Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Is the high virulence of HIV-1 an unfortunate coincidence of primate lentiviral evolution?

Abstract

In the subset of primate lentiviruses that contain a vpu gene — HIV-1 and its simian precursors — the Nef protein has lost the ability to down-modulate CD3, block T cell activation and suppress programmed death. Vpu counteracts a host restriction factor induced by the inflammatory cytokine interferon-α. I propose that the acquisition of vpu may have allowed the viral lineage that gave rise to HIV-1 to evolve towards greater pathogenicity by removing the selective pressure for a protective Nef function that prevents damagingly high levels of immune activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the functions of Nef and Vpu.
Figure 2: Evolutionary link between the presence of a vpu gene and the lack of Nef-mediated down-modulation of CD3.
Figure 3: Acquisition of vpu and loss of Nef-mediated CD3 down-modulation in the lentiviral lineage that gave rise to HIV-1.
Figure 4: Possible link between Nef and Vpu function in T cell activation.

Similar content being viewed by others

References

  1. Silvestri, G., Paiardini, M., Pandrea, I., Lederman, M. M. & Sodora, D. L. Understanding the benign nature of SIV infection in natural hosts. J. Clin. Invest. 117, 3148–3154 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pandrea, I., Sodora, D. L., Silvestri, G. & Apetrei, C. Into the wild: simian immunodeficiency virus (SIV) infection in natural hosts. Trends Immunol. 29, 419–428 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Liu, Z. et al. Elevated CD38 antigen expression on CD8+ T cells is a stronger marker for the risk of chronic HIV disease progression to AIDS and death in the Multicenter AIDS Cohort Study than CD4+ cell count, soluble immune activation markers, or combinations of HLA-DR and CD38 expression. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 16, 83–92 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Giorgi, J. V. et al. Shorter survival in advanced human immunodeficiency virus type 1 infection is more closely associated with T lymphocyte activation than with plasma virus burden or virus chemokine coreceptor usage. J. Infect. Dis. 179, 859–870 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Sousa, A. E., Carneiro, J., Meier-Schellersheim, M., Grossman, Z. & Victorino, R. M. CD4 T cell depletion is linked directly to immune activation in the pathogenesis of HIV-1 and HIV-2 but only indirectly to the viral load. J. Immunol. 169, 3400–3406 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Silvestri, G. Naturally SIV-infected sooty mangabeys: are we closer to understanding why they do not develop AIDS? J. Med. Primatol. 34, 243–252 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Swanson, C. M. & Malim, M. H. SnapShot: HIV-1 proteins. Cell 133, 742 (2008).

    Article  PubMed  Google Scholar 

  8. Leitner, T. et al. (eds) HIV Sequence Compendium 2003 http://www.hiv.lanl.gov/content/sequence/HIV/COMPENDIUM/2003/0.pdf[online], (2003).

    Google Scholar 

  9. Neil, S. J., Zang, T. & Bieniasz, P. D. Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 451, 425–430 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Van Damme, N. et al. The interferon-induced protein BST-2 restricts HIV-1 release and is downregulated from the cell surface by the viral Vpu protein. Cell Host Microbe 3, 245–252 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Neil, S. J., Sandrin, V., Sundquist, W. I. & Bieniasz, P. D. An interferon-α-induced tethering mechanism inhibits HIV-1 and Ebola virus particle release but is counteracted by the HIV-1 Vpu protein. Cell Host Microbe 2, 193–203 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schindler, M. et al. Nef-mediated suppression of T cell activation was lost in a lentiviral lineage that gave rise to HIV-1. Cell 125, 1055–1067 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Deacon, N. J. et al. Genomic structure of an attenuated quasi species of HIV-1 from a blood transfusion donor and recipients. Science 270, 988–991 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Kirchhoff, F., Greenough, T. C., Brettler, D. B., Sullivan, J. L. & Desrosiers, R. C. Absence of intact nef sequences in a long-term, nonprogressing survivor of HIV-1 infection. N. Engl. J. Med. 332, 228–232 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Arendt, C. W. & Littman, D. R. HIV: master of the host cell. Genome Biol. 2, REVIEWS1030 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kirchhoff, F., Schindler, M., Specht, A., Arhel, N. & Münch, J. Role of Nef in primate lentiviral immunopathogenesis. Cell. Mol. Life Sci. 65, 2621–2636 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Ariën, K. K. & Verhasselt, B. HIV Nef: role in pathogenesis and viral fitness. Curr. HIV Res. 6, 200–208 (2008).

    Article  PubMed  Google Scholar 

  18. Fackler, O. T., Alcover, A. & Schwartz, O. Modulation of the immunological synapse: a key to HIV-1 pathogenesis? Nature Rev. Immunol. 7, 310–317 (2007).

    Article  CAS  Google Scholar 

  19. Thoulouze, M. I. et al. Human immunodeficiency virus type-1 infection impairs the formation of the immunological synapse. Immunity 24, 547–561 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Djordjevic, J. T., Schibeci, S. D., Stewart, G. J. & Williamson P. HIV type 1 Nef increases the association of T cell receptor (TCR)-signaling molecules with T cell rafts and promotes activation-induced raft fusion. AIDS Res. Hum. Retroviruses 20, 547–555 (2004).

    Google Scholar 

  21. Fenard, D. et al. Nef is physically recruited into the immunological synapse and potentiates T cell activation early after TCR engagement. J. Immunol. 175, 6050–6057 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Fortin, J. F., Barat, C., Beausejour, Y., Barbeau, B. & Tremblay, M. J. Hyper-responsiveness to stimulation of HIV-infected CD4+ T cells requires Nef and Tat virus gene products and results from higher NFAT, NF-κB, and AP-1 induction. J. Biol. Chem. 279, 39520–39531 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Krautkramer, E., Giese, S. I., Gasteier, J. E., Muranyi, W. & Fackler, O. T. Human immunodeficiency virus type 1 Nef activates p21-activated kinase via recruitment into lipid rafts. J. Virol. 78, 4085–4097 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Manninen, A., Renkema, G. H. & Saksela, K. Synergistic activation of NFAT by HIV-1 Nef and the Ras/MAPK pathway. J. Biol. Chem. 275, 16513–16517 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Schrager, J. A. & Marsh, J. W. HIV-1 Nef increases T cell activation in a stimulus-dependent manner. Proc. Natl Acad. Sci. USA 96, 8167–8172 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang, J. K., Kiyokawa, E., Verdin, E. & Trono, D. Nef protein of HIV-1 associates with rafts and primes T cells for activation. Proc. Natl Acad. Sci. USA 97, 394–399 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Renkema, G. H. & Saksela, K. Interactions of HIV-1 NEF with cellular signal transducing proteins. Front. Biosci. 5, 268–283 (2000).

    Article  Google Scholar 

  28. Simmons, A., Aluvihare, V. & McMichael, A. Nef triggers a transcriptional program in T cells imitating single-signal T cell activation and inducing HIV virulence mediators. Immunity 14, 763–777 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Münch, J. et al. Nef-mediated enhancement of virion infectivity and stimulation of viral replication are fundamental properties of primate lentiviruses. J. Virol. 81, 13852–13864 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Swigut, T., Greenberg, M. & Skowronski, J. Cooperative interactions of simian immunodeficiency virus Nef, AP-2, and CD3-ζ mediate the selective induction of T-cell receptor–CD3 endocytosis. J. Virol. 77, 8116–8126 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schaefer, T. M. et al. The conserved process of TCR/CD3 complex down-modulation by SIV Nef is mediated by the central core, not endocytic motifs. Virology 302, 106–122 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Stevenson, M. HIV-1 pathogenesis. Nature Med. 9, 853–860 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Collette, Y. S. et al. HIV-2 and SIV Nef proteins target different Src family SH3 domains than does HIV-1 Nef because of a triple amino acid substitution. J. Biol. Chem. 275, 4171–4176 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Malim, M. H. & Emerman, M. HIV-1 accessory proteins — ensuring viral survival in a hostile environment. Cell Host Microbe 3, 388–398 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Lama, J. The physiological relevance of CD4 receptor down-modulation during HIV infection. Curr. HIV Res. 1, 167–184 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Göttlinger, H. G., Dorfman, T., Cohen, E. A. & Haseltine, W. A. Vpu protein of human immunodeficiency virus type 1 enhances the release of capsids produced by gag gene constructs of widely divergent retroviruses. Proc. Natl Acad. Sci. USA 90, 7381–7385 (1993).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Varthakavi, V. et al. Identification of calcium-modulating cyclophilin ligand as a human host restriction to HIV-1 release overcome by Vpu. Nature Med. 14, 641–647 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Bailes, E. et al. Hybrid origin of SIV in chimpanzees. Science 300, 1713 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Bibollet-Ruche, F. et al. New simian immunodeficiency virus infecting De Brazza's monkeys (Cercopithecus neglectus): evidence for a cercopithecus monkey virus clade. J. Virol. 78, 7748–7762 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hsu, K., Seharaseyon, J., Dong, P., Bour, S. & Marbán, E. Mutual functional destruction of HIV-1 Vpu and host TASK-1 channel. Mol. Cell 14, 259–267 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Novembre, F. et al. Development of AIDS in a chimpanzee infected with human immunodeficiency virus type 1. J. Virol. 71, 4086–4091 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Davis, I. C., Girard, M. & Fultz, P. N. Loss of CD4+ T cells in human immunodeficiency virus type 1-infected chimpanzees is associated with increased lymphocyte apoptosis. J. Virol. 72, 4623–4632 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Aghokeng, A. F. et al. Widely varying SIV prevalence rates in naturally infected primate species from Cameroon. Virology 345, 174–189 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Gordon, S. et al. Severe depletion of mucosal CD4+ T cells in AIDS-free SIV-infected sooty mangabeys. J. Immunol. 179, 3026–3034 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Pandrea, I. et al. Acute loss of intestinal CD4+ T cells is not predictive of simian immunodeficiency virus virulence. J. Immunol. 179, 3035–3046 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Dunham, R. et al. The AIDS resistance of naturally SIV-infected sooty mangabeys is independent of cellular immunity to the virus. Blood 108, 209–217 (2007).

    Article  Google Scholar 

  47. Wang, Z., Metcalf, B., Ribeiro, R. M., McClure, H. & Kaur, A. Th-1-type cytotoxic CD8+ T-lymphocyte responses to simian immunodeficiency virus (SIV) are a consistent feature of natural SIV infection in sooty mangabeys. J. Virol. 80, 2771–2783 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hirsch, V. M. What can natural infection of African monkeys with SIV tell us about the pathogenesis of AIDS? AIDS Rev. 6, 40–53 (2004).

    PubMed  Google Scholar 

  49. Schindler, M. et al. Inefficient Nef-mediated down-modulation of CD3 and MHC-I correlates with loss of CD4+ T cells in natural SIV infection. PLoS Pathog. 4, e1000107 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Xu, X. N. et al. Induction of Fas ligand expression by HIV involves the interaction of Nef with the T cell receptor ζ chain. J. Exp. Med. 189, 1489–1496 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Brenchley, J. M., Price, D. A. & Douek, D. C. HIV disease: fallout from a mucosal catastrophe? Nature Immunol. 7, 235–239 (2006).

    Article  CAS  Google Scholar 

  52. Brenchley, J. M. et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nature Med. 12, 1365–1371 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Mandl, J. N. et al. Divergent TLR7 and TLR9 signaling and type I interferon production distinguish pathogenic and nonpathogenic AIDS virus infections. Nature Med. 14 Sep 2008 (doi: 10.1038/nm.1871).

  54. Diop, O. M. et al. Plasmacytoid dendritic cell dynamics and alpha interferon production during Simian immunodeficiency virus infection with a nonpathogenic outcome. J. Virol. 82, 5145–5152 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Boasso, A. & Shearer, G. M. Chronic innate immune activation as a cause of HIV-1 immunopathogenesis. Clin. Immunol. 126, 235–242 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Blasius, A. L. et al. Bone marrow stromal cell antigen 2 is a specific marker of type I IFN-producing cells in the naive mouse, but a promiscuous cell surface antigen following IFN stimulation. J. Immunol. 177, 3260–3265 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Corbeil, J. et al. Temporal gene regulation during HIV-1 infection of human CD4+ T cells. Genome Res. 11, 1198–1204 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bour, S. & Strebel, K. The human immunodeficiency virus (HIV) type 2 envelope protein is a functional complement to HIV type 1 Vpu that enhances particle release of heterologous retroviruses. J. Virol. 70, 8285–8300 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Bell, I., Schaefer, T. M., Trible, R. P., Amedee, A. & Reinhart, T. A. Down-modulation of the costimulatory molecule, CD28, is a conserved activity of multiple SIV Nefs and is dependent on histidine 196 of Nef. Virology 283, 148–158 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Swigut, T., Shohdy, N. & Skowronski J. Mechanism for down-regulation of CD28 by Nef. EMBO J. 20, 1593–1604 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hrecka, K., Swigut, T., Schindler, M., Kirchhoff, F. & Skowronski, J. Nef proteins from diverse groups of primate lentiviruses down-modulate CXCR4 to inhibit migration to SDF-1 chemokine. J. Virol. 79, 10650–10659 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Milush, J. M. et al. Virally induced CD4+ T cell depletion is not sufficient to induce AIDS in a natural host. J. Immunol. 179, 3047–3056 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Pandrea, I. et al. Simian immunodeficiency virus SIVagm dynamics in African green monkeys. J. Virol. 82, 3713–3724 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gordon, S. et al. Short-lived infected cells support virus replication in sooty mangabeys naturally infected with simian immunodeficiency virus: implications for AIDS pathogenesis. J. Virol. 82, 3725–3735 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Beignon, A. S. et al. Endocytosis of HIV-1 activates plasmacytoid dendritic cells via Toll-like receptor–viral RNA interactions. J. Clin. Invest. 115, 3265–3275 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Du, Z. et al. Identification of a nef allele that causes lymphocyte activation and acute disease in macaque monkeys. Cell 82, 665–674 (1995).

    Article  CAS  PubMed  Google Scholar 

  67. Munch, J. et al. T-cell receptor: CD3 down-regulation is a selected in vivo function of simian immunodeficiency virus Nef but is not sufficient for effective viral replication in rhesus macaques. J. Virol. 76, 12360–12364 (2003).

    Article  Google Scholar 

  68. Alexander, L., Du, Z., Howe, A. Y., Czajak, S. & Desrosiers, R. C. Induction of AIDS in rhesus monkeys by a recombinant SIV expressing nef of HIV-1. J. Virol. 73, 5814–5825 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Kirchhoff, F. et al. The HIV-1 nef gene can to a large extent substitute for the SIV nef in vivo. J. Virol. 73, 8371–8383 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Kaur, A., Grant, R. M., Means, R. E., McClue, H., Feinberg, M. & Johnson. R. P. Diverse host responses and outcomes following SIVmac239 infection in sooty mangabeys and rhesus macaques. J. Virol. 72, 9597–9611 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Silvestri, G. et al. Divergent host responses during primary simian immunodeficiency virus SIVsm infection of natural sooty mangabey and nonnatural rhesus macaque hosts. J. Virol. 79, 4043–4054 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mackay, G. A. et al. Presence of intact vpu and nef genes in nonpathogenic SHIV is essential for acquisition of pathogenicity of this virus by serial passage in macaques. Virology 295, 133–146 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Sawyer, S. L., Emerman, M. & Malik, H. S. Ancient adaptive evolution of the primate antiviral DNA-editing enzyme APOBEC3G. PLoS Biol. 2, e275 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kaiser, S. M., Malik, H. S. & Emerman M. Restriction of an extinct retrovirus by the human TRIM5α antiviral protein. Science 316, 1756–1758 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Bieniasz, P. D. Intrinsic immunity: a front-line defense against viral attack. Nature Immunol. 5, 1109–1115 (2004).

    Article  CAS  Google Scholar 

  76. Baumann, J. G. Intracellular restriction factors in mammalian cells — an ancient defense system finds a modern foe. Curr. HIV Res. 4, 141–168 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank B. H. Hahn and G. Silvestri for helpful comments, E. Bailes for providing phylogenetic trees, and M.L. Wilson, C. Neel and M. Peeters for providing photographs of non-human primates. I also thank all present and past members of my laboratory, as well as all my collaborators, for their contributions to the work discussed in this article. I apologize to the authors of the many interesting studies that could not be cited owing to space limitations. I am supported by grants from the Deutsche Forschungsgemeinschaft, the Wilhelm Sander Foundation, the European Community and the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Entrez Genome Project

HIV-1

HIV-2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirchhoff, F. Is the high virulence of HIV-1 an unfortunate coincidence of primate lentiviral evolution?. Nat Rev Microbiol 7, 467–476 (2009). https://doi.org/10.1038/nrmicro2111

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2111

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing