogura, T. & Cutting, S. M. Characterization of the ftsH gene of Bacillus subtilis. Microbiology 143, 971–978 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Ito, K. & Akiyama, Y. Cellular functions, mechanism of action, and regulation of FtsH protease. Annu. Rev. Microbiol. 59, 211–231 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Butler, S. M., Festa, R. A., Pearce, M. J. & Darwin, K. H. Self-compartmentalized bacterial proteases and pathogenesis. Mol. Microbiol. 60, 553–562 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Bönemann, G., Pietrosiuk, A., Diemand, A., Zentgraf, H. & Mogk, A. Remodelling of VipA/VipB tubules by ClpV-mediated threading is crucial for type VI protein secretion. EMBO J. 28, 315–325 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cascales, E. The type VI secretion toolkit. EMBO Rep. 9, 735–741 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mougous, J. D. et al. A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 312, 1526–1530 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schlieker, C., Zentgraf, H., Dersch, P. & Mogk, A. ClpV, a unique Hsp100/Clp member of pathogenic proteobacteria. Biol. Chem. 386, 1115–1127 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Neher, S. B. et al. Proteomic profiling of ClpXP substrates after DNA damage reveals extensive instability within SOS regulon. Mol. Cell 22, 193–204 (2006). This study shows that, after reception of a stress signal, proteases can specifically remodel the entire proteomeof an organism.

    Article  CAS  PubMed  Google Scholar 

  44. Varshavsky, A. Naming a targeting signal. Cell 64, 13–15 (1991).

    Article  CAS  PubMed  Google Scholar 

  45. Erbse, A. et al. ClpS is an essential component of the N-end rule pathway in Escherichia coli. Nature 439, 753–756 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Flynn, J. M., Neher, S. B., Kim, Y. I., Sauer, R. T. & Baker, T. A. Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals. Mol. Cell 11, 671–683 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Flynn, J. M., Levchenko, I., Sauer, R. T. & Baker, T. A. Modulating substrate choice: the SspB adaptor delivers a regulator of the extracytoplasmic stress response to the AAA+ protease ClpXP for degradation. Genes Dev. 18, 2292–2301 (2004). This work shows that SspB has a role in the extracytoplasmic stress response, through the delivery of a non-SsrA-tagged substrate.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Neher, S. B., Flynn, J. M., Sauer, R. T. & Baker, T. A. Latent ClpX-recognition signals ensure LexA destruction after DNA damage. Genes Dev. 17, 1084–1089 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gur, E. & Sauer, R. T. Recognition of misfolded proteins by Lon, a AAA+ protease. Genes Dev. 22, 2267–2277 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hoskins, J. R. & Wickner, S. Two peptide sequences can function cooperatively to facilitate binding and unfolding by ClpA and degradation by ClpAP. Proc. Natl Acad. Sci. USA 103, 909–914 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hoskins, J. R., Yanagihara, K., Mizuuchi, K. & Wickner, S. ClpAP and ClpXP degrade proteins with tags located in the interior of the primary sequence. Proc. Natl Acad. Sci. USA 99, 11037–11042 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Prakash, S., Tian, L., Ratliff, K. S., Lehotzky, R. E. & Matouschek, A. An unstructured initiation site is required for efficient proteasome-mediated degradation. Nature Struct. Mol. Biol. 11, 830–837 (2004).

    Article  CAS  Google Scholar 

  53. Martin, A., Baker, T. A. & Sauer, R. T. Pore loops of the AAA+ ClpX machine grip substrates to drive translocation and unfolding. Nature Struct. Mol. Biol. 15, 1147–1151 (2008).

    Article  CAS  Google Scholar 

  54. Martin, A., Baker, T. A. & Sauer, R. T. Diverse pore loops of the AAA+ ClpX machine mediate unassisted and adaptor-dependent recognition of ssrA-tagged substrates. Mol. Cell 29, 441–450 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Schlieker, C. et al. Substrate recognition by the AAA+ chaperone ClpB. Nature Struct. Mol. Biol. 11, 607–615 (2004).

    Article  CAS  Google Scholar 

  56. Hinnerwisch, J., Fenton, W. A., Furtak, K. J., Farr, G. W. & Horwich, A. L. Loops in the central channel of ClpA chaperone mediate protein binding, unfolding, and translocation. Cell 121, 1029–1041 (2005). References 54–56 show that conserved aromatic residues lining the central pore of AAA+ unfoldases bind to and translocate protein substrates in an ATP-dependent manner.

    Article  CAS  PubMed  Google Scholar 

  57. Baker, T. A. & Sauer, R. T. ATP-dependent proteases of bacteria: recognition logic and operating principles. Trends Biochem. Sci. 31, 647–653 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kirstein, J., Dougan, D. A., Gerth, U., Hecker, M. & Turgay, K. The tyrosine kinase McsB is a regulated adaptor protein for ClpCP. EMBO J. 26, 2061–2070 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Schlothauer, T., Mogk, A., Dougan, D. A., Bukau, B. & Turgay, K. MecA, an adaptor protein necessary for ClpC chaperone activity. Proc. Natl Acad. Sci. USA 100, 2306–2311 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cutting, S. et al. SpoVM, a small protein essential to development in Bacillus subtilis, interacts with the ATP-dependent protease FtsH. J. Bacteriol. 179, 5534–5542 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Prajapati, R. S., Ogura, T. & Cutting, S. M. Structural and functional studies on an FtsH inhibitor from Bacillus subtilis. Biochim. Biophys. Acta 1475, 353–359 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Dubnau, D. & Roggiani, M. Growth medium-independent genetic competence mutants of Bacillus subtilis. J. Bacteriol. 172, 4048–4055 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chen, I., Christie, P. J. & Dubnau, D. The ins and outs of DNA transfer in bacteria. Science 310, 1456–1460 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Dubnau, D. & Turgay, K. in Bacterial Stress Responses (eds Storz, G. & Hengge-Aronis, R.) 249–260 (American Society for Microbiology, Washington DC, 2000).

    Google Scholar 

  65. Hamoen, L. W., Venema, G. & Kuipers, O. P. Controlling competence in Bacillus subtilis: shared use of regulators. Microbiology 149, 9–17 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Magnuson, R., Solomon, J. & Grossman, A. D. Biochemical and genetic characterization of a competence pheromone from B. subtilis. Cell 77, 207–216 (1994).

    Article  CAS  PubMed  Google Scholar 

  67. D'Souza, C., Nakano, M. M. & Zuber, P. Identification of comS, a gene of the srfA operon that regulates the establishment of genetic competence in Bacillus subtilis. Proc. Natl Acad. Sci. USA 91, 9397–9401 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hamoen, L. W., Eshuis, H., Jongbloed, J., Venema, G. & van Sinderen, D. A small gene, designated comS, located within the coding region of the fourth amino acid-activation domain of srfA, is required for competence development in Bacillus subtilis. Mol. Microbiol. 15, 55–63 (1995).

    Article  CAS  PubMed  Google Scholar 

  69. Turgay, K., Hamoen, L. W., Venema, G. & Dubnau, D. Biochemical characterization of a molecular switch involving the heat shock protein ClpC, which controls the activity of ComK, the competence transcription factor of Bacillus subtilis. Genes Dev. 11, 119–128 (1997).

    Article  CAS  PubMed  Google Scholar 

  70. Prepiak, P. & Dubnau, D. A peptide signal for adapter protein-mediated degradation by the AAA+ protease ClpCP. Mol. Cell 26, 639–647 (2007). This work shows that the anti-adaptor ComS protects ComK from ClpCP-mediated degradation, through direct competitive binding to MecA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Persuh, M., Mandic-Mulec, I. & Dubnau, D. A MecA paralog, YpbH, binds ClpC, affecting both competence and sporulation. J. Bacteriol. 184, 2310–2313 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kirstein, J. & Turgay, K. A new tyrosine phosphorylation mechanism involved in signal transduction in Bacillus subtilis. J. Mol. Microbiol. Biotechnol. 9, 182–188 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Derre, I., Rapoport, G. & Msadek, T. CtsR, a novel regulator of stress and heat shock response, controls clp and molecular chaperone gene expression in Gram-positive bacteria. Mol. Microbiol. 31, 117–131 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Krüger, E. & Hecker, M. The first gene of the Bacillus subtilis clpC operon, ctsR, encodes a negative regulator of its own operon and other class III heat shock genes. J. Bacteriol. 180, 6681–6688 (1998).

    PubMed  PubMed Central  Google Scholar 

  75. Kirstein, J., Zuhlke, D., Gerth, U., Turgay, K. & Hecker, M. A tyrosine kinase and its activator control the activity of the CtsR heat shock repressor in B. subtilis. EMBO J. 24, 3435–3445 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Larsson, J. T., Rogstam, A. & von Wachenfeldt, C. YjbH is a novel negative effector of the disulphide stress regulator, Spx, in Bacillus subtilis. Mol. Microbiol. 66, 669–684 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Garg, S. K., Kommineni, S., Henslee, L., Zhang, Y. & Zuber, P. The YjbH protein of Bacillus subtilis enhances ClpXP-catalyzed proteolysis of Spx. J. Bacteriol. 191, 1268–1277 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Kock, H., Gerth, U. & Hecker, M. MurAA, catalysing the first committed step in peptidoglycan biosynthesis, is a target of Clp-dependent proteolysis in Bacillus subtilis. Mol. Microbiol. 51, 1087–1102 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Levchenko, I., Seidel, M., Sauer, R. T. & Baker, T. A. A specificity-enhancing factor for the ClpXP degradation machine. Science 289, 2354–2356 (2000). This article describes the discovery of SspB as a factor that accelerates the ClpXP-mediated degradation of SsrA-tagged proteins.

    Article  CAS  PubMed  Google Scholar 

  80. Gonzalez, M., Rasulova, F., Maurizi, M. R. & Woodgate, R. Subunit-specific degradation of the UmuD/D′ heterodimer by the ClpXP protease: the role of trans recognition in UmuD′ stability. EMBO J. 19, 5251–5258 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Neher, S. B., Sauer, R. T. & Baker, T. A. Distinct peptide signals in the UmuD and UmuD′ subunits of UmuD/D′ mediate tethering and substrate processing by the ClpXP protease. Proc. Natl Acad. Sci. USA 100, 13219–13224 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Weber, H., Polen, T., Heuveling, J., Wendisch, V. F. & Hengge, R. Genome-wide analysis of the general stress response network in Escherichia coli: σS-dependent genes, promoters, and sigma factor selectivity. J. Bacteriol. 187, 1591–1603 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hengge-Aronis, R. Signal transduction and regulatory mechanisms involved in control of the σS (RpoS) subunit of RNA polymerase. Microbiol. Mol. Biol. Rev. 66, 373–395 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Muffler, A., Fischer, D., Altuvia, S., Storz, G. & Hengge-Aronis, R. The response regulator RssB controls stability of the σS subunit of RNA polymerase in Escherichia coli. EMBO J. 15, 1333–1339 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pruteanu, M. & Hengge-Aronis, R. The cellular level of the recognition factor RssB is rate-limiting for σS proteolysis: implications for RssB regulation and signal transduction in σS turnover in Escherichia coli. Mol. Microbiol. 45, 1701–1713 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Zhou, Y., Gottesman, S., Hoskins, J. R., Maurizi, M. R. & Wickner, S. The RssB response regulator directly targets σS for degradation by ClpXP. Genes Dev. 15, 627–637 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Stüdemann, A. et al. Sequential recognition of two distinct sites in σS by the proteolytic targeting factor RssB and ClpX. EMBO J. 22, 4111–4120 (2003). Together with Reference 86, this paper describes the mechanism by which RssB targets RpoS for degradation by ClpXP.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Mika, F. & Hengge, R. A two-component phosphotransfer network involving ArcB, ArcA, and RssB coordinates synthesis and proteolysis of σS (RpoS) in E. coli. Genes Dev. 19, 2770–2781 (2005). The study presented in this article was the first to identify a signalling pathway that influences the phosphorylation of RssB.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Dougan, D. A., Reid, B. G., Horwich, A. L. & Bukau, B. ClpS, a substrate modulator of the ClpAP machine. Mol. Cell 9, 673–683 (2002). This paper details the discovery of ClpS, the first adaptor protein to simultaneously activate and inhibit the activity of its cognate AAA+ unfoldase.

    Article  CAS  PubMed  Google Scholar 

  90. Maglica, Z., Striebel, F. & Weber-Ban, E. An intrinsic degradation tag on the ClpA C-terminus regulates the balance of ClpAP complexes with different substrate specificity. J. Mol. Biol. 384, 503–511 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Farrell, C. M., Grossman, A. D. & Sauer, R. T. Cytoplasmic degradation of ssrA-tagged proteins. Mol. Microbiol. 57, 1750–1761 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Tobias, J. W., Shrader, T. E., Rocap, G. & Varshavsky, A. The N-end rule in bacteria. Science 254, 1374–1377 (1991). This reference describes the discovery of the N-end rule system in bacteria.

    Article  CAS  PubMed  Google Scholar 

  93. Mogk, A., Schmidt, R. & Bukau, B. The N-end rule pathway for regulated proteolysis: prokaryotic and eukaryotic strategies. Trends Cell Biol. 17, 165–172 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Erbse, A. H. et al. Conserved residues in the N-domain of the AAA+ chaperone ClpA regulate substrate recognition and unfolding. FEBS J. 275, 1400–1410 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Schmidt, R., Zahn, R., Bukau, B. & Mogk, A. ClpS is the recognition component for Escherichia coli substrates of the N-end rule degradation pathway. Mol. Microbiol. 72, 506–517 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Schuenemann, V. J. et al. Structural basis of N-end rule substrate recognition in Escherichia coli by the ClpAP adaptor protein ClpS. EMBO Rep. 10, 508–514 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ninnis, R. L., Spall, S. K., Talbo, G. H., Truscott, K. N. & Dougan, D. A. Modification of PATase by L/F-transferase generates a ClpS-dependent N-end rule substrate in Escherichia coli. EMBO J. 28, 1732–1744 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kuroda, A. et al. Role of inorganic polyphosphate in promoting ribosomal protein degradation by the Lon protease in E. coli. Science 293, 705–708 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Hilliard, J. J., Simon, L. D., Van Melderen, L. & Maurizi, M. R. PinA inhibits ATP hydrolysis and energy-dependent protein degradation by Lon protease. J. Biol. Chem. 273, 524–527 (1998).

    Article  CAS  PubMed  Google Scholar 

  100. Alix, E. & Blanc-Potard, A. B. Peptide-assisted degradation of the Salmonella MgtC virulence factor. EMBO J. 27, 546–557 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Adam, Z., Rudella, A. & van Wijk, K. J. Recent advances in the study of Clp, FtsH and other proteases located in chloroplasts. Curr. Opin. Plant Biol. 9, 234–240 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Lee, U. et al. The Arabidopsis ClpB/Hsp100 family of proteins: chaperones for stress and chloroplast development. Plant J. 49, 115–127 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Kotak, S. et al. Complexity of the heat stress response in plants. Curr. Opin. Plant Biol. 10, 310–316 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Andersson, F. I. et al. Cyanobacterial ClpC/HSP100 protein displays intrinsic chaperone activity. J. Biol. Chem. 281, 5468–5475 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Stanne, T. M., Pojidaeva, E., Andersson, F. I. & Clarke, A. K. Distinctive types of ATP-dependent Clp proteases in cyanobacteria. J. Biol. Chem. 282, 14394–14402 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Andersson, F. I. et al. Structure and function of a novel type of ATP-dependent Clp protease. J. Biol. Chem. 284, 13519–13532 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Karradt, A., Sobanski, J., Mattow, J., Lockau, W. & Baier, K. NblA, a key protein of phycobilisome degradation, interacts with ClpC, a HSP100 chaperone partner of a cyanobacterial Clp protease. J. Biol. Chem. 283, 32394–32403 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Bougdour, A., Wickner, S. & Gottesman, S. Modulating RssB activity: IraP, a novel regulator of σS stability in Escherichia coli. Genes Dev. 20, 884–897 (2006). This article details the first identification of an E. coli anti-adaptor protein that regulates the RssB-mediated degradation of RpoS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Bougdour, A., Cunning, C., Baptiste, P. J., Elliott, T. & Gottesman, S. Multiple pathways for regulation of σS (RpoS) stability in Escherichia coli via the action of multiple anti-adaptors. Mol. Microbiol. 68, 298–313 (2008).

    Article  CAS  PubMed  Google Scholar 

  110. Merrikh, H., Ferrazzoli, A. E., Bougdour, A., Olivier-Mason, A. & Lovett, S. T. A DNA damage response in Escherichia coli involving the alternative sigma factor, RpoS. Proc. Natl Acad. Sci. USA 106, 611–616 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kirstein, J. et al. Adaptor protein controlled oligomerization activates the AAA+ protein ClpC. EMBO J. 25, 1481–1491 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kain, J., He, G. G. & Losick, R. Polar localization and compartmentalization of ClpP proteases during growth and sporulation in Bacillus subtilis. J. Bacteriol. 190, 6749–6757 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kirstein, J., Strahl, H., Moliere, N., Hamoen, L. W. & Turgay, K. Localization of general and regulatory proteolysis in Bacillus subtilis cells. Mol. Microbiol. 70, 682–694 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Simmons, L. A., Grossman, A. D. & Walker, G. C. Clp and Lon proteases occupy distinct subcellular positions in Bacillus subtilis. J. Bacteriol. 190, 6758–6768 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lewis, P. J., Thaker, S. D. & Errington, J. Compartmentalization of transcription and translation in Bacillus subtilis. EMBO J. 19, 710–718 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lindner, A. B., Madden, R., Demarez, A., Stewart, E. J. & Taddei, F. Asymmetric segregation of protein aggregates is associated with cellular aging and rejuvenation. Proc. Natl Acad. Sci. USA 105, 3076–3081 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Mascarenhas, J., Weber, M. H. & Graumann, P. L. Specific polar localization of ribosomes in Bacillus subtilis depends on active transcription. EMBO Rep. 2, 685–689 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Veening, J. W. et al. Bet-hedging and epigenetic inheritance in bacterial cell development. Proc. Natl Acad. Sci. USA 105, 4393–4398 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. McAdams, H. H. & Shapiro, L. A bacterial cell-cycle regulatory network operating in time and space. Science 301, 1874–1877 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Shapiro, L. & Losick, R. Protein localization and cell fate in bacteria. Science 276, 712–718 (1997).

    Article  CAS  PubMed  Google Scholar 

  121. Jenal, U. & Fuchs, T. An essential protease involved in bacterial cell-cycle control. EMBO J. 17, 5658–5669 (1998). This study highlights the importance of proteolysis for the regulation of a developmental process in C. crescentus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Duerig, A. et al. Second messenger-mediated spatiotemporal control of protein degradation regulates bacterial cell cycle progression. Genes Dev. 23, 93–104 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. McGrath, P. T., Iniesta, A. A., Ryan, K. R., Shapiro, L. & McAdams, H. H. A dynamically localized protease complex and a polar specificity factor control a cell cycle master regulator. Cell 124, 535–547 (2006). This article shows the important role of subcellular localization of the protease and the substrate in C. crescentus.

    Article  CAS  PubMed  Google Scholar 

  124. Iniesta, A. A. & Shapiro, L. A bacterial control circuit integrates polar localization and proteolysis of key regulatory proteins with a phospho-signaling cascade. Proc. Natl Acad. Sci. USA 105, 16602–16607 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ryan, K. R., Huntwork, S. & Shapiro, L. Recruitment of a cytoplasmic response regulator to the cell pole is linked to its cell cycle-regulated proteolysis. Proc. Natl Acad. Sci. USA 101, 7415–7420 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Chien, P., Perchuk, B. S., Laub, M. T., Sauer, R. T. & Baker, T. A. Direct and adaptor-mediated substrate recognition by an essential AAA+ protease. Proc. Natl Acad. Sci. USA 104, 6590–6595 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Chien, P., Grant, R. A., Sauer, R. T. & Baker, T. A. Structure and substrate specificity of an SspB ortholog: design implications for AAA+ adaptors. Structure 15, 1296–1305 (2007).

    Article  CAS  PubMed  Google Scholar 

  128. Levchenko, I., Grant, R. A., Flynn, J. M., Sauer, R. T. & Baker, T. A. Versatile modes of peptide recognition by the AAA+ adaptor protein SspB. Nature Struct. Mol. Biol. 12, 520–525 (2005).

    Article  CAS  Google Scholar 

  129. Levchenko, I., Grant, R. A., Wah, D. A., Sauer, R. T. & Baker, T. A. Structure of a delivery protein for an AAA+ protease in complex with a peptide degradation tag. Mol. Cell 12, 365–372 (2003).

    Article  CAS  PubMed  Google Scholar 

  130. Park, E. Y. et al. Structural basis of SspB-tail recognition by the zinc binding domain of ClpX. J. Mol. Biol. 367, 514–526 (2007).

    Article  CAS  PubMed  Google Scholar 

  131. Song, H. K. & Eck, M. J. Structural basis of degradation signal recognition by SspB, a specificity-enhancing factor for the ClpXP proteolytic machine. Mol. Cell 12, 75–86 (2003).

    Article  CAS  PubMed  Google Scholar 

  132. Dougan, D. A., Weber-Ban, E. & Bukau, B. Targeted delivery of an ssrA-tagged substrate by its adaptor protein SspB to its cognate AAA+ protein ClpX. Mol. Cell 12, 373–380 (2003).

    Article  CAS  PubMed  Google Scholar 

  133. Guo, F., Esser, L., Singh, S. K., Maurizi, M. R. & Xia, D. Crystal structure of the heterodimeric complex of the adaptor, ClpS, with the N-domain of the AAA+ chaperone, ClpA. J. Biol. Chem. 277, 46753–46762 (2002).

    Article  CAS  PubMed  Google Scholar 

  134. Wang, K. H., Roman-Hernandez, G., Grant, R. A., Sauer, R. T. & Baker, T. A. The molecular basis of N-end rule recognition. Mol. Cell 32, 406–414 (2008). References 45, 96 and 134 show that in bacteria, ClpS is directly responsible for the recognition of substrates containing an N-terminal primary destabilizing residue, and for their subsequent delivery to ClpAP for degradation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Zeth, K. et al. Structural analysis of the adaptor protein ClpS in complex with the N-terminal domain of ClpA. Nature Struct. Biol. 9, 906–911 (2002). This study, together with that described in Reference 133, shows the first crystal structure of an adaptor protein (ClpS) in complex with its cognate AAA+ protein (the ClpA N domain).

    Article  CAS  PubMed  Google Scholar 

  136. Kojetin, D. J. et al. Structural and motional contributions of the Bacillus subtilis ClpC N-domain to adaptor protein interactions. J. Mol. Biol. 387, 639–652 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Wah, D. A., Levchenko, I., Baker, T. A. & Sauer, R. T. Characterization of a specificity factor for an AAA+ ATPase: assembly of SspB dimers with ssrA-tagged proteins and the ClpX hexamer. Chem. Biol. 9, 1237–1245 (2002).

    Article  CAS  PubMed  Google Scholar 

  138. Thibault, G. et al. Specificity in substrate and cofactor recognition by the N-terminal domain of the chaperone ClpX. Proc. Natl Acad. Sci. USA 103, 17724–17729 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Wah, D. A. et al. Flexible linkers leash the substrate binding domain of SspB to a peptide module that stabilizes delivery complexes with the AAA+ ClpXP protease. Mol. Cell 12, 355–363 (2003).

    Article  CAS  PubMed  Google Scholar 

  140. Flynn, J. M. et al. Overlapping recognition determinants within the ssrA degradation tag allow modulation of proteolysis. Proc. Natl Acad. Sci. USA 98, 10584–10589 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. McGinness, K. E., Baker, T. A. & Sauer, R. T. Engineering controllable protein degradation. Mol. Cell 22, 701–707 (2006).

    Article  CAS  PubMed  Google Scholar 

  142. Griffith, K. L. & Grossman, A. D. Inducible protein degradation in Bacillus subtilis using heterologous peptide tags and adaptor proteins to target substrates to the protease ClpXP. Mol. Microbiol. 70, 1012–1025 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Lupas, A. N. & Koretke, K. K. Bioinformatic analysis of ClpS, a protein module involved in prokaryotic and eukaryotic protein degradation. J. Struct. Biol. 141, 77–83 (2003).

    Article  CAS  PubMed  Google Scholar 

  144. Wang, K. H., Sauer, R. T. & Baker, T. A. ClpS modulates but is not essential for bacterial N-end rule degradation. Genes Dev. 21, 403–408 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Hou, J. Y., Sauer, R. T. & Baker, T. A. Distinct structural elements of the adaptor ClpS are required for regulating degradation by ClpAP. Nature Struct. Mol. Biol. 15, 288–294 (2008).

    Article  CAS  Google Scholar 

  146. Persuh, M., Turgay, K., Mandic-Mulec, I. & Dubnau, D. The N- and C-terminal domains of MecA recognize different partners in the competence molecular switch. Mol. Microbiol. 33, 886–894 (1999).

    Article  CAS  PubMed  Google Scholar 

  147. Darwin, K. H., Ehrt, S., Gutierrez-Ramos, J. C., Weich, N. & Nathan, C. F. The proteasome of Mycobacterium tuberculosis is required for resistance to nitric oxide. Science 302, 1963–1966 (2003).

    Article  CAS  PubMed  Google Scholar 

  148. Darwin, K. H., Lin, G., Chen, Z., Li, H. & Nathan, C. F. Characterization of a Mycobacterium tuberculosis proteasomal ATPase homologue. Mol. Microbiol. 55, 561–571 (2005).

    Article  CAS  PubMed  Google Scholar 

  149. Pearce, M. J. et al. Identification of substrates of the Mycobacterium tuberculosis proteasome. EMBO J. 25, 5423–5432 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Pearce, M. J., Mintseris, J., Ferreyra, J., Gygi, S. P. & Darwin, K. H. Ubiquitin-like protein involved in the proteasome pathway of Mycobacterium tuberculosis. Science 322, 1104–1107 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Burns, K. E., Liu, W. T., Boshoff, H. I., Dorrestein, P. C. & Barry, C. E. 3rd. Proteasomal protein degradation in mycobacteria is dependent upon a prokaryotic ubiquitin-like protein. J. Biol. Chem. 284, 3069–3075 (2009). References 150 and 151 suggest that a prokaryote protein modification system exists that is similar to the ubiquitin system in eukaryotes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Darwin, K. H. Prokaryotic ubiquitin-like protein (Pup), proteasomes and pathogenesis. Nature Rev. Microbiol. 7, 485–491 (2009).

    Article  CAS  Google Scholar 

  153. Striebel, F. et al. Bacterial ubiquitin-like modifier Pup is deamidated and conjugated to substrates by distinct but homologous enzymes. Nature Struct. Mol. Biol. 17 May 2009 (doi:10.1038/nsmb.1597).

    Article  CAS  Google Scholar 

  154. Brötz-Oesterhelt, H. et al. Dysregulation of bacterial proteolytic machinery by a new class of antibiotics. Nature Med. 11, 1082–1087 (2005).

    Article  CAS  PubMed  Google Scholar 

  155. Kirstein, J. et al. The antibiotic ADEP reprograms ClpP, switching it from a regulated to an uncontrolled protease. EMBO Mol. Med. 1, 37–48 (2009). Together with Reference 154, this work shows that acyldepsipeptides, a new class of antibiotics, target ClpP, resulting in the unregulated degradation of unfolded proteins and nascent polypeptides.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Tu, G. F., Reid, G. E., Zhang, J. G., Moritz, R. L. & Simpson, R. J. C-terminal extension of truncated recombinant proteins in Escherichia coli with a 10S RNA decapeptide. J. Biol. Chem. 270, 9322–9326 (1995).

    Article  CAS  PubMed  Google Scholar 

  157. Ray, B. K. & Apirion, D. Characterization of 10S RNA: a new stable RNA molecule from Escherichia coli. Mol. Gen. Genet. 174, 25–32 (1979).

    Article  CAS  PubMed  Google Scholar 

  158. Keiler, K. C., Waller, P. R. & Sauer, R. T. Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science 271, 990–993 (1996). This study reveals the biological function of the SsrA tag in bacteria.

    Article  CAS  PubMed  Google Scholar 

  159. Moore, S. D. & Sauer, R. T. The tmRNA system for translational surveillance and ribosome rescue. Annu. Rev. Biochem. 76, 101–124 (2007).

    Article  CAS  PubMed  Google Scholar 

  160. Gottesman, S., Roche, E., Zhou, Y. & Sauer, R. T. The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes Dev. 12, 1338–1347 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Varshavsky, A. The N-end rule: functions, mysteries, uses. Proc. Natl Acad. Sci. USA 93, 12142–12149 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Bachmair, A., Finley, D. & Varshavsky, A. In vivo half-life of a protein is a function of its amino-terminal residue. Science 234, 179–186 (1986).

    Article  CAS  PubMed  Google Scholar 

  163. Shrader, T. E., Tobias, J. W. & Varshavsky, A. The N-end rule in Escherichia coli: cloning and analysis of the leucyl, phenylalanyl-tRNA-protein transferase gene aat. J. Bacteriol. 175, 4364–4374 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Watanabe, K. et al. Protein-based peptide-bond formation by aminoacyl-tRNA protein transferase. Nature 449, 867–871 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Hahn, R. Hengge and G. Becker for critical reading and comments. Work in the laboratory of K.T. is supported by the Deutsche Forschungsgemeinschaft. J.K. is currently supported by a long-term postdoctoral fellowship from the Human Frontier Science Program (LT00045/2008-L). D.A.D. is supported by a QEII Fellowship from the Australian Research Council (DP0450051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kürşad Turgay.

Related links

Related links

DATABASES

Entrez Genome Project

Bacillus subtilis

Caulobacter crescentus

Escherichia coli

Mycobacterium tuberculosis

Nostoc sp. PCC7120

Salmonella enterica

Synechococcus elongatus

FURTHER INFORMATION

Kürşad Turgay's homepage

Glossary

Chaperone

Protein that assists the folding of another protein, either by promoting folding or by stabilizing a partially folded intermediate.

AAA+

A member of a superfamily of proteins that assemble into higher-order structures and that use the energy of ATP hydrolysis to unfold proteins and, in some cases, transfer the unfolded protein into a protease.

Degron

A recognition sequence in a protein that targets it for degradation by a protease.

Ubiquitin

A small protein that is added to eukaryotic proteins. Ubiquitin acts as a recognition signal for the proteasome and causes the degradation of the target protein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirstein, J., Molière, N., Dougan, D. et al. Adapting the machine: adaptor proteins for Hsp100/Clp and AAA+ proteases. Nat Rev Microbiol 7, 589–599 (2009). https://doi.org/10.1038/nrmicro2185

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2185

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing